plugeth/miner/worker.go
bas-vk 4e36b1e3da core: bugfix state change race condition in txpool (#3412)
The transaction pool keeps track of the current nonce in its local pendingState. When a
new block comes in the pendingState is reset. During the reset it fetches multiple times
the current state through the use of the currentState callback. When a second block comes
in during the reset its possible that the state changes during the reset. If that block
holds transactions that are currently in the pool the local pendingState that is used to
determine nonces can get out of sync.
2016-12-10 23:54:58 +01:00

705 lines
21 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package miner
import (
"bytes"
"fmt"
"math/big"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/pow"
"gopkg.in/fatih/set.v0"
)
var jsonlogger = logger.NewJsonLogger()
const (
resultQueueSize = 10
miningLogAtDepth = 5
)
// Agent can register themself with the worker
type Agent interface {
Work() chan<- *Work
SetReturnCh(chan<- *Result)
Stop()
Start()
GetHashRate() int64
}
type uint64RingBuffer struct {
ints []uint64 //array of all integers in buffer
next int //where is the next insertion? assert 0 <= next < len(ints)
}
// Work is the workers current environment and holds
// all of the current state information
type Work struct {
config *params.ChainConfig
signer types.Signer
state *state.StateDB // apply state changes here
ancestors *set.Set // ancestor set (used for checking uncle parent validity)
family *set.Set // family set (used for checking uncle invalidity)
uncles *set.Set // uncle set
tcount int // tx count in cycle
ownedAccounts *set.Set
lowGasTxs types.Transactions
failedTxs types.Transactions
localMinedBlocks *uint64RingBuffer // the most recent block numbers that were mined locally (used to check block inclusion)
Block *types.Block // the new block
header *types.Header
txs []*types.Transaction
receipts []*types.Receipt
createdAt time.Time
}
type Result struct {
Work *Work
Block *types.Block
}
// worker is the main object which takes care of applying messages to the new state
type worker struct {
config *params.ChainConfig
mu sync.Mutex
// update loop
mux *event.TypeMux
events event.Subscription
wg sync.WaitGroup
agents map[Agent]struct{}
recv chan *Result
pow pow.PoW
eth Backend
chain *core.BlockChain
proc core.Validator
chainDb ethdb.Database
coinbase common.Address
gasPrice *big.Int
extra []byte
currentMu sync.Mutex
current *Work
uncleMu sync.Mutex
possibleUncles map[common.Hash]*types.Block
txQueueMu sync.Mutex
txQueue map[common.Hash]*types.Transaction
// atomic status counters
mining int32
atWork int32
fullValidation bool
}
func newWorker(config *params.ChainConfig, coinbase common.Address, eth Backend, mux *event.TypeMux) *worker {
worker := &worker{
config: config,
eth: eth,
mux: mux,
chainDb: eth.ChainDb(),
recv: make(chan *Result, resultQueueSize),
gasPrice: new(big.Int),
chain: eth.BlockChain(),
proc: eth.BlockChain().Validator(),
possibleUncles: make(map[common.Hash]*types.Block),
coinbase: coinbase,
txQueue: make(map[common.Hash]*types.Transaction),
agents: make(map[Agent]struct{}),
fullValidation: false,
}
worker.events = worker.mux.Subscribe(core.ChainHeadEvent{}, core.ChainSideEvent{}, core.TxPreEvent{})
go worker.update()
go worker.wait()
worker.commitNewWork()
return worker
}
func (self *worker) setEtherbase(addr common.Address) {
self.mu.Lock()
defer self.mu.Unlock()
self.coinbase = addr
}
func (self *worker) pending() (*types.Block, *state.StateDB) {
self.currentMu.Lock()
defer self.currentMu.Unlock()
if atomic.LoadInt32(&self.mining) == 0 {
return types.NewBlock(
self.current.header,
self.current.txs,
nil,
self.current.receipts,
), self.current.state.Copy()
}
return self.current.Block, self.current.state.Copy()
}
func (self *worker) pendingBlock() *types.Block {
self.currentMu.Lock()
defer self.currentMu.Unlock()
if atomic.LoadInt32(&self.mining) == 0 {
return types.NewBlock(
self.current.header,
self.current.txs,
nil,
self.current.receipts,
)
}
return self.current.Block
}
func (self *worker) start() {
self.mu.Lock()
defer self.mu.Unlock()
atomic.StoreInt32(&self.mining, 1)
// spin up agents
for agent := range self.agents {
agent.Start()
}
}
func (self *worker) stop() {
self.wg.Wait()
self.mu.Lock()
defer self.mu.Unlock()
if atomic.LoadInt32(&self.mining) == 1 {
// Stop all agents.
for agent := range self.agents {
agent.Stop()
// Remove CPU agents.
if _, ok := agent.(*CpuAgent); ok {
delete(self.agents, agent)
}
}
}
atomic.StoreInt32(&self.mining, 0)
atomic.StoreInt32(&self.atWork, 0)
}
func (self *worker) register(agent Agent) {
self.mu.Lock()
defer self.mu.Unlock()
self.agents[agent] = struct{}{}
agent.SetReturnCh(self.recv)
}
func (self *worker) unregister(agent Agent) {
self.mu.Lock()
defer self.mu.Unlock()
delete(self.agents, agent)
agent.Stop()
}
func (self *worker) update() {
for event := range self.events.Chan() {
// A real event arrived, process interesting content
switch ev := event.Data.(type) {
case core.ChainHeadEvent:
self.commitNewWork()
case core.ChainSideEvent:
self.uncleMu.Lock()
self.possibleUncles[ev.Block.Hash()] = ev.Block
self.uncleMu.Unlock()
case core.TxPreEvent:
// Apply transaction to the pending state if we're not mining
if atomic.LoadInt32(&self.mining) == 0 {
self.currentMu.Lock()
acc, _ := types.Sender(self.current.signer, ev.Tx)
txs := map[common.Address]types.Transactions{acc: types.Transactions{ev.Tx}}
txset := types.NewTransactionsByPriceAndNonce(txs)
self.current.commitTransactions(self.mux, txset, self.gasPrice, self.chain)
self.currentMu.Unlock()
}
}
}
}
func newLocalMinedBlock(blockNumber uint64, prevMinedBlocks *uint64RingBuffer) (minedBlocks *uint64RingBuffer) {
if prevMinedBlocks == nil {
minedBlocks = &uint64RingBuffer{next: 0, ints: make([]uint64, miningLogAtDepth+1)}
} else {
minedBlocks = prevMinedBlocks
}
minedBlocks.ints[minedBlocks.next] = blockNumber
minedBlocks.next = (minedBlocks.next + 1) % len(minedBlocks.ints)
return minedBlocks
}
func (self *worker) wait() {
for {
mustCommitNewWork := true
for result := range self.recv {
atomic.AddInt32(&self.atWork, -1)
if result == nil {
continue
}
block := result.Block
work := result.Work
if self.fullValidation {
if _, err := self.chain.InsertChain(types.Blocks{block}); err != nil {
glog.V(logger.Error).Infoln("mining err", err)
continue
}
go self.mux.Post(core.NewMinedBlockEvent{Block: block})
} else {
work.state.Commit(self.config.IsEIP158(block.Number()))
parent := self.chain.GetBlock(block.ParentHash(), block.NumberU64()-1)
if parent == nil {
glog.V(logger.Error).Infoln("Invalid block found during mining")
continue
}
auxValidator := self.eth.BlockChain().AuxValidator()
if err := core.ValidateHeader(self.config, auxValidator, block.Header(), parent.Header(), true, false); err != nil && err != core.BlockFutureErr {
glog.V(logger.Error).Infoln("Invalid header on mined block:", err)
continue
}
stat, err := self.chain.WriteBlock(block)
if err != nil {
glog.V(logger.Error).Infoln("error writing block to chain", err)
continue
}
// update block hash since it is now available and not when the receipt/log of individual transactions were created
for _, r := range work.receipts {
for _, l := range r.Logs {
l.BlockHash = block.Hash()
}
}
for _, log := range work.state.Logs() {
log.BlockHash = block.Hash()
}
// check if canon block and write transactions
if stat == core.CanonStatTy {
// This puts transactions in a extra db for rpc
core.WriteTransactions(self.chainDb, block)
// store the receipts
core.WriteReceipts(self.chainDb, work.receipts)
// Write map map bloom filters
core.WriteMipmapBloom(self.chainDb, block.NumberU64(), work.receipts)
// implicit by posting ChainHeadEvent
mustCommitNewWork = false
}
// broadcast before waiting for validation
go func(block *types.Block, logs vm.Logs, receipts []*types.Receipt) {
self.mux.Post(core.NewMinedBlockEvent{Block: block})
self.mux.Post(core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
if stat == core.CanonStatTy {
self.mux.Post(core.ChainHeadEvent{Block: block})
self.mux.Post(logs)
}
if err := core.WriteBlockReceipts(self.chainDb, block.Hash(), block.NumberU64(), receipts); err != nil {
glog.V(logger.Warn).Infoln("error writing block receipts:", err)
}
}(block, work.state.Logs(), work.receipts)
}
// check staleness and display confirmation
var stale, confirm string
canonBlock := self.chain.GetBlockByNumber(block.NumberU64())
if canonBlock != nil && canonBlock.Hash() != block.Hash() {
stale = "stale "
} else {
confirm = "Wait 5 blocks for confirmation"
work.localMinedBlocks = newLocalMinedBlock(block.Number().Uint64(), work.localMinedBlocks)
}
glog.V(logger.Info).Infof("🔨 Mined %sblock (#%v / %x). %s", stale, block.Number(), block.Hash().Bytes()[:4], confirm)
if mustCommitNewWork {
self.commitNewWork()
}
}
}
}
// push sends a new work task to currently live miner agents.
func (self *worker) push(work *Work) {
if atomic.LoadInt32(&self.mining) != 1 {
return
}
for agent := range self.agents {
atomic.AddInt32(&self.atWork, 1)
if ch := agent.Work(); ch != nil {
ch <- work
}
}
}
// makeCurrent creates a new environment for the current cycle.
func (self *worker) makeCurrent(parent *types.Block, header *types.Header) error {
state, err := self.chain.StateAt(parent.Root())
if err != nil {
return err
}
work := &Work{
config: self.config,
signer: types.NewEIP155Signer(self.config.ChainId),
state: state,
ancestors: set.New(),
family: set.New(),
uncles: set.New(),
header: header,
createdAt: time.Now(),
}
// when 08 is processed ancestors contain 07 (quick block)
for _, ancestor := range self.chain.GetBlocksFromHash(parent.Hash(), 7) {
for _, uncle := range ancestor.Uncles() {
work.family.Add(uncle.Hash())
}
work.family.Add(ancestor.Hash())
work.ancestors.Add(ancestor.Hash())
}
accounts := self.eth.AccountManager().Accounts()
// Keep track of transactions which return errors so they can be removed
work.tcount = 0
work.ownedAccounts = accountAddressesSet(accounts)
if self.current != nil {
work.localMinedBlocks = self.current.localMinedBlocks
}
self.current = work
return nil
}
func (w *worker) setGasPrice(p *big.Int) {
w.mu.Lock()
defer w.mu.Unlock()
// calculate the minimal gas price the miner accepts when sorting out transactions.
const pct = int64(90)
w.gasPrice = gasprice(p, pct)
w.mux.Post(core.GasPriceChanged{Price: w.gasPrice})
}
func (self *worker) isBlockLocallyMined(current *Work, deepBlockNum uint64) bool {
//Did this instance mine a block at {deepBlockNum} ?
var isLocal = false
for idx, blockNum := range current.localMinedBlocks.ints {
if deepBlockNum == blockNum {
isLocal = true
current.localMinedBlocks.ints[idx] = 0 //prevent showing duplicate logs
break
}
}
//Short-circuit on false, because the previous and following tests must both be true
if !isLocal {
return false
}
//Does the block at {deepBlockNum} send earnings to my coinbase?
var block = self.chain.GetBlockByNumber(deepBlockNum)
return block != nil && block.Coinbase() == self.coinbase
}
func (self *worker) logLocalMinedBlocks(current, previous *Work) {
if previous != nil && current.localMinedBlocks != nil {
nextBlockNum := current.Block.NumberU64()
for checkBlockNum := previous.Block.NumberU64(); checkBlockNum < nextBlockNum; checkBlockNum++ {
inspectBlockNum := checkBlockNum - miningLogAtDepth
if self.isBlockLocallyMined(current, inspectBlockNum) {
glog.V(logger.Info).Infof("🔨 🔗 Mined %d blocks back: block #%v", miningLogAtDepth, inspectBlockNum)
}
}
}
}
func (self *worker) commitNewWork() {
self.mu.Lock()
defer self.mu.Unlock()
self.uncleMu.Lock()
defer self.uncleMu.Unlock()
self.currentMu.Lock()
defer self.currentMu.Unlock()
tstart := time.Now()
parent := self.chain.CurrentBlock()
tstamp := tstart.Unix()
if parent.Time().Cmp(new(big.Int).SetInt64(tstamp)) >= 0 {
tstamp = parent.Time().Int64() + 1
}
// this will ensure we're not going off too far in the future
if now := time.Now().Unix(); tstamp > now+4 {
wait := time.Duration(tstamp-now) * time.Second
glog.V(logger.Info).Infoln("We are too far in the future. Waiting for", wait)
time.Sleep(wait)
}
num := parent.Number()
header := &types.Header{
ParentHash: parent.Hash(),
Number: num.Add(num, common.Big1),
Difficulty: core.CalcDifficulty(self.config, uint64(tstamp), parent.Time().Uint64(), parent.Number(), parent.Difficulty()),
GasLimit: core.CalcGasLimit(parent),
GasUsed: new(big.Int),
Coinbase: self.coinbase,
Extra: self.extra,
Time: big.NewInt(tstamp),
}
// If we are care about TheDAO hard-fork check whether to override the extra-data or not
if daoBlock := self.config.DAOForkBlock; daoBlock != nil {
// Check whether the block is among the fork extra-override range
limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange)
if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 {
// Depending whether we support or oppose the fork, override differently
if self.config.DAOForkSupport {
header.Extra = common.CopyBytes(params.DAOForkBlockExtra)
} else if bytes.Compare(header.Extra, params.DAOForkBlockExtra) == 0 {
header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data
}
}
}
previous := self.current
// Could potentially happen if starting to mine in an odd state.
err := self.makeCurrent(parent, header)
if err != nil {
glog.V(logger.Info).Infoln("Could not create new env for mining, retrying on next block.")
return
}
// Create the current work task and check any fork transitions needed
work := self.current
if self.config.DAOForkSupport && self.config.DAOForkBlock != nil && self.config.DAOForkBlock.Cmp(header.Number) == 0 {
core.ApplyDAOHardFork(work.state)
}
pending, err := self.eth.TxPool().Pending()
if err != nil {
glog.Errorf("Could not fetch pending transactions: %v", err)
return
}
txs := types.NewTransactionsByPriceAndNonce(pending)
work.commitTransactions(self.mux, txs, self.gasPrice, self.chain)
self.eth.TxPool().RemoveBatch(work.lowGasTxs)
self.eth.TxPool().RemoveBatch(work.failedTxs)
// compute uncles for the new block.
var (
uncles []*types.Header
badUncles []common.Hash
)
for hash, uncle := range self.possibleUncles {
if len(uncles) == 2 {
break
}
if err := self.commitUncle(work, uncle.Header()); err != nil {
if glog.V(logger.Ridiculousness) {
glog.V(logger.Detail).Infof("Bad uncle found and will be removed (%x)\n", hash[:4])
glog.V(logger.Detail).Infoln(uncle)
}
badUncles = append(badUncles, hash)
} else {
glog.V(logger.Debug).Infof("commiting %x as uncle\n", hash[:4])
uncles = append(uncles, uncle.Header())
}
}
for _, hash := range badUncles {
delete(self.possibleUncles, hash)
}
if atomic.LoadInt32(&self.mining) == 1 {
// commit state root after all state transitions.
core.AccumulateRewards(work.state, header, uncles)
header.Root = work.state.IntermediateRoot(self.config.IsEIP158(header.Number))
}
// create the new block whose nonce will be mined.
work.Block = types.NewBlock(header, work.txs, uncles, work.receipts)
// We only care about logging if we're actually mining.
if atomic.LoadInt32(&self.mining) == 1 {
glog.V(logger.Info).Infof("commit new work on block %v with %d txs & %d uncles. Took %v\n", work.Block.Number(), work.tcount, len(uncles), time.Since(tstart))
self.logLocalMinedBlocks(work, previous)
}
self.push(work)
}
func (self *worker) commitUncle(work *Work, uncle *types.Header) error {
hash := uncle.Hash()
if work.uncles.Has(hash) {
return core.UncleError("Uncle not unique")
}
if !work.ancestors.Has(uncle.ParentHash) {
return core.UncleError(fmt.Sprintf("Uncle's parent unknown (%x)", uncle.ParentHash[0:4]))
}
if work.family.Has(hash) {
return core.UncleError(fmt.Sprintf("Uncle already in family (%x)", hash))
}
work.uncles.Add(uncle.Hash())
return nil
}
func (env *Work) commitTransactions(mux *event.TypeMux, txs *types.TransactionsByPriceAndNonce, gasPrice *big.Int, bc *core.BlockChain) {
gp := new(core.GasPool).AddGas(env.header.GasLimit)
var coalescedLogs vm.Logs
for {
// Retrieve the next transaction and abort if all done
tx := txs.Peek()
if tx == nil {
break
}
// Error may be ignored here. The error has already been checked
// during transaction acceptance is the transaction pool.
//
// We use the eip155 signer regardless of the current hf.
from, _ := types.Sender(env.signer, tx)
// Check whether the tx is replay protected. If we're not in the EIP155 hf
// phase, start ignoring the sender until we do.
if tx.Protected() && !env.config.IsEIP155(env.header.Number) {
glog.V(logger.Detail).Infof("Transaction (%x) is replay protected, but we haven't yet hardforked. Transaction will be ignored until we hardfork.\n", tx.Hash())
txs.Pop()
continue
}
// Ignore any transactions (and accounts subsequently) with low gas limits
if tx.GasPrice().Cmp(gasPrice) < 0 && !env.ownedAccounts.Has(from) {
// Pop the current low-priced transaction without shifting in the next from the account
glog.V(logger.Info).Infof("Transaction (%x) below gas price (tx=%v ask=%v). All sequential txs from this address(%x) will be ignored\n", tx.Hash().Bytes()[:4], common.CurrencyToString(tx.GasPrice()), common.CurrencyToString(gasPrice), from[:4])
env.lowGasTxs = append(env.lowGasTxs, tx)
txs.Pop()
continue
}
// Start executing the transaction
env.state.StartRecord(tx.Hash(), common.Hash{}, env.tcount)
err, logs := env.commitTransaction(tx, bc, gp)
switch {
case core.IsGasLimitErr(err):
// Pop the current out-of-gas transaction without shifting in the next from the account
glog.V(logger.Detail).Infof("Gas limit reached for (%x) in this block. Continue to try smaller txs\n", from[:4])
txs.Pop()
case err != nil:
// Pop the current failed transaction without shifting in the next from the account
glog.V(logger.Detail).Infof("Transaction (%x) failed, will be removed: %v\n", tx.Hash().Bytes()[:4], err)
env.failedTxs = append(env.failedTxs, tx)
txs.Pop()
default:
// Everything ok, collect the logs and shift in the next transaction from the same account
coalescedLogs = append(coalescedLogs, logs...)
env.tcount++
txs.Shift()
}
}
if len(coalescedLogs) > 0 || env.tcount > 0 {
// make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
// logs by filling in the block hash when the block was mined by the local miner. This can
// cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
cpy := make(vm.Logs, len(coalescedLogs))
for i, l := range coalescedLogs {
cpy[i] = new(vm.Log)
*cpy[i] = *l
}
go func(logs vm.Logs, tcount int) {
if len(logs) > 0 {
mux.Post(core.PendingLogsEvent{Logs: logs})
}
if tcount > 0 {
mux.Post(core.PendingStateEvent{})
}
}(cpy, env.tcount)
}
}
func (env *Work) commitTransaction(tx *types.Transaction, bc *core.BlockChain, gp *core.GasPool) (error, vm.Logs) {
snap := env.state.Snapshot()
receipt, logs, _, err := core.ApplyTransaction(env.config, bc, gp, env.state, env.header, tx, env.header.GasUsed, vm.Config{})
if err != nil {
env.state.RevertToSnapshot(snap)
return err, nil
}
env.txs = append(env.txs, tx)
env.receipts = append(env.receipts, receipt)
return nil, logs
}
// TODO: remove or use
func (self *worker) HashRate() int64 {
return 0
}
// gasprice calculates a reduced gas price based on the pct
// XXX Use big.Rat?
func gasprice(price *big.Int, pct int64) *big.Int {
p := new(big.Int).Set(price)
p.Div(p, big.NewInt(100))
p.Mul(p, big.NewInt(pct))
return p
}
func accountAddressesSet(accounts []accounts.Account) *set.Set {
accountSet := set.New()
for _, account := range accounts {
accountSet.Add(account.Address)
}
return accountSet
}