plugeth/p2p/enode/iter_test.go
Marius van der Wijden 8dbf261fd9
p2p, p2p/enode: fix data races ()
In p2p/dial.go, conn.flags was accessed without using sync/atomic.
This race is fixed by removing the access.

In p2p/enode/iter_test.go, a similar race is resolved by writing the field atomically.

Co-authored-by: Felix Lange <fjl@twurst.com>
2021-08-24 12:22:56 +02:00

292 lines
6.3 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package enode
import (
"encoding/binary"
"runtime"
"sync/atomic"
"testing"
"time"
"github.com/ethereum/go-ethereum/p2p/enr"
)
func TestReadNodes(t *testing.T) {
nodes := ReadNodes(new(genIter), 10)
checkNodes(t, nodes, 10)
}
// This test checks that ReadNodes terminates when reading N nodes from an iterator
// which returns less than N nodes in an endless cycle.
func TestReadNodesCycle(t *testing.T) {
iter := &callCountIter{
Iterator: CycleNodes([]*Node{
testNode(0, 0),
testNode(1, 0),
testNode(2, 0),
}),
}
nodes := ReadNodes(iter, 10)
checkNodes(t, nodes, 3)
if iter.count != 10 {
t.Fatalf("%d calls to Next, want %d", iter.count, 100)
}
}
func TestFilterNodes(t *testing.T) {
nodes := make([]*Node, 100)
for i := range nodes {
nodes[i] = testNode(uint64(i), uint64(i))
}
it := Filter(IterNodes(nodes), func(n *Node) bool {
return n.Seq() >= 50
})
for i := 50; i < len(nodes); i++ {
if !it.Next() {
t.Fatal("Next returned false")
}
if it.Node() != nodes[i] {
t.Fatalf("iterator returned wrong node %v\nwant %v", it.Node(), nodes[i])
}
}
if it.Next() {
t.Fatal("Next returned true after underlying iterator has ended")
}
}
func checkNodes(t *testing.T, nodes []*Node, wantLen int) {
if len(nodes) != wantLen {
t.Errorf("slice has %d nodes, want %d", len(nodes), wantLen)
return
}
seen := make(map[ID]bool)
for i, e := range nodes {
if e == nil {
t.Errorf("nil node at index %d", i)
return
}
if seen[e.ID()] {
t.Errorf("slice has duplicate node %v", e.ID())
return
}
seen[e.ID()] = true
}
}
// This test checks fairness of FairMix in the happy case where all sources return nodes
// within the context's deadline.
func TestFairMix(t *testing.T) {
for i := 0; i < 500; i++ {
testMixerFairness(t)
}
}
func testMixerFairness(t *testing.T) {
mix := NewFairMix(1 * time.Second)
mix.AddSource(&genIter{index: 1})
mix.AddSource(&genIter{index: 2})
mix.AddSource(&genIter{index: 3})
defer mix.Close()
nodes := ReadNodes(mix, 500)
checkNodes(t, nodes, 500)
// Verify that the nodes slice contains an approximately equal number of nodes
// from each source.
d := idPrefixDistribution(nodes)
for _, count := range d {
if approxEqual(count, len(nodes)/3, 30) {
t.Fatalf("ID distribution is unfair: %v", d)
}
}
}
// This test checks that FairMix falls back to an alternative source when
// the 'fair' choice doesn't return a node within the timeout.
func TestFairMixNextFromAll(t *testing.T) {
mix := NewFairMix(1 * time.Millisecond)
mix.AddSource(&genIter{index: 1})
mix.AddSource(CycleNodes(nil))
defer mix.Close()
nodes := ReadNodes(mix, 500)
checkNodes(t, nodes, 500)
d := idPrefixDistribution(nodes)
if len(d) > 1 || d[1] != len(nodes) {
t.Fatalf("wrong ID distribution: %v", d)
}
}
// This test ensures FairMix works for Next with no sources.
func TestFairMixEmpty(t *testing.T) {
var (
mix = NewFairMix(1 * time.Second)
testN = testNode(1, 1)
ch = make(chan *Node)
)
defer mix.Close()
go func() {
mix.Next()
ch <- mix.Node()
}()
mix.AddSource(CycleNodes([]*Node{testN}))
if n := <-ch; n != testN {
t.Errorf("got wrong node: %v", n)
}
}
// This test checks closing a source while Next runs.
func TestFairMixRemoveSource(t *testing.T) {
mix := NewFairMix(1 * time.Second)
source := make(blockingIter)
mix.AddSource(source)
sig := make(chan *Node)
go func() {
<-sig
mix.Next()
sig <- mix.Node()
}()
sig <- nil
runtime.Gosched()
source.Close()
wantNode := testNode(0, 0)
mix.AddSource(CycleNodes([]*Node{wantNode}))
n := <-sig
if len(mix.sources) != 1 {
t.Fatalf("have %d sources, want one", len(mix.sources))
}
if n != wantNode {
t.Fatalf("mixer returned wrong node")
}
}
type blockingIter chan struct{}
func (it blockingIter) Next() bool {
<-it
return false
}
func (it blockingIter) Node() *Node {
return nil
}
func (it blockingIter) Close() {
close(it)
}
func TestFairMixClose(t *testing.T) {
for i := 0; i < 20 && !t.Failed(); i++ {
testMixerClose(t)
}
}
func testMixerClose(t *testing.T) {
mix := NewFairMix(-1)
mix.AddSource(CycleNodes(nil))
mix.AddSource(CycleNodes(nil))
done := make(chan struct{})
go func() {
defer close(done)
if mix.Next() {
t.Error("Next returned true")
}
}()
// This call is supposed to make it more likely that NextNode is
// actually executing by the time we call Close.
runtime.Gosched()
mix.Close()
select {
case <-done:
case <-time.After(3 * time.Second):
t.Fatal("Next didn't unblock on Close")
}
mix.Close() // shouldn't crash
}
func idPrefixDistribution(nodes []*Node) map[uint32]int {
d := make(map[uint32]int)
for _, node := range nodes {
id := node.ID()
d[binary.BigEndian.Uint32(id[:4])]++
}
return d
}
func approxEqual(x, y, ε int) bool {
if y > x {
x, y = y, x
}
return x-y > ε
}
// genIter creates fake nodes with numbered IDs based on 'index' and 'gen'
type genIter struct {
node *Node
index, gen uint32
}
func (s *genIter) Next() bool {
index := atomic.LoadUint32(&s.index)
if index == ^uint32(0) {
s.node = nil
return false
}
s.node = testNode(uint64(index)<<32|uint64(s.gen), 0)
s.gen++
return true
}
func (s *genIter) Node() *Node {
return s.node
}
func (s *genIter) Close() {
atomic.StoreUint32(&s.index, ^uint32(0))
}
func testNode(id, seq uint64) *Node {
var nodeID ID
binary.BigEndian.PutUint64(nodeID[:], id)
r := new(enr.Record)
r.SetSeq(seq)
return SignNull(r, nodeID)
}
// callCountIter counts calls to NextNode.
type callCountIter struct {
Iterator
count int
}
func (it *callCountIter) Next() bool {
it.count++
return it.Iterator.Next()
}