plugeth/p2p/discover/v5_udp.go
Felix Lange a251bca67c
p2p/discover: add more packet information in logs (#26307)
* p2p/discover: add more packet information in logs

This adds more fields to discv5 packet logs. These can be useful when
debugging multi-packet interactions.

The FINDNODE message also gets an additional field, OpID for debugging
purposes. This field is not encoded onto the wire.

I'm also removing topic system related message types in this change.
These will come back in the future, where support for them will be
guarded by a config flag.

* p2p/discover/v5wire: rename 'Total' to 'RespCount'

The new name captures the meaning of this field better.
2023-01-03 12:36:38 +01:00

883 lines
26 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package discover
import (
"bytes"
"context"
"crypto/ecdsa"
crand "crypto/rand"
"errors"
"fmt"
"io"
"net"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/discover/v5wire"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/enr"
"github.com/ethereum/go-ethereum/p2p/netutil"
)
const (
lookupRequestLimit = 3 // max requests against a single node during lookup
findnodeResultLimit = 16 // applies in FINDNODE handler
totalNodesResponseLimit = 5 // applies in waitForNodes
respTimeoutV5 = 700 * time.Millisecond
)
// codecV5 is implemented by v5wire.Codec (and testCodec).
//
// The UDPv5 transport is split into two objects: the codec object deals with
// encoding/decoding and with the handshake; the UDPv5 object handles higher-level concerns.
type codecV5 interface {
// Encode encodes a packet.
Encode(enode.ID, string, v5wire.Packet, *v5wire.Whoareyou) ([]byte, v5wire.Nonce, error)
// Decode decodes a packet. It returns a *v5wire.Unknown packet if decryption fails.
// The *enode.Node return value is non-nil when the input contains a handshake response.
Decode([]byte, string) (enode.ID, *enode.Node, v5wire.Packet, error)
}
// UDPv5 is the implementation of protocol version 5.
type UDPv5 struct {
// static fields
conn UDPConn
tab *Table
netrestrict *netutil.Netlist
priv *ecdsa.PrivateKey
localNode *enode.LocalNode
db *enode.DB
log log.Logger
clock mclock.Clock
validSchemes enr.IdentityScheme
// misc buffers used during message handling
logcontext []interface{}
// talkreq handler registry
trlock sync.Mutex
trhandlers map[string]TalkRequestHandler
// channels into dispatch
packetInCh chan ReadPacket
readNextCh chan struct{}
callCh chan *callV5
callDoneCh chan *callV5
respTimeoutCh chan *callTimeout
// state of dispatch
codec codecV5
activeCallByNode map[enode.ID]*callV5
activeCallByAuth map[v5wire.Nonce]*callV5
callQueue map[enode.ID][]*callV5
// shutdown stuff
closeOnce sync.Once
closeCtx context.Context
cancelCloseCtx context.CancelFunc
wg sync.WaitGroup
}
// TalkRequestHandler callback processes a talk request and optionally returns a reply
type TalkRequestHandler func(enode.ID, *net.UDPAddr, []byte) []byte
// callV5 represents a remote procedure call against another node.
type callV5 struct {
node *enode.Node
packet v5wire.Packet
responseType byte // expected packet type of response
reqid []byte
ch chan v5wire.Packet // responses sent here
err chan error // errors sent here
// Valid for active calls only:
nonce v5wire.Nonce // nonce of request packet
handshakeCount int // # times we attempted handshake for this call
challenge *v5wire.Whoareyou // last sent handshake challenge
timeout mclock.Timer
}
// callTimeout is the response timeout event of a call.
type callTimeout struct {
c *callV5
timer mclock.Timer
}
// ListenV5 listens on the given connection.
func ListenV5(conn UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv5, error) {
t, err := newUDPv5(conn, ln, cfg)
if err != nil {
return nil, err
}
go t.tab.loop()
t.wg.Add(2)
go t.readLoop()
go t.dispatch()
return t, nil
}
// newUDPv5 creates a UDPv5 transport, but doesn't start any goroutines.
func newUDPv5(conn UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv5, error) {
closeCtx, cancelCloseCtx := context.WithCancel(context.Background())
cfg = cfg.withDefaults()
t := &UDPv5{
// static fields
conn: conn,
localNode: ln,
db: ln.Database(),
netrestrict: cfg.NetRestrict,
priv: cfg.PrivateKey,
log: cfg.Log,
validSchemes: cfg.ValidSchemes,
clock: cfg.Clock,
trhandlers: make(map[string]TalkRequestHandler),
// channels into dispatch
packetInCh: make(chan ReadPacket, 1),
readNextCh: make(chan struct{}, 1),
callCh: make(chan *callV5),
callDoneCh: make(chan *callV5),
respTimeoutCh: make(chan *callTimeout),
// state of dispatch
codec: v5wire.NewCodec(ln, cfg.PrivateKey, cfg.Clock, cfg.V5ProtocolID),
activeCallByNode: make(map[enode.ID]*callV5),
activeCallByAuth: make(map[v5wire.Nonce]*callV5),
callQueue: make(map[enode.ID][]*callV5),
// shutdown
closeCtx: closeCtx,
cancelCloseCtx: cancelCloseCtx,
}
tab, err := newTable(t, t.db, cfg.Bootnodes, cfg.Log)
if err != nil {
return nil, err
}
t.tab = tab
return t, nil
}
// Self returns the local node record.
func (t *UDPv5) Self() *enode.Node {
return t.localNode.Node()
}
// Close shuts down packet processing.
func (t *UDPv5) Close() {
t.closeOnce.Do(func() {
t.cancelCloseCtx()
t.conn.Close()
t.wg.Wait()
t.tab.close()
})
}
// Ping sends a ping message to the given node.
func (t *UDPv5) Ping(n *enode.Node) error {
_, err := t.ping(n)
return err
}
// Resolve searches for a specific node with the given ID and tries to get the most recent
// version of the node record for it. It returns n if the node could not be resolved.
func (t *UDPv5) Resolve(n *enode.Node) *enode.Node {
if intable := t.tab.getNode(n.ID()); intable != nil && intable.Seq() > n.Seq() {
n = intable
}
// Try asking directly. This works if the node is still responding on the endpoint we have.
if resp, err := t.RequestENR(n); err == nil {
return resp
}
// Otherwise do a network lookup.
result := t.Lookup(n.ID())
for _, rn := range result {
if rn.ID() == n.ID() && rn.Seq() > n.Seq() {
return rn
}
}
return n
}
// AllNodes returns all the nodes stored in the local table.
func (t *UDPv5) AllNodes() []*enode.Node {
t.tab.mutex.Lock()
defer t.tab.mutex.Unlock()
nodes := make([]*enode.Node, 0)
for _, b := range &t.tab.buckets {
for _, n := range b.entries {
nodes = append(nodes, unwrapNode(n))
}
}
return nodes
}
// LocalNode returns the current local node running the
// protocol.
func (t *UDPv5) LocalNode() *enode.LocalNode {
return t.localNode
}
// RegisterTalkHandler adds a handler for 'talk requests'. The handler function is called
// whenever a request for the given protocol is received and should return the response
// data or nil.
func (t *UDPv5) RegisterTalkHandler(protocol string, handler TalkRequestHandler) {
t.trlock.Lock()
defer t.trlock.Unlock()
t.trhandlers[protocol] = handler
}
// TalkRequest sends a talk request to n and waits for a response.
func (t *UDPv5) TalkRequest(n *enode.Node, protocol string, request []byte) ([]byte, error) {
req := &v5wire.TalkRequest{Protocol: protocol, Message: request}
resp := t.call(n, v5wire.TalkResponseMsg, req)
defer t.callDone(resp)
select {
case respMsg := <-resp.ch:
return respMsg.(*v5wire.TalkResponse).Message, nil
case err := <-resp.err:
return nil, err
}
}
// RandomNodes returns an iterator that finds random nodes in the DHT.
func (t *UDPv5) RandomNodes() enode.Iterator {
if t.tab.len() == 0 {
// All nodes were dropped, refresh. The very first query will hit this
// case and run the bootstrapping logic.
<-t.tab.refresh()
}
return newLookupIterator(t.closeCtx, t.newRandomLookup)
}
// Lookup performs a recursive lookup for the given target.
// It returns the closest nodes to target.
func (t *UDPv5) Lookup(target enode.ID) []*enode.Node {
return t.newLookup(t.closeCtx, target).run()
}
// lookupRandom looks up a random target.
// This is needed to satisfy the transport interface.
func (t *UDPv5) lookupRandom() []*enode.Node {
return t.newRandomLookup(t.closeCtx).run()
}
// lookupSelf looks up our own node ID.
// This is needed to satisfy the transport interface.
func (t *UDPv5) lookupSelf() []*enode.Node {
return t.newLookup(t.closeCtx, t.Self().ID()).run()
}
func (t *UDPv5) newRandomLookup(ctx context.Context) *lookup {
var target enode.ID
crand.Read(target[:])
return t.newLookup(ctx, target)
}
func (t *UDPv5) newLookup(ctx context.Context, target enode.ID) *lookup {
return newLookup(ctx, t.tab, target, func(n *node) ([]*node, error) {
return t.lookupWorker(n, target)
})
}
// lookupWorker performs FINDNODE calls against a single node during lookup.
func (t *UDPv5) lookupWorker(destNode *node, target enode.ID) ([]*node, error) {
var (
dists = lookupDistances(target, destNode.ID())
nodes = nodesByDistance{target: target}
err error
)
var r []*enode.Node
r, err = t.findnode(unwrapNode(destNode), dists)
if errors.Is(err, errClosed) {
return nil, err
}
for _, n := range r {
if n.ID() != t.Self().ID() {
nodes.push(wrapNode(n), findnodeResultLimit)
}
}
return nodes.entries, err
}
// lookupDistances computes the distance parameter for FINDNODE calls to dest.
// It chooses distances adjacent to logdist(target, dest), e.g. for a target
// with logdist(target, dest) = 255 the result is [255, 256, 254].
func lookupDistances(target, dest enode.ID) (dists []uint) {
td := enode.LogDist(target, dest)
dists = append(dists, uint(td))
for i := 1; len(dists) < lookupRequestLimit; i++ {
if td+i <= 256 {
dists = append(dists, uint(td+i))
}
if td-i > 0 {
dists = append(dists, uint(td-i))
}
}
return dists
}
// ping calls PING on a node and waits for a PONG response.
func (t *UDPv5) ping(n *enode.Node) (uint64, error) {
req := &v5wire.Ping{ENRSeq: t.localNode.Node().Seq()}
resp := t.call(n, v5wire.PongMsg, req)
defer t.callDone(resp)
select {
case pong := <-resp.ch:
return pong.(*v5wire.Pong).ENRSeq, nil
case err := <-resp.err:
return 0, err
}
}
// RequestENR requests n's record.
func (t *UDPv5) RequestENR(n *enode.Node) (*enode.Node, error) {
nodes, err := t.findnode(n, []uint{0})
if err != nil {
return nil, err
}
if len(nodes) != 1 {
return nil, fmt.Errorf("%d nodes in response for distance zero", len(nodes))
}
return nodes[0], nil
}
// findnode calls FINDNODE on a node and waits for responses.
func (t *UDPv5) findnode(n *enode.Node, distances []uint) ([]*enode.Node, error) {
resp := t.call(n, v5wire.NodesMsg, &v5wire.Findnode{Distances: distances})
return t.waitForNodes(resp, distances)
}
// waitForNodes waits for NODES responses to the given call.
func (t *UDPv5) waitForNodes(c *callV5, distances []uint) ([]*enode.Node, error) {
defer t.callDone(c)
var (
nodes []*enode.Node
seen = make(map[enode.ID]struct{})
received, total = 0, -1
)
for {
select {
case responseP := <-c.ch:
response := responseP.(*v5wire.Nodes)
for _, record := range response.Nodes {
node, err := t.verifyResponseNode(c, record, distances, seen)
if err != nil {
t.log.Debug("Invalid record in "+response.Name(), "id", c.node.ID(), "err", err)
continue
}
nodes = append(nodes, node)
}
if total == -1 {
total = min(int(response.RespCount), totalNodesResponseLimit)
}
if received++; received == total {
return nodes, nil
}
case err := <-c.err:
return nodes, err
}
}
}
// verifyResponseNode checks validity of a record in a NODES response.
func (t *UDPv5) verifyResponseNode(c *callV5, r *enr.Record, distances []uint, seen map[enode.ID]struct{}) (*enode.Node, error) {
node, err := enode.New(t.validSchemes, r)
if err != nil {
return nil, err
}
if err := netutil.CheckRelayIP(c.node.IP(), node.IP()); err != nil {
return nil, err
}
if t.netrestrict != nil && !t.netrestrict.Contains(node.IP()) {
return nil, errors.New("not contained in netrestrict list")
}
if c.node.UDP() <= 1024 {
return nil, errLowPort
}
if distances != nil {
nd := enode.LogDist(c.node.ID(), node.ID())
if !containsUint(uint(nd), distances) {
return nil, errors.New("does not match any requested distance")
}
}
if _, ok := seen[node.ID()]; ok {
return nil, fmt.Errorf("duplicate record")
}
seen[node.ID()] = struct{}{}
return node, nil
}
func containsUint(x uint, xs []uint) bool {
for _, v := range xs {
if x == v {
return true
}
}
return false
}
// call sends the given call and sets up a handler for response packets (of message type
// responseType). Responses are dispatched to the call's response channel.
func (t *UDPv5) call(node *enode.Node, responseType byte, packet v5wire.Packet) *callV5 {
c := &callV5{
node: node,
packet: packet,
responseType: responseType,
reqid: make([]byte, 8),
ch: make(chan v5wire.Packet, 1),
err: make(chan error, 1),
}
// Assign request ID.
crand.Read(c.reqid)
packet.SetRequestID(c.reqid)
// Send call to dispatch.
select {
case t.callCh <- c:
case <-t.closeCtx.Done():
c.err <- errClosed
}
return c
}
// callDone tells dispatch that the active call is done.
func (t *UDPv5) callDone(c *callV5) {
// This needs a loop because further responses may be incoming until the
// send to callDoneCh has completed. Such responses need to be discarded
// in order to avoid blocking the dispatch loop.
for {
select {
case <-c.ch:
// late response, discard.
case <-c.err:
// late error, discard.
case t.callDoneCh <- c:
return
case <-t.closeCtx.Done():
return
}
}
}
// dispatch runs in its own goroutine, handles incoming packets and deals with calls.
//
// For any destination node there is at most one 'active call', stored in the t.activeCall*
// maps. A call is made active when it is sent. The active call can be answered by a
// matching response, in which case c.ch receives the response; or by timing out, in which case
// c.err receives the error. When the function that created the call signals the active
// call is done through callDone, the next call from the call queue is started.
//
// Calls may also be answered by a WHOAREYOU packet referencing the call packet's authTag.
// When that happens the call is simply re-sent to complete the handshake. We allow one
// handshake attempt per call.
func (t *UDPv5) dispatch() {
defer t.wg.Done()
// Arm first read.
t.readNextCh <- struct{}{}
for {
select {
case c := <-t.callCh:
id := c.node.ID()
t.callQueue[id] = append(t.callQueue[id], c)
t.sendNextCall(id)
case ct := <-t.respTimeoutCh:
active := t.activeCallByNode[ct.c.node.ID()]
if ct.c == active && ct.timer == active.timeout {
ct.c.err <- errTimeout
}
case c := <-t.callDoneCh:
id := c.node.ID()
active := t.activeCallByNode[id]
if active != c {
panic("BUG: callDone for inactive call")
}
c.timeout.Stop()
delete(t.activeCallByAuth, c.nonce)
delete(t.activeCallByNode, id)
t.sendNextCall(id)
case p := <-t.packetInCh:
t.handlePacket(p.Data, p.Addr)
// Arm next read.
t.readNextCh <- struct{}{}
case <-t.closeCtx.Done():
close(t.readNextCh)
for id, queue := range t.callQueue {
for _, c := range queue {
c.err <- errClosed
}
delete(t.callQueue, id)
}
for id, c := range t.activeCallByNode {
c.err <- errClosed
delete(t.activeCallByNode, id)
delete(t.activeCallByAuth, c.nonce)
}
return
}
}
}
// startResponseTimeout sets the response timer for a call.
func (t *UDPv5) startResponseTimeout(c *callV5) {
if c.timeout != nil {
c.timeout.Stop()
}
var (
timer mclock.Timer
done = make(chan struct{})
)
timer = t.clock.AfterFunc(respTimeoutV5, func() {
<-done
select {
case t.respTimeoutCh <- &callTimeout{c, timer}:
case <-t.closeCtx.Done():
}
})
c.timeout = timer
close(done)
}
// sendNextCall sends the next call in the call queue if there is no active call.
func (t *UDPv5) sendNextCall(id enode.ID) {
queue := t.callQueue[id]
if len(queue) == 0 || t.activeCallByNode[id] != nil {
return
}
t.activeCallByNode[id] = queue[0]
t.sendCall(t.activeCallByNode[id])
if len(queue) == 1 {
delete(t.callQueue, id)
} else {
copy(queue, queue[1:])
t.callQueue[id] = queue[:len(queue)-1]
}
}
// sendCall encodes and sends a request packet to the call's recipient node.
// This performs a handshake if needed.
func (t *UDPv5) sendCall(c *callV5) {
// The call might have a nonce from a previous handshake attempt. Remove the entry for
// the old nonce because we're about to generate a new nonce for this call.
if c.nonce != (v5wire.Nonce{}) {
delete(t.activeCallByAuth, c.nonce)
}
addr := &net.UDPAddr{IP: c.node.IP(), Port: c.node.UDP()}
newNonce, _ := t.send(c.node.ID(), addr, c.packet, c.challenge)
c.nonce = newNonce
t.activeCallByAuth[newNonce] = c
t.startResponseTimeout(c)
}
// sendResponse sends a response packet to the given node.
// This doesn't trigger a handshake even if no keys are available.
func (t *UDPv5) sendResponse(toID enode.ID, toAddr *net.UDPAddr, packet v5wire.Packet) error {
_, err := t.send(toID, toAddr, packet, nil)
return err
}
// send sends a packet to the given node.
func (t *UDPv5) send(toID enode.ID, toAddr *net.UDPAddr, packet v5wire.Packet, c *v5wire.Whoareyou) (v5wire.Nonce, error) {
addr := toAddr.String()
t.logcontext = append(t.logcontext[:0], "id", toID, "addr", addr)
t.logcontext = packet.AppendLogInfo(t.logcontext)
enc, nonce, err := t.codec.Encode(toID, addr, packet, c)
if err != nil {
t.logcontext = append(t.logcontext, "err", err)
t.log.Warn(">> "+packet.Name(), t.logcontext...)
return nonce, err
}
_, err = t.conn.WriteToUDP(enc, toAddr)
t.log.Trace(">> "+packet.Name(), t.logcontext...)
return nonce, err
}
// readLoop runs in its own goroutine and reads packets from the network.
func (t *UDPv5) readLoop() {
defer t.wg.Done()
buf := make([]byte, maxPacketSize)
for range t.readNextCh {
nbytes, from, err := t.conn.ReadFromUDP(buf)
if netutil.IsTemporaryError(err) {
// Ignore temporary read errors.
t.log.Debug("Temporary UDP read error", "err", err)
continue
} else if err != nil {
// Shut down the loop for permanent errors.
if !errors.Is(err, io.EOF) {
t.log.Debug("UDP read error", "err", err)
}
return
}
t.dispatchReadPacket(from, buf[:nbytes])
}
}
// dispatchReadPacket sends a packet into the dispatch loop.
func (t *UDPv5) dispatchReadPacket(from *net.UDPAddr, content []byte) bool {
select {
case t.packetInCh <- ReadPacket{content, from}:
return true
case <-t.closeCtx.Done():
return false
}
}
// handlePacket decodes and processes an incoming packet from the network.
func (t *UDPv5) handlePacket(rawpacket []byte, fromAddr *net.UDPAddr) error {
addr := fromAddr.String()
fromID, fromNode, packet, err := t.codec.Decode(rawpacket, addr)
if err != nil {
t.log.Debug("Bad discv5 packet", "id", fromID, "addr", addr, "err", err)
return err
}
if fromNode != nil {
// Handshake succeeded, add to table.
t.tab.addSeenNode(wrapNode(fromNode))
}
if packet.Kind() != v5wire.WhoareyouPacket {
// WHOAREYOU logged separately to report errors.
t.logcontext = append(t.logcontext[:0], "id", fromID, "addr", addr)
t.logcontext = packet.AppendLogInfo(t.logcontext)
t.log.Trace("<< "+packet.Name(), t.logcontext...)
}
t.handle(packet, fromID, fromAddr)
return nil
}
// handleCallResponse dispatches a response packet to the call waiting for it.
func (t *UDPv5) handleCallResponse(fromID enode.ID, fromAddr *net.UDPAddr, p v5wire.Packet) bool {
ac := t.activeCallByNode[fromID]
if ac == nil || !bytes.Equal(p.RequestID(), ac.reqid) {
t.log.Debug(fmt.Sprintf("Unsolicited/late %s response", p.Name()), "id", fromID, "addr", fromAddr)
return false
}
if !fromAddr.IP.Equal(ac.node.IP()) || fromAddr.Port != ac.node.UDP() {
t.log.Debug(fmt.Sprintf("%s from wrong endpoint", p.Name()), "id", fromID, "addr", fromAddr)
return false
}
if p.Kind() != ac.responseType {
t.log.Debug(fmt.Sprintf("Wrong discv5 response type %s", p.Name()), "id", fromID, "addr", fromAddr)
return false
}
t.startResponseTimeout(ac)
ac.ch <- p
return true
}
// getNode looks for a node record in table and database.
func (t *UDPv5) getNode(id enode.ID) *enode.Node {
if n := t.tab.getNode(id); n != nil {
return n
}
if n := t.localNode.Database().Node(id); n != nil {
return n
}
return nil
}
// handle processes incoming packets according to their message type.
func (t *UDPv5) handle(p v5wire.Packet, fromID enode.ID, fromAddr *net.UDPAddr) {
switch p := p.(type) {
case *v5wire.Unknown:
t.handleUnknown(p, fromID, fromAddr)
case *v5wire.Whoareyou:
t.handleWhoareyou(p, fromID, fromAddr)
case *v5wire.Ping:
t.handlePing(p, fromID, fromAddr)
case *v5wire.Pong:
if t.handleCallResponse(fromID, fromAddr, p) {
t.localNode.UDPEndpointStatement(fromAddr, &net.UDPAddr{IP: p.ToIP, Port: int(p.ToPort)})
}
case *v5wire.Findnode:
t.handleFindnode(p, fromID, fromAddr)
case *v5wire.Nodes:
t.handleCallResponse(fromID, fromAddr, p)
case *v5wire.TalkRequest:
t.handleTalkRequest(fromID, fromAddr, p)
case *v5wire.TalkResponse:
t.handleCallResponse(fromID, fromAddr, p)
}
}
// handleUnknown initiates a handshake by responding with WHOAREYOU.
func (t *UDPv5) handleUnknown(p *v5wire.Unknown, fromID enode.ID, fromAddr *net.UDPAddr) {
challenge := &v5wire.Whoareyou{Nonce: p.Nonce}
crand.Read(challenge.IDNonce[:])
if n := t.getNode(fromID); n != nil {
challenge.Node = n
challenge.RecordSeq = n.Seq()
}
t.sendResponse(fromID, fromAddr, challenge)
}
var (
errChallengeNoCall = errors.New("no matching call")
errChallengeTwice = errors.New("second handshake")
)
// handleWhoareyou resends the active call as a handshake packet.
func (t *UDPv5) handleWhoareyou(p *v5wire.Whoareyou, fromID enode.ID, fromAddr *net.UDPAddr) {
c, err := t.matchWithCall(fromID, p.Nonce)
if err != nil {
t.log.Debug("Invalid "+p.Name(), "addr", fromAddr, "err", err)
return
}
// Resend the call that was answered by WHOAREYOU.
t.log.Trace("<< "+p.Name(), "id", c.node.ID(), "addr", fromAddr)
c.handshakeCount++
c.challenge = p
p.Node = c.node
t.sendCall(c)
}
// matchWithCall checks whether a handshake attempt matches the active call.
func (t *UDPv5) matchWithCall(fromID enode.ID, nonce v5wire.Nonce) (*callV5, error) {
c := t.activeCallByAuth[nonce]
if c == nil {
return nil, errChallengeNoCall
}
if c.handshakeCount > 0 {
return nil, errChallengeTwice
}
return c, nil
}
// handlePing sends a PONG response.
func (t *UDPv5) handlePing(p *v5wire.Ping, fromID enode.ID, fromAddr *net.UDPAddr) {
remoteIP := fromAddr.IP
// Handle IPv4 mapped IPv6 addresses in the
// event the local node is binded to an
// ipv6 interface.
if remoteIP.To4() != nil {
remoteIP = remoteIP.To4()
}
t.sendResponse(fromID, fromAddr, &v5wire.Pong{
ReqID: p.ReqID,
ToIP: remoteIP,
ToPort: uint16(fromAddr.Port),
ENRSeq: t.localNode.Node().Seq(),
})
}
// handleFindnode returns nodes to the requester.
func (t *UDPv5) handleFindnode(p *v5wire.Findnode, fromID enode.ID, fromAddr *net.UDPAddr) {
nodes := t.collectTableNodes(fromAddr.IP, p.Distances, findnodeResultLimit)
for _, resp := range packNodes(p.ReqID, nodes) {
t.sendResponse(fromID, fromAddr, resp)
}
}
// collectTableNodes creates a FINDNODE result set for the given distances.
func (t *UDPv5) collectTableNodes(rip net.IP, distances []uint, limit int) []*enode.Node {
var nodes []*enode.Node
var processed = make(map[uint]struct{})
for _, dist := range distances {
// Reject duplicate / invalid distances.
_, seen := processed[dist]
if seen || dist > 256 {
continue
}
// Get the nodes.
var bn []*enode.Node
if dist == 0 {
bn = []*enode.Node{t.Self()}
} else if dist <= 256 {
t.tab.mutex.Lock()
bn = unwrapNodes(t.tab.bucketAtDistance(int(dist)).entries)
t.tab.mutex.Unlock()
}
processed[dist] = struct{}{}
// Apply some pre-checks to avoid sending invalid nodes.
for _, n := range bn {
// TODO livenessChecks > 1
if netutil.CheckRelayIP(rip, n.IP()) != nil {
continue
}
nodes = append(nodes, n)
if len(nodes) >= limit {
return nodes
}
}
}
return nodes
}
// packNodes creates NODES response packets for the given node list.
func packNodes(reqid []byte, nodes []*enode.Node) []*v5wire.Nodes {
if len(nodes) == 0 {
return []*v5wire.Nodes{{ReqID: reqid, RespCount: 1}}
}
// This limit represents the available space for nodes in output packets. Maximum
// packet size is 1280, and out of this ~80 bytes will be taken up by the packet
// frame. So limiting to 1000 bytes here leaves 200 bytes for other fields of the
// NODES message, which is a lot.
const sizeLimit = 1000
var resp []*v5wire.Nodes
for len(nodes) > 0 {
p := &v5wire.Nodes{ReqID: reqid}
size := uint64(0)
for len(nodes) > 0 {
r := nodes[0].Record()
if size += r.Size(); size > sizeLimit {
break
}
p.Nodes = append(p.Nodes, r)
nodes = nodes[1:]
}
resp = append(resp, p)
}
for _, msg := range resp {
msg.RespCount = uint8(len(resp))
}
return resp
}
// handleTalkRequest runs the talk request handler of the requested protocol.
func (t *UDPv5) handleTalkRequest(fromID enode.ID, fromAddr *net.UDPAddr, p *v5wire.TalkRequest) {
t.trlock.Lock()
handler := t.trhandlers[p.Protocol]
t.trlock.Unlock()
var response []byte
if handler != nil {
response = handler(fromID, fromAddr, p.Message)
}
resp := &v5wire.TalkResponse{ReqID: p.ReqID, Message: response}
t.sendResponse(fromID, fromAddr, resp)
}