plugeth/trie/iterator.go
Felix Lange 693d9ccbfb trie: more node iterator improvements (#14615)
* ethdb: remove Set

Set deadlocks immediately and isn't part of the Database interface.

* trie: add Err to Iterator

This is useful for testing because the underlying NodeIterator doesn't
need to be kept in a separate variable just to get the error.

* trie: add LeafKey to iterator, panic when not at leaf

LeafKey is useful for callers that can't interpret Path.

* trie: retry failed seek/peek in iterator Next

Instead of failing iteration irrecoverably, make it so Next retries the
pending seek or peek every time.

Smaller changes in this commit make this easier to test:

* The iterator previously returned from Next on encountering a hash
  node. This caused it to visit the same path twice.
* Path returned nibbles with terminator symbol for valueNode attached
  to fullNode, but removed it for valueNode attached to shortNode. Now
  the terminator is always present. This makes Path unique to each node
  and simplifies Leaf.

* trie: add Path to MissingNodeError

The light client trie iterator needs to know the path of the node that's
missing so it can retrieve a proof for it. NodeIterator.Path is not
sufficient because it is updated when the node is resolved and actually
visited by the iterator.

Also remove unused fields. They were added a long time ago before we
knew which fields would be needed for the light client.
2017-06-20 18:26:09 +02:00

529 lines
14 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"container/heap"
"errors"
"github.com/ethereum/go-ethereum/common"
)
// Iterator is a key-value trie iterator that traverses a Trie.
type Iterator struct {
nodeIt NodeIterator
Key []byte // Current data key on which the iterator is positioned on
Value []byte // Current data value on which the iterator is positioned on
Err error
}
// NewIterator creates a new key-value iterator from a node iterator
func NewIterator(it NodeIterator) *Iterator {
return &Iterator{
nodeIt: it,
}
}
// Next moves the iterator forward one key-value entry.
func (it *Iterator) Next() bool {
for it.nodeIt.Next(true) {
if it.nodeIt.Leaf() {
it.Key = it.nodeIt.LeafKey()
it.Value = it.nodeIt.LeafBlob()
return true
}
}
it.Key = nil
it.Value = nil
it.Err = it.nodeIt.Error()
return false
}
// NodeIterator is an iterator to traverse the trie pre-order.
type NodeIterator interface {
// Next moves the iterator to the next node. If the parameter is false, any child
// nodes will be skipped.
Next(bool) bool
// Error returns the error status of the iterator.
Error() error
// Hash returns the hash of the current node.
Hash() common.Hash
// Parent returns the hash of the parent of the current node. The hash may be the one
// grandparent if the immediate parent is an internal node with no hash.
Parent() common.Hash
// Path returns the hex-encoded path to the current node.
// Callers must not retain references to the return value after calling Next.
// For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
Path() []byte
// Leaf returns true iff the current node is a leaf node.
// LeafBlob, LeafKey return the contents and key of the leaf node. These
// method panic if the iterator is not positioned at a leaf.
// Callers must not retain references to their return value after calling Next
Leaf() bool
LeafBlob() []byte
LeafKey() []byte
}
// nodeIteratorState represents the iteration state at one particular node of the
// trie, which can be resumed at a later invocation.
type nodeIteratorState struct {
hash common.Hash // Hash of the node being iterated (nil if not standalone)
node node // Trie node being iterated
parent common.Hash // Hash of the first full ancestor node (nil if current is the root)
index int // Child to be processed next
pathlen int // Length of the path to this node
}
type nodeIterator struct {
trie *Trie // Trie being iterated
stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
path []byte // Path to the current node
err error // Failure set in case of an internal error in the iterator
}
// iteratorEnd is stored in nodeIterator.err when iteration is done.
var iteratorEnd = errors.New("end of iteration")
// seekError is stored in nodeIterator.err if the initial seek has failed.
type seekError struct {
key []byte
err error
}
func (e seekError) Error() string {
return "seek error: " + e.err.Error()
}
func newNodeIterator(trie *Trie, start []byte) NodeIterator {
if trie.Hash() == emptyState {
return new(nodeIterator)
}
it := &nodeIterator{trie: trie}
it.err = it.seek(start)
return it
}
func (it *nodeIterator) Hash() common.Hash {
if len(it.stack) == 0 {
return common.Hash{}
}
return it.stack[len(it.stack)-1].hash
}
func (it *nodeIterator) Parent() common.Hash {
if len(it.stack) == 0 {
return common.Hash{}
}
return it.stack[len(it.stack)-1].parent
}
func (it *nodeIterator) Leaf() bool {
return hasTerm(it.path)
}
func (it *nodeIterator) LeafBlob() []byte {
if len(it.stack) > 0 {
if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
return []byte(node)
}
}
panic("not at leaf")
}
func (it *nodeIterator) LeafKey() []byte {
if len(it.stack) > 0 {
if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
return hexToKeybytes(it.path)
}
}
panic("not at leaf")
}
func (it *nodeIterator) Path() []byte {
return it.path
}
func (it *nodeIterator) Error() error {
if it.err == iteratorEnd {
return nil
}
if seek, ok := it.err.(seekError); ok {
return seek.err
}
return it.err
}
// Next moves the iterator to the next node, returning whether there are any
// further nodes. In case of an internal error this method returns false and
// sets the Error field to the encountered failure. If `descend` is false,
// skips iterating over any subnodes of the current node.
func (it *nodeIterator) Next(descend bool) bool {
if it.err == iteratorEnd {
return false
}
if seek, ok := it.err.(seekError); ok {
if it.err = it.seek(seek.key); it.err != nil {
return false
}
}
// Otherwise step forward with the iterator and report any errors.
state, parentIndex, path, err := it.peek(descend)
it.err = err
if it.err != nil {
return false
}
it.push(state, parentIndex, path)
return true
}
func (it *nodeIterator) seek(prefix []byte) error {
// The path we're looking for is the hex encoded key without terminator.
key := keybytesToHex(prefix)
key = key[:len(key)-1]
// Move forward until we're just before the closest match to key.
for {
state, parentIndex, path, err := it.peek(bytes.HasPrefix(key, it.path))
if err == iteratorEnd {
return iteratorEnd
} else if err != nil {
return seekError{prefix, err}
} else if bytes.Compare(path, key) >= 0 {
return nil
}
it.push(state, parentIndex, path)
}
}
// peek creates the next state of the iterator.
func (it *nodeIterator) peek(descend bool) (*nodeIteratorState, *int, []byte, error) {
if len(it.stack) == 0 {
// Initialize the iterator if we've just started.
root := it.trie.Hash()
state := &nodeIteratorState{node: it.trie.root, index: -1}
if root != emptyRoot {
state.hash = root
}
err := state.resolve(it.trie, nil)
return state, nil, nil, err
}
if !descend {
// If we're skipping children, pop the current node first
it.pop()
}
// Continue iteration to the next child
for len(it.stack) > 0 {
parent := it.stack[len(it.stack)-1]
ancestor := parent.hash
if (ancestor == common.Hash{}) {
ancestor = parent.parent
}
state, path, ok := it.nextChild(parent, ancestor)
if ok {
if err := state.resolve(it.trie, path); err != nil {
return parent, &parent.index, path, err
}
return state, &parent.index, path, nil
}
// No more child nodes, move back up.
it.pop()
}
return nil, nil, nil, iteratorEnd
}
func (st *nodeIteratorState) resolve(tr *Trie, path []byte) error {
if hash, ok := st.node.(hashNode); ok {
resolved, err := tr.resolveHash(hash, path)
if err != nil {
return err
}
st.node = resolved
st.hash = common.BytesToHash(hash)
}
return nil
}
func (it *nodeIterator) nextChild(parent *nodeIteratorState, ancestor common.Hash) (*nodeIteratorState, []byte, bool) {
switch node := parent.node.(type) {
case *fullNode:
// Full node, move to the first non-nil child.
for i := parent.index + 1; i < len(node.Children); i++ {
child := node.Children[i]
if child != nil {
hash, _ := child.cache()
state := &nodeIteratorState{
hash: common.BytesToHash(hash),
node: child,
parent: ancestor,
index: -1,
pathlen: len(it.path),
}
path := append(it.path, byte(i))
parent.index = i - 1
return state, path, true
}
}
case *shortNode:
// Short node, return the pointer singleton child
if parent.index < 0 {
hash, _ := node.Val.cache()
state := &nodeIteratorState{
hash: common.BytesToHash(hash),
node: node.Val,
parent: ancestor,
index: -1,
pathlen: len(it.path),
}
path := append(it.path, node.Key...)
return state, path, true
}
}
return parent, it.path, false
}
func (it *nodeIterator) push(state *nodeIteratorState, parentIndex *int, path []byte) {
it.path = path
it.stack = append(it.stack, state)
if parentIndex != nil {
*parentIndex += 1
}
}
func (it *nodeIterator) pop() {
parent := it.stack[len(it.stack)-1]
it.path = it.path[:parent.pathlen]
it.stack = it.stack[:len(it.stack)-1]
}
func compareNodes(a, b NodeIterator) int {
if cmp := bytes.Compare(a.Path(), b.Path()); cmp != 0 {
return cmp
}
if a.Leaf() && !b.Leaf() {
return -1
} else if b.Leaf() && !a.Leaf() {
return 1
}
if cmp := bytes.Compare(a.Hash().Bytes(), b.Hash().Bytes()); cmp != 0 {
return cmp
}
if a.Leaf() && b.Leaf() {
return bytes.Compare(a.LeafBlob(), b.LeafBlob())
}
return 0
}
type differenceIterator struct {
a, b NodeIterator // Nodes returned are those in b - a.
eof bool // Indicates a has run out of elements
count int // Number of nodes scanned on either trie
}
// NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
// are not in a. Returns the iterator, and a pointer to an integer recording the number
// of nodes seen.
func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
a.Next(true)
it := &differenceIterator{
a: a,
b: b,
}
return it, &it.count
}
func (it *differenceIterator) Hash() common.Hash {
return it.b.Hash()
}
func (it *differenceIterator) Parent() common.Hash {
return it.b.Parent()
}
func (it *differenceIterator) Leaf() bool {
return it.b.Leaf()
}
func (it *differenceIterator) LeafBlob() []byte {
return it.b.LeafBlob()
}
func (it *differenceIterator) LeafKey() []byte {
return it.b.LeafKey()
}
func (it *differenceIterator) Path() []byte {
return it.b.Path()
}
func (it *differenceIterator) Next(bool) bool {
// Invariants:
// - We always advance at least one element in b.
// - At the start of this function, a's path is lexically greater than b's.
if !it.b.Next(true) {
return false
}
it.count += 1
if it.eof {
// a has reached eof, so we just return all elements from b
return true
}
for {
switch compareNodes(it.a, it.b) {
case -1:
// b jumped past a; advance a
if !it.a.Next(true) {
it.eof = true
return true
}
it.count += 1
case 1:
// b is before a
return true
case 0:
// a and b are identical; skip this whole subtree if the nodes have hashes
hasHash := it.a.Hash() == common.Hash{}
if !it.b.Next(hasHash) {
return false
}
it.count += 1
if !it.a.Next(hasHash) {
it.eof = true
return true
}
it.count += 1
}
}
}
func (it *differenceIterator) Error() error {
if err := it.a.Error(); err != nil {
return err
}
return it.b.Error()
}
type nodeIteratorHeap []NodeIterator
func (h nodeIteratorHeap) Len() int { return len(h) }
func (h nodeIteratorHeap) Less(i, j int) bool { return compareNodes(h[i], h[j]) < 0 }
func (h nodeIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *nodeIteratorHeap) Push(x interface{}) { *h = append(*h, x.(NodeIterator)) }
func (h *nodeIteratorHeap) Pop() interface{} {
n := len(*h)
x := (*h)[n-1]
*h = (*h)[0 : n-1]
return x
}
type unionIterator struct {
items *nodeIteratorHeap // Nodes returned are the union of the ones in these iterators
count int // Number of nodes scanned across all tries
}
// NewUnionIterator constructs a NodeIterator that iterates over elements in the union
// of the provided NodeIterators. Returns the iterator, and a pointer to an integer
// recording the number of nodes visited.
func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int) {
h := make(nodeIteratorHeap, len(iters))
copy(h, iters)
heap.Init(&h)
ui := &unionIterator{items: &h}
return ui, &ui.count
}
func (it *unionIterator) Hash() common.Hash {
return (*it.items)[0].Hash()
}
func (it *unionIterator) Parent() common.Hash {
return (*it.items)[0].Parent()
}
func (it *unionIterator) Leaf() bool {
return (*it.items)[0].Leaf()
}
func (it *unionIterator) LeafBlob() []byte {
return (*it.items)[0].LeafBlob()
}
func (it *unionIterator) LeafKey() []byte {
return (*it.items)[0].LeafKey()
}
func (it *unionIterator) Path() []byte {
return (*it.items)[0].Path()
}
// Next returns the next node in the union of tries being iterated over.
//
// It does this by maintaining a heap of iterators, sorted by the iteration
// order of their next elements, with one entry for each source trie. Each
// time Next() is called, it takes the least element from the heap to return,
// advancing any other iterators that also point to that same element. These
// iterators are called with descend=false, since we know that any nodes under
// these nodes will also be duplicates, found in the currently selected iterator.
// Whenever an iterator is advanced, it is pushed back into the heap if it still
// has elements remaining.
//
// In the case that descend=false - eg, we're asked to ignore all subnodes of the
// current node - we also advance any iterators in the heap that have the current
// path as a prefix.
func (it *unionIterator) Next(descend bool) bool {
if len(*it.items) == 0 {
return false
}
// Get the next key from the union
least := heap.Pop(it.items).(NodeIterator)
// Skip over other nodes as long as they're identical, or, if we're not descending, as
// long as they have the same prefix as the current node.
for len(*it.items) > 0 && ((!descend && bytes.HasPrefix((*it.items)[0].Path(), least.Path())) || compareNodes(least, (*it.items)[0]) == 0) {
skipped := heap.Pop(it.items).(NodeIterator)
// Skip the whole subtree if the nodes have hashes; otherwise just skip this node
if skipped.Next(skipped.Hash() == common.Hash{}) {
it.count += 1
// If there are more elements, push the iterator back on the heap
heap.Push(it.items, skipped)
}
}
if least.Next(descend) {
it.count += 1
heap.Push(it.items, least)
}
return len(*it.items) > 0
}
func (it *unionIterator) Error() error {
for i := 0; i < len(*it.items); i++ {
if err := (*it.items)[i].Error(); err != nil {
return err
}
}
return nil
}