plugeth/les/flowcontrol/manager.go
Péter Szilágyi bf1798e04e
common/prque: generic priority queue (#26290)
* common, core, eth, les, trie: make prque generic

* les/vflux/server: fixed issues in priorityPool

* common, core, eth, les, trie: make priority also generic in prque

* les/flowcontrol: add test case for priority accumulator overflow

* les/flowcontrol: avoid priority value overflow

* common/prque: use int priority in some tests

No need to convert to int64 when we can just change the type used by the
queue.

* common/prque: remove comment about int64 range

---------

Co-authored-by: Zsolt Felfoldi <zsfelfoldi@gmail.com>
Co-authored-by: Felix Lange <fjl@twurst.com>
2023-02-09 13:03:54 +02:00

477 lines
16 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package flowcontrol
import (
"fmt"
"math"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/common/prque"
)
// cmNodeFields are ClientNode fields used by the client manager
// Note: these fields are locked by the client manager's mutex
type cmNodeFields struct {
corrBufValue int64 // buffer value adjusted with the extra recharge amount
rcLastIntValue int64 // past recharge integrator value when corrBufValue was last updated
rcFullIntValue int64 // future recharge integrator value when corrBufValue will reach maximum
queueIndex int // position in the recharge queue (-1 if not queued)
}
// FixedPointMultiplier is applied to the recharge integrator and the recharge curve.
//
// Note: fixed point arithmetic is required for the integrator because it is a
// constantly increasing value that can wrap around int64 limits (which behavior is
// also supported by the priority queue). A floating point value would gradually lose
// precision in this application.
// The recharge curve and all recharge values are encoded as fixed point because
// sumRecharge is frequently updated by adding or subtracting individual recharge
// values and perfect precision is required.
const FixedPointMultiplier = 1000000
var (
capacityDropFactor = 0.1
capacityRaiseTC = 1 / (3 * float64(time.Hour)) // time constant for raising the capacity factor
capacityRaiseThresholdRatio = 1.125 // total/connected capacity ratio threshold for raising the capacity factor
)
// ClientManager controls the capacity assigned to the clients of a server.
// Since ServerParams guarantee a safe lower estimate for processable requests
// even in case of all clients being active, ClientManager calculates a
// corrugated buffer value and usually allows a higher remaining buffer value
// to be returned with each reply.
type ClientManager struct {
clock mclock.Clock
lock sync.Mutex
stop chan chan struct{}
curve PieceWiseLinear
sumRecharge, totalRecharge, totalConnected uint64
logTotalCap, totalCapacity float64
logTotalCapRaiseLimit float64
minLogTotalCap, maxLogTotalCap float64
capacityRaiseThreshold uint64
capLastUpdate mclock.AbsTime
totalCapacityCh chan uint64
// recharge integrator is increasing in each moment with a rate of
// (totalRecharge / sumRecharge)*FixedPointMultiplier or 0 if sumRecharge==0
rcLastUpdate mclock.AbsTime // last time the recharge integrator was updated
rcLastIntValue int64 // last updated value of the recharge integrator
priorityOffset int64 // offset for prque priority values ensures that all priorities stay in the int64 range
// recharge queue is a priority queue with currently recharging client nodes
// as elements. The priority value is rcFullIntValue which allows to quickly
// determine which client will first finish recharge.
rcQueue *prque.Prque[int64, *ClientNode]
}
// NewClientManager returns a new client manager.
// Client manager enhances flow control performance by allowing client buffers
// to recharge quicker than the minimum guaranteed recharge rate if possible.
// The sum of all minimum recharge rates (sumRecharge) is updated each time
// a clients starts or finishes buffer recharging. Then an adjusted total
// recharge rate is calculated using a piecewise linear recharge curve:
//
// totalRecharge = curve(sumRecharge)
// (totalRecharge >= sumRecharge is enforced)
//
// Then the "bonus" buffer recharge is distributed between currently recharging
// clients proportionally to their minimum recharge rates.
//
// Note: total recharge is proportional to the average number of parallel running
// serving threads. A recharge value of 1000000 corresponds to one thread in average.
// The maximum number of allowed serving threads should always be considerably
// higher than the targeted average number.
//
// Note 2: although it is possible to specify a curve allowing the total target
// recharge starting from zero sumRecharge, it makes sense to add a linear ramp
// starting from zero in order to not let a single low-priority client use up
// the entire server capacity and thus ensure quick availability for others at
// any moment.
func NewClientManager(curve PieceWiseLinear, clock mclock.Clock) *ClientManager {
cm := &ClientManager{
clock: clock,
rcQueue: prque.New[int64, *ClientNode](func(a *ClientNode, i int) { a.queueIndex = i }),
capLastUpdate: clock.Now(),
stop: make(chan chan struct{}),
}
if curve != nil {
cm.SetRechargeCurve(curve)
}
go func() {
// regularly recalculate and update total capacity
for {
select {
case <-time.After(time.Minute):
cm.lock.Lock()
cm.updateTotalCapacity(cm.clock.Now(), true)
cm.lock.Unlock()
case stop := <-cm.stop:
close(stop)
return
}
}
}()
return cm
}
// Stop stops the client manager
func (cm *ClientManager) Stop() {
stop := make(chan struct{})
cm.stop <- stop
<-stop
}
// SetRechargeCurve updates the recharge curve
func (cm *ClientManager) SetRechargeCurve(curve PieceWiseLinear) {
cm.lock.Lock()
defer cm.lock.Unlock()
now := cm.clock.Now()
cm.updateRecharge(now)
cm.curve = curve
if len(curve) > 0 {
cm.totalRecharge = curve[len(curve)-1].Y
} else {
cm.totalRecharge = 0
}
}
// SetCapacityLimits sets a threshold value used for raising capFactor.
// Either if the difference between total allowed and connected capacity is less
// than this threshold or if their ratio is less than capacityRaiseThresholdRatio
// then capFactor is allowed to slowly raise.
func (cm *ClientManager) SetCapacityLimits(min, max, raiseThreshold uint64) {
if min < 1 {
min = 1
}
cm.minLogTotalCap = math.Log(float64(min))
if max < 1 {
max = 1
}
cm.maxLogTotalCap = math.Log(float64(max))
cm.logTotalCap = cm.maxLogTotalCap
cm.capacityRaiseThreshold = raiseThreshold
cm.refreshCapacity()
}
// connect should be called when a client is connected, before passing it to any
// other ClientManager function
func (cm *ClientManager) connect(node *ClientNode) {
cm.lock.Lock()
defer cm.lock.Unlock()
now := cm.clock.Now()
cm.updateRecharge(now)
node.corrBufValue = int64(node.params.BufLimit)
node.rcLastIntValue = cm.rcLastIntValue
node.queueIndex = -1
cm.updateTotalCapacity(now, true)
cm.totalConnected += node.params.MinRecharge
cm.updateRaiseLimit()
}
// disconnect should be called when a client is disconnected
func (cm *ClientManager) disconnect(node *ClientNode) {
cm.lock.Lock()
defer cm.lock.Unlock()
now := cm.clock.Now()
cm.updateRecharge(cm.clock.Now())
cm.updateTotalCapacity(now, true)
cm.totalConnected -= node.params.MinRecharge
cm.updateRaiseLimit()
}
// accepted is called when a request with given maximum cost is accepted.
// It returns a priority indicator for the request which is used to determine placement
// in the serving queue. Older requests have higher priority by default. If the client
// is almost out of buffer, request priority is reduced.
func (cm *ClientManager) accepted(node *ClientNode, maxCost uint64, now mclock.AbsTime) (priority int64) {
cm.lock.Lock()
defer cm.lock.Unlock()
cm.updateNodeRc(node, -int64(maxCost), &node.params, now)
rcTime := (node.params.BufLimit - uint64(node.corrBufValue)) * FixedPointMultiplier / node.params.MinRecharge
return -int64(now) - int64(rcTime)
}
// processed updates the client buffer according to actual request cost after
// serving has been finished.
//
// Note: processed should always be called for all accepted requests
func (cm *ClientManager) processed(node *ClientNode, maxCost, realCost uint64, now mclock.AbsTime) {
if realCost > maxCost {
realCost = maxCost
}
cm.updateBuffer(node, int64(maxCost-realCost), now)
}
// updateBuffer recalculates the corrected buffer value, adds the given value to it
// and updates the node's actual buffer value if possible
func (cm *ClientManager) updateBuffer(node *ClientNode, add int64, now mclock.AbsTime) {
cm.lock.Lock()
defer cm.lock.Unlock()
cm.updateNodeRc(node, add, &node.params, now)
if node.corrBufValue > node.bufValue {
if node.log != nil {
node.log.add(now, fmt.Sprintf("corrected bv=%d oldBv=%d", node.corrBufValue, node.bufValue))
}
node.bufValue = node.corrBufValue
}
}
// updateParams updates the flow control parameters of a client node
func (cm *ClientManager) updateParams(node *ClientNode, params ServerParams, now mclock.AbsTime) {
cm.lock.Lock()
defer cm.lock.Unlock()
cm.updateRecharge(now)
cm.updateTotalCapacity(now, true)
cm.totalConnected += params.MinRecharge - node.params.MinRecharge
cm.updateRaiseLimit()
cm.updateNodeRc(node, 0, &params, now)
}
// updateRaiseLimit recalculates the limiting value until which logTotalCap
// can be raised when no client freeze events occur
func (cm *ClientManager) updateRaiseLimit() {
if cm.capacityRaiseThreshold == 0 {
cm.logTotalCapRaiseLimit = 0
return
}
limit := float64(cm.totalConnected + cm.capacityRaiseThreshold)
limit2 := float64(cm.totalConnected) * capacityRaiseThresholdRatio
if limit2 > limit {
limit = limit2
}
if limit < 1 {
limit = 1
}
cm.logTotalCapRaiseLimit = math.Log(limit)
}
// updateRecharge updates the recharge integrator and checks the recharge queue
// for nodes with recently filled buffers
func (cm *ClientManager) updateRecharge(now mclock.AbsTime) {
lastUpdate := cm.rcLastUpdate
cm.rcLastUpdate = now
// updating is done in multiple steps if node buffers are filled and sumRecharge
// is decreased before the given target time
for cm.sumRecharge > 0 {
sumRecharge := cm.sumRecharge
if sumRecharge > cm.totalRecharge {
sumRecharge = cm.totalRecharge
}
bonusRatio := float64(1)
v := cm.curve.ValueAt(sumRecharge)
s := float64(sumRecharge)
if v > s && s > 0 {
bonusRatio = v / s
}
dt := now - lastUpdate
// fetch the client that finishes first
rcqNode := cm.rcQueue.PopItem() // if sumRecharge > 0 then the queue cannot be empty
// check whether it has already finished
dtNext := mclock.AbsTime(float64(rcqNode.rcFullIntValue-cm.rcLastIntValue) / bonusRatio)
if dt < dtNext {
// not finished yet, put it back, update integrator according
// to current bonusRatio and return
cm.addToQueue(rcqNode)
cm.rcLastIntValue += int64(bonusRatio * float64(dt))
return
}
lastUpdate += dtNext
// finished recharging, update corrBufValue and sumRecharge if necessary and do next step
if rcqNode.corrBufValue < int64(rcqNode.params.BufLimit) {
rcqNode.corrBufValue = int64(rcqNode.params.BufLimit)
cm.sumRecharge -= rcqNode.params.MinRecharge
}
cm.rcLastIntValue = rcqNode.rcFullIntValue
}
}
func (cm *ClientManager) addToQueue(node *ClientNode) {
if cm.priorityOffset-node.rcFullIntValue < -0x4000000000000000 {
cm.priorityOffset += 0x4000000000000000
// recreate priority queue with new offset to avoid overflow; should happen very rarely
newRcQueue := prque.New[int64, *ClientNode](func(a *ClientNode, i int) { a.queueIndex = i })
for cm.rcQueue.Size() > 0 {
n := cm.rcQueue.PopItem()
newRcQueue.Push(n, cm.priorityOffset-n.rcFullIntValue)
}
cm.rcQueue = newRcQueue
}
cm.rcQueue.Push(node, cm.priorityOffset-node.rcFullIntValue)
}
// updateNodeRc updates a node's corrBufValue and adds an external correction value.
// It also adds or removes the rcQueue entry and updates ServerParams and sumRecharge if necessary.
func (cm *ClientManager) updateNodeRc(node *ClientNode, bvc int64, params *ServerParams, now mclock.AbsTime) {
cm.updateRecharge(now)
wasFull := true
if node.corrBufValue != int64(node.params.BufLimit) {
wasFull = false
node.corrBufValue += (cm.rcLastIntValue - node.rcLastIntValue) * int64(node.params.MinRecharge) / FixedPointMultiplier
if node.corrBufValue > int64(node.params.BufLimit) {
node.corrBufValue = int64(node.params.BufLimit)
}
node.rcLastIntValue = cm.rcLastIntValue
}
node.corrBufValue += bvc
diff := int64(params.BufLimit - node.params.BufLimit)
if diff > 0 {
node.corrBufValue += diff
}
isFull := false
if node.corrBufValue >= int64(params.BufLimit) {
node.corrBufValue = int64(params.BufLimit)
isFull = true
}
if !wasFull {
cm.sumRecharge -= node.params.MinRecharge
}
if params != &node.params {
node.params = *params
}
if !isFull {
cm.sumRecharge += node.params.MinRecharge
if node.queueIndex != -1 {
cm.rcQueue.Remove(node.queueIndex)
}
node.rcLastIntValue = cm.rcLastIntValue
node.rcFullIntValue = cm.rcLastIntValue + (int64(node.params.BufLimit)-node.corrBufValue)*FixedPointMultiplier/int64(node.params.MinRecharge)
cm.addToQueue(node)
}
}
// reduceTotalCapacity reduces the total capacity allowance in case of a client freeze event
func (cm *ClientManager) reduceTotalCapacity(frozenCap uint64) {
cm.lock.Lock()
defer cm.lock.Unlock()
ratio := float64(1)
if frozenCap < cm.totalConnected {
ratio = float64(frozenCap) / float64(cm.totalConnected)
}
now := cm.clock.Now()
cm.updateTotalCapacity(now, false)
cm.logTotalCap -= capacityDropFactor * ratio
if cm.logTotalCap < cm.minLogTotalCap {
cm.logTotalCap = cm.minLogTotalCap
}
cm.updateTotalCapacity(now, true)
}
// updateTotalCapacity updates the total capacity factor. The capacity factor allows
// the total capacity of the system to go over the allowed total recharge value
// if clients go to frozen state sufficiently rarely.
// The capacity factor is dropped instantly by a small amount if a clients is frozen.
// It is raised slowly (with a large time constant) if the total connected capacity
// is close to the total allowed amount and no clients are frozen.
func (cm *ClientManager) updateTotalCapacity(now mclock.AbsTime, refresh bool) {
dt := now - cm.capLastUpdate
cm.capLastUpdate = now
if cm.logTotalCap < cm.logTotalCapRaiseLimit {
cm.logTotalCap += capacityRaiseTC * float64(dt)
if cm.logTotalCap > cm.logTotalCapRaiseLimit {
cm.logTotalCap = cm.logTotalCapRaiseLimit
}
}
if cm.logTotalCap > cm.maxLogTotalCap {
cm.logTotalCap = cm.maxLogTotalCap
}
if refresh {
cm.refreshCapacity()
}
}
// refreshCapacity recalculates the total capacity value and sends an update to the subscription
// channel if the relative change of the value since the last update is more than 0.1 percent
func (cm *ClientManager) refreshCapacity() {
totalCapacity := math.Exp(cm.logTotalCap)
if totalCapacity >= cm.totalCapacity*0.999 && totalCapacity <= cm.totalCapacity*1.001 {
return
}
cm.totalCapacity = totalCapacity
if cm.totalCapacityCh != nil {
select {
case cm.totalCapacityCh <- uint64(cm.totalCapacity):
default:
}
}
}
// SubscribeTotalCapacity returns all future updates to the total capacity value
// through a channel and also returns the current value
func (cm *ClientManager) SubscribeTotalCapacity(ch chan uint64) uint64 {
cm.lock.Lock()
defer cm.lock.Unlock()
cm.totalCapacityCh = ch
return uint64(cm.totalCapacity)
}
// PieceWiseLinear is used to describe recharge curves
type PieceWiseLinear []struct{ X, Y uint64 }
// ValueAt returns the curve's value at a given point
func (pwl PieceWiseLinear) ValueAt(x uint64) float64 {
l := 0
h := len(pwl)
if h == 0 {
return 0
}
for h != l {
m := (l + h) / 2
if x > pwl[m].X {
l = m + 1
} else {
h = m
}
}
if l == 0 {
return float64(pwl[0].Y)
}
l--
if h == len(pwl) {
return float64(pwl[l].Y)
}
dx := pwl[h].X - pwl[l].X
if dx < 1 {
return float64(pwl[l].Y)
}
return float64(pwl[l].Y) + float64(pwl[h].Y-pwl[l].Y)*float64(x-pwl[l].X)/float64(dx)
}
// Valid returns true if the X coordinates of the curve points are non-strictly monotonic
func (pwl PieceWiseLinear) Valid() bool {
var lastX uint64
for _, i := range pwl {
if i.X < lastX {
return false
}
lastX = i.X
}
return true
}