plugeth/p2p/discv5/udp.go
Felföldi Zsolt 92580d69d3 p2p, p2p/discover, p2p/discv5: implement UDP port sharing (#15200)
This commit affects p2p/discv5 "topic discovery" by running it on
the same UDP port where the old discovery works. This is realized
by giving an "unhandled" packet channel to the old v4 discovery
packet handler where all invalid packets are sent. These packets
are then processed by v5. v5 packets are always invalid when
interpreted by v4 and vice versa. This is ensured by adding one
to the first byte of the packet hash in v5 packets.

DiscoveryV5Bootnodes is also changed to point to new bootnodes
that are implementing the changed packet format with modified
hash. Existing and new v5 bootnodes are both running on different
ports ATM.
2018-01-22 13:38:34 +01:00

449 lines
13 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package discv5
import (
"bytes"
"crypto/ecdsa"
"errors"
"fmt"
"net"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/nat"
"github.com/ethereum/go-ethereum/p2p/netutil"
"github.com/ethereum/go-ethereum/rlp"
)
const Version = 4
// Errors
var (
errPacketTooSmall = errors.New("too small")
errBadPrefix = errors.New("bad prefix")
errExpired = errors.New("expired")
errUnsolicitedReply = errors.New("unsolicited reply")
errUnknownNode = errors.New("unknown node")
errTimeout = errors.New("RPC timeout")
errClockWarp = errors.New("reply deadline too far in the future")
errClosed = errors.New("socket closed")
)
// Timeouts
const (
respTimeout = 500 * time.Millisecond
sendTimeout = 500 * time.Millisecond
expiration = 20 * time.Second
ntpFailureThreshold = 32 // Continuous timeouts after which to check NTP
ntpWarningCooldown = 10 * time.Minute // Minimum amount of time to pass before repeating NTP warning
driftThreshold = 10 * time.Second // Allowed clock drift before warning user
)
// RPC request structures
type (
ping struct {
Version uint
From, To rpcEndpoint
Expiration uint64
// v5
Topics []Topic
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// pong is the reply to ping.
pong struct {
// This field should mirror the UDP envelope address
// of the ping packet, which provides a way to discover the
// the external address (after NAT).
To rpcEndpoint
ReplyTok []byte // This contains the hash of the ping packet.
Expiration uint64 // Absolute timestamp at which the packet becomes invalid.
// v5
TopicHash common.Hash
TicketSerial uint32
WaitPeriods []uint32
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// findnode is a query for nodes close to the given target.
findnode struct {
Target NodeID // doesn't need to be an actual public key
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// findnode is a query for nodes close to the given target.
findnodeHash struct {
Target common.Hash
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// reply to findnode
neighbors struct {
Nodes []rpcNode
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
topicRegister struct {
Topics []Topic
Idx uint
Pong []byte
}
topicQuery struct {
Topic Topic
Expiration uint64
}
// reply to topicQuery
topicNodes struct {
Echo common.Hash
Nodes []rpcNode
}
rpcNode struct {
IP net.IP // len 4 for IPv4 or 16 for IPv6
UDP uint16 // for discovery protocol
TCP uint16 // for RLPx protocol
ID NodeID
}
rpcEndpoint struct {
IP net.IP // len 4 for IPv4 or 16 for IPv6
UDP uint16 // for discovery protocol
TCP uint16 // for RLPx protocol
}
)
var (
versionPrefix = []byte("temporary discovery v5")
versionPrefixSize = len(versionPrefix)
sigSize = 520 / 8
headSize = versionPrefixSize + sigSize // space of packet frame data
)
// Neighbors replies are sent across multiple packets to
// stay below the 1280 byte limit. We compute the maximum number
// of entries by stuffing a packet until it grows too large.
var maxNeighbors = func() int {
p := neighbors{Expiration: ^uint64(0)}
maxSizeNode := rpcNode{IP: make(net.IP, 16), UDP: ^uint16(0), TCP: ^uint16(0)}
for n := 0; ; n++ {
p.Nodes = append(p.Nodes, maxSizeNode)
size, _, err := rlp.EncodeToReader(p)
if err != nil {
// If this ever happens, it will be caught by the unit tests.
panic("cannot encode: " + err.Error())
}
if headSize+size+1 >= 1280 {
return n
}
}
}()
var maxTopicNodes = func() int {
p := topicNodes{}
maxSizeNode := rpcNode{IP: make(net.IP, 16), UDP: ^uint16(0), TCP: ^uint16(0)}
for n := 0; ; n++ {
p.Nodes = append(p.Nodes, maxSizeNode)
size, _, err := rlp.EncodeToReader(p)
if err != nil {
// If this ever happens, it will be caught by the unit tests.
panic("cannot encode: " + err.Error())
}
if headSize+size+1 >= 1280 {
return n
}
}
}()
func makeEndpoint(addr *net.UDPAddr, tcpPort uint16) rpcEndpoint {
ip := addr.IP.To4()
if ip == nil {
ip = addr.IP.To16()
}
return rpcEndpoint{IP: ip, UDP: uint16(addr.Port), TCP: tcpPort}
}
func (e1 rpcEndpoint) equal(e2 rpcEndpoint) bool {
return e1.UDP == e2.UDP && e1.TCP == e2.TCP && e1.IP.Equal(e2.IP)
}
func nodeFromRPC(sender *net.UDPAddr, rn rpcNode) (*Node, error) {
if err := netutil.CheckRelayIP(sender.IP, rn.IP); err != nil {
return nil, err
}
n := NewNode(rn.ID, rn.IP, rn.UDP, rn.TCP)
err := n.validateComplete()
return n, err
}
func nodeToRPC(n *Node) rpcNode {
return rpcNode{ID: n.ID, IP: n.IP, UDP: n.UDP, TCP: n.TCP}
}
type ingressPacket struct {
remoteID NodeID
remoteAddr *net.UDPAddr
ev nodeEvent
hash []byte
data interface{} // one of the RPC structs
rawData []byte
}
type conn interface {
ReadFromUDP(b []byte) (n int, addr *net.UDPAddr, err error)
WriteToUDP(b []byte, addr *net.UDPAddr) (n int, err error)
Close() error
LocalAddr() net.Addr
}
// udp implements the RPC protocol.
type udp struct {
conn conn
priv *ecdsa.PrivateKey
ourEndpoint rpcEndpoint
nat nat.Interface
net *Network
}
// ListenUDP returns a new table that listens for UDP packets on laddr.
func ListenUDP(priv *ecdsa.PrivateKey, conn conn, realaddr *net.UDPAddr, nodeDBPath string, netrestrict *netutil.Netlist) (*Network, error) {
transport, err := listenUDP(priv, conn, realaddr)
if err != nil {
return nil, err
}
net, err := newNetwork(transport, priv.PublicKey, nodeDBPath, netrestrict)
if err != nil {
return nil, err
}
transport.net = net
go transport.readLoop()
return net, nil
}
func listenUDP(priv *ecdsa.PrivateKey, conn conn, realaddr *net.UDPAddr) (*udp, error) {
return &udp{conn: conn, priv: priv, ourEndpoint: makeEndpoint(realaddr, uint16(realaddr.Port))}, nil
}
func (t *udp) localAddr() *net.UDPAddr {
return t.conn.LocalAddr().(*net.UDPAddr)
}
func (t *udp) Close() {
t.conn.Close()
}
func (t *udp) send(remote *Node, ptype nodeEvent, data interface{}) (hash []byte) {
hash, _ = t.sendPacket(remote.ID, remote.addr(), byte(ptype), data)
return hash
}
func (t *udp) sendPing(remote *Node, toaddr *net.UDPAddr, topics []Topic) (hash []byte) {
hash, _ = t.sendPacket(remote.ID, toaddr, byte(pingPacket), ping{
Version: Version,
From: t.ourEndpoint,
To: makeEndpoint(toaddr, uint16(toaddr.Port)), // TODO: maybe use known TCP port from DB
Expiration: uint64(time.Now().Add(expiration).Unix()),
Topics: topics,
})
return hash
}
func (t *udp) sendFindnode(remote *Node, target NodeID) {
t.sendPacket(remote.ID, remote.addr(), byte(findnodePacket), findnode{
Target: target,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
}
func (t *udp) sendNeighbours(remote *Node, results []*Node) {
// Send neighbors in chunks with at most maxNeighbors per packet
// to stay below the 1280 byte limit.
p := neighbors{Expiration: uint64(time.Now().Add(expiration).Unix())}
for i, result := range results {
p.Nodes = append(p.Nodes, nodeToRPC(result))
if len(p.Nodes) == maxNeighbors || i == len(results)-1 {
t.sendPacket(remote.ID, remote.addr(), byte(neighborsPacket), p)
p.Nodes = p.Nodes[:0]
}
}
}
func (t *udp) sendFindnodeHash(remote *Node, target common.Hash) {
t.sendPacket(remote.ID, remote.addr(), byte(findnodeHashPacket), findnodeHash{
Target: target,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
}
func (t *udp) sendTopicRegister(remote *Node, topics []Topic, idx int, pong []byte) {
t.sendPacket(remote.ID, remote.addr(), byte(topicRegisterPacket), topicRegister{
Topics: topics,
Idx: uint(idx),
Pong: pong,
})
}
func (t *udp) sendTopicNodes(remote *Node, queryHash common.Hash, nodes []*Node) {
p := topicNodes{Echo: queryHash}
if len(nodes) == 0 {
t.sendPacket(remote.ID, remote.addr(), byte(topicNodesPacket), p)
return
}
for i, result := range nodes {
if netutil.CheckRelayIP(remote.IP, result.IP) != nil {
continue
}
p.Nodes = append(p.Nodes, nodeToRPC(result))
if len(p.Nodes) == maxTopicNodes || i == len(nodes)-1 {
t.sendPacket(remote.ID, remote.addr(), byte(topicNodesPacket), p)
p.Nodes = p.Nodes[:0]
}
}
}
func (t *udp) sendPacket(toid NodeID, toaddr *net.UDPAddr, ptype byte, req interface{}) (hash []byte, err error) {
//fmt.Println("sendPacket", nodeEvent(ptype), toaddr.String(), toid.String())
packet, hash, err := encodePacket(t.priv, ptype, req)
if err != nil {
//fmt.Println(err)
return hash, err
}
log.Trace(fmt.Sprintf(">>> %v to %x@%v", nodeEvent(ptype), toid[:8], toaddr))
if _, err = t.conn.WriteToUDP(packet, toaddr); err != nil {
log.Trace(fmt.Sprint("UDP send failed:", err))
}
//fmt.Println(err)
return hash, err
}
// zeroed padding space for encodePacket.
var headSpace = make([]byte, headSize)
func encodePacket(priv *ecdsa.PrivateKey, ptype byte, req interface{}) (p, hash []byte, err error) {
b := new(bytes.Buffer)
b.Write(headSpace)
b.WriteByte(ptype)
if err := rlp.Encode(b, req); err != nil {
log.Error(fmt.Sprint("error encoding packet:", err))
return nil, nil, err
}
packet := b.Bytes()
sig, err := crypto.Sign(crypto.Keccak256(packet[headSize:]), priv)
if err != nil {
log.Error(fmt.Sprint("could not sign packet:", err))
return nil, nil, err
}
copy(packet, versionPrefix)
copy(packet[versionPrefixSize:], sig)
hash = crypto.Keccak256(packet[versionPrefixSize:])
return packet, hash, nil
}
// readLoop runs in its own goroutine. it injects ingress UDP packets
// into the network loop.
func (t *udp) readLoop() {
defer t.conn.Close()
// Discovery packets are defined to be no larger than 1280 bytes.
// Packets larger than this size will be cut at the end and treated
// as invalid because their hash won't match.
buf := make([]byte, 1280)
for {
nbytes, from, err := t.conn.ReadFromUDP(buf)
if netutil.IsTemporaryError(err) {
// Ignore temporary read errors.
log.Debug(fmt.Sprintf("Temporary read error: %v", err))
continue
} else if err != nil {
// Shut down the loop for permament errors.
log.Debug(fmt.Sprintf("Read error: %v", err))
return
}
t.handlePacket(from, buf[:nbytes])
}
}
func (t *udp) handlePacket(from *net.UDPAddr, buf []byte) error {
pkt := ingressPacket{remoteAddr: from}
if err := decodePacket(buf, &pkt); err != nil {
log.Debug(fmt.Sprintf("Bad packet from %v: %v", from, err))
//fmt.Println("bad packet", err)
return err
}
t.net.reqReadPacket(pkt)
return nil
}
func decodePacket(buffer []byte, pkt *ingressPacket) error {
if len(buffer) < headSize+1 {
return errPacketTooSmall
}
buf := make([]byte, len(buffer))
copy(buf, buffer)
prefix, sig, sigdata := buf[:versionPrefixSize], buf[versionPrefixSize:headSize], buf[headSize:]
if !bytes.Equal(prefix, versionPrefix) {
return errBadPrefix
}
fromID, err := recoverNodeID(crypto.Keccak256(buf[headSize:]), sig)
if err != nil {
return err
}
pkt.rawData = buf
pkt.hash = crypto.Keccak256(buf[versionPrefixSize:])
pkt.remoteID = fromID
switch pkt.ev = nodeEvent(sigdata[0]); pkt.ev {
case pingPacket:
pkt.data = new(ping)
case pongPacket:
pkt.data = new(pong)
case findnodePacket:
pkt.data = new(findnode)
case neighborsPacket:
pkt.data = new(neighbors)
case findnodeHashPacket:
pkt.data = new(findnodeHash)
case topicRegisterPacket:
pkt.data = new(topicRegister)
case topicQueryPacket:
pkt.data = new(topicQuery)
case topicNodesPacket:
pkt.data = new(topicNodes)
default:
return fmt.Errorf("unknown packet type: %d", sigdata[0])
}
s := rlp.NewStream(bytes.NewReader(sigdata[1:]), 0)
err = s.Decode(pkt.data)
return err
}