plugeth/eth/downloader/downloader.go
2015-04-19 13:33:14 +02:00

503 lines
15 KiB
Go

package downloader
import (
"errors"
"fmt"
"math"
"math/big"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"gopkg.in/fatih/set.v0"
)
const (
maxBlockFetch = 256 // Amount of max blocks to be fetched per chunk
peerCountTimeout = 12 * time.Second // Amount of time it takes for the peer handler to ignore minDesiredPeerCount
blockTtl = 20 * time.Second // The amount of time it takes for a block request to time out
hashTtl = 20 * time.Second // The amount of time it takes for a hash request to time out
)
var (
minDesiredPeerCount = 5 // Amount of peers desired to start syncing
errLowTd = errors.New("peer's TD is too low")
errBusy = errors.New("busy")
errUnknownPeer = errors.New("peer's unknown or unhealthy")
errBadPeer = errors.New("action from bad peer ignored")
errTimeout = errors.New("timeout")
errEmptyHashSet = errors.New("empty hash set by peer")
errPeersUnavailable = errors.New("no peers available or all peers tried for block download process")
)
type hashCheckFn func(common.Hash) bool
type chainInsertFn func(types.Blocks) error
type hashIterFn func() (common.Hash, error)
type currentTdFn func() *big.Int
type Downloader struct {
mu sync.RWMutex
queue *queue
peers peers
activePeer string
// Callbacks
hasBlock hashCheckFn
insertChain chainInsertFn
currentTd currentTdFn
// Status
fetchingHashes int32
downloadingBlocks int32
processingBlocks int32
// Channels
newPeerCh chan *peer
syncCh chan syncPack
hashCh chan []common.Hash
blockCh chan blockPack
quit chan struct{}
}
type blockPack struct {
peerId string
blocks []*types.Block
}
type syncPack struct {
peer *peer
hash common.Hash
ignoreInitial bool
}
func New(hasBlock hashCheckFn, insertChain chainInsertFn, currentTd currentTdFn) *Downloader {
downloader := &Downloader{
queue: newqueue(),
peers: make(peers),
hasBlock: hasBlock,
insertChain: insertChain,
currentTd: currentTd,
newPeerCh: make(chan *peer, 1),
syncCh: make(chan syncPack, 1),
hashCh: make(chan []common.Hash, 1),
blockCh: make(chan blockPack, 1),
quit: make(chan struct{}),
}
go downloader.peerHandler()
go downloader.update()
return downloader
}
func (d *Downloader) RegisterPeer(id string, td *big.Int, hash common.Hash, getHashes hashFetcherFn, getBlocks blockFetcherFn) error {
d.mu.Lock()
defer d.mu.Unlock()
glog.V(logger.Detail).Infoln("Register peer", id, "TD =", td)
// Create a new peer and add it to the list of known peers
peer := newPeer(id, td, hash, getHashes, getBlocks)
// add peer to our peer set
d.peers[id] = peer
// broadcast new peer
d.newPeerCh <- peer
return nil
}
// UnregisterPeer unregister's a peer. This will prevent any action from the specified peer.
func (d *Downloader) UnregisterPeer(id string) {
d.mu.Lock()
defer d.mu.Unlock()
glog.V(logger.Detail).Infoln("Unregister peer", id)
delete(d.peers, id)
}
func (d *Downloader) peerHandler() {
// itimer is used to determine when to start ignoring `minDesiredPeerCount`
itimer := time.NewTimer(peerCountTimeout)
out:
for {
select {
case <-d.newPeerCh:
// Meet the `minDesiredPeerCount` before we select our best peer
if len(d.peers) < minDesiredPeerCount {
break
}
itimer.Stop()
d.selectPeer(d.peers.bestPeer())
case <-itimer.C:
// The timer will make sure that the downloader keeps an active state
// in which it attempts to always check the network for highest td peers
// Either select the peer or restart the timer if no peers could
// be selected.
if peer := d.peers.bestPeer(); peer != nil {
d.selectPeer(d.peers.bestPeer())
} else {
itimer.Reset(5 * time.Second)
}
case <-d.quit:
break out
}
}
}
func (d *Downloader) selectPeer(p *peer) {
// Make sure it's doing neither. Once done we can restart the
// downloading process if the TD is higher. For now just get on
// with whatever is going on. This prevents unecessary switching.
if d.isBusy() {
return
}
// selected peer must be better than our own
// XXX we also check the peer's recent hash to make sure we
// don't have it. Some peers report (i think) incorrect TD.
if p.td.Cmp(d.currentTd()) <= 0 || d.hasBlock(p.recentHash) {
return
}
glog.V(logger.Detail).Infoln("New peer with highest TD =", p.td)
d.syncCh <- syncPack{p, p.recentHash, false}
}
func (d *Downloader) update() {
out:
for {
select {
case sync := <-d.syncCh:
var peer *peer = sync.peer
err := d.getFromPeer(peer, sync.hash, sync.ignoreInitial)
if err != nil {
glog.V(logger.Detail).Infoln(err)
break
}
d.process()
case <-d.quit:
break out
}
}
}
// XXX Make synchronous
func (d *Downloader) startFetchingHashes(p *peer, hash common.Hash, ignoreInitial bool) error {
atomic.StoreInt32(&d.fetchingHashes, 1)
defer atomic.StoreInt32(&d.fetchingHashes, 0)
glog.V(logger.Debug).Infof("Downloading hashes (%x) from %s", hash.Bytes()[:4], p.id)
start := time.Now()
// We ignore the initial hash in some cases (e.g. we received a block without it's parent)
// In such circumstances we don't need to download the block so don't add it to the queue.
if !ignoreInitial {
// Add the hash to the queue first
d.queue.hashPool.Add(hash)
}
// Get the first batch of hashes
p.getHashes(hash)
failureResponseTimer := time.NewTimer(hashTtl)
out:
for {
select {
case hashes := <-d.hashCh:
failureResponseTimer.Reset(hashTtl)
var done bool // determines whether we're done fetching hashes (i.e. common hash found)
hashSet := set.New()
for _, hash := range hashes {
if d.hasBlock(hash) {
glog.V(logger.Debug).Infof("Found common hash %x\n", hash[:4])
done = true
break
}
hashSet.Add(hash)
}
d.queue.put(hashSet)
// Add hashes to the chunk set
if len(hashes) == 0 { // Make sure the peer actually gave you something valid
glog.V(logger.Debug).Infof("Peer (%s) responded with empty hash set\n", p.id)
d.queue.reset()
return errEmptyHashSet
} else if !done { // Check if we're done fetching
// Get the next set of hashes
p.getHashes(hashes[len(hashes)-1])
} else { // we're done
break out
}
case <-failureResponseTimer.C:
glog.V(logger.Debug).Infof("Peer (%s) didn't respond in time for hash request\n", p.id)
// TODO instead of reseting the queue select a new peer from which we can start downloading hashes.
// 1. check for peer's best hash to be included in the current hash set;
// 2. resume from last point (hashes[len(hashes)-1]) using the newly selected peer.
d.queue.reset()
return errTimeout
}
}
glog.V(logger.Detail).Infof("Downloaded hashes (%d) in %v\n", d.queue.hashPool.Size(), time.Since(start))
return nil
}
func (d *Downloader) startFetchingBlocks(p *peer) error {
glog.V(logger.Detail).Infoln("Downloading", d.queue.hashPool.Size(), "block(s)")
atomic.StoreInt32(&d.downloadingBlocks, 1)
defer atomic.StoreInt32(&d.downloadingBlocks, 0)
// Defer the peer reset. This will empty the peer requested set
// and makes sure there are no lingering peers with an incorrect
// state
defer d.peers.reset()
start := time.Now()
// default ticker for re-fetching blocks everynow and then
ticker := time.NewTicker(20 * time.Millisecond)
out:
for {
select {
case blockPack := <-d.blockCh:
// If the peer was previously banned and failed to deliver it's pack
// in a reasonable time frame, ignore it's message.
if d.peers[blockPack.peerId] != nil {
d.peers[blockPack.peerId].promote()
d.queue.deliver(blockPack.peerId, blockPack.blocks)
d.peers.setState(blockPack.peerId, idleState)
}
case <-ticker.C:
// If there are unrequested hashes left start fetching
// from the available peers.
if d.queue.hashPool.Size() > 0 {
availablePeers := d.peers.get(idleState)
for _, peer := range availablePeers {
// Get a possible chunk. If nil is returned no chunk
// could be returned due to no hashes available.
chunk := d.queue.get(peer, maxBlockFetch)
if chunk == nil {
continue
}
// XXX make fetch blocking.
// Fetch the chunk and check for error. If the peer was somehow
// already fetching a chunk due to a bug, it will be returned to
// the queue
if err := peer.fetch(chunk); err != nil {
// log for tracing
glog.V(logger.Debug).Infof("peer %s received double work (state = %v)\n", peer.id, peer.state)
d.queue.put(chunk.hashes)
}
}
// make sure that we have peers available for fetching. If all peers have been tried
// and all failed throw an error
if len(d.queue.fetching) == 0 {
d.queue.reset()
return fmt.Errorf("%v peers avaialable = %d. total peers = %d. hashes needed = %d", errPeersUnavailable, len(availablePeers), len(d.peers), d.queue.hashPool.Size())
}
} else if len(d.queue.fetching) == 0 {
// When there are no more queue and no more `fetching`. We can
// safely assume we're done. Another part of the process will check
// for parent errors and will re-request anything that's missing
break out
} else {
// Check for bad peers. Bad peers may indicate a peer not responding
// to a `getBlocks` message. A timeout of 5 seconds is set. Peers
// that badly or poorly behave are removed from the peer set (not banned).
// Bad peers are excluded from the available peer set and therefor won't be
// reused. XXX We could re-introduce peers after X time.
d.queue.mu.Lock()
var badPeers []string
for pid, chunk := range d.queue.fetching {
if time.Since(chunk.itime) > blockTtl {
badPeers = append(badPeers, pid)
// remove peer as good peer from peer list
//d.UnregisterPeer(pid)
}
}
d.queue.mu.Unlock()
for _, pid := range badPeers {
// A nil chunk is delivered so that the chunk's hashes are given
// back to the queue objects. When hashes are put back in the queue
// other (decent) peers can pick them up.
// XXX We could make use of a reputation system here ranking peers
// in their performance
// 1) Time for them to respond;
// 2) Measure their speed;
// 3) Amount and availability.
d.queue.deliver(pid, nil)
if peer := d.peers[pid]; peer != nil {
peer.demote()
peer.reset()
}
}
}
}
}
glog.V(logger.Detail).Infoln("Downloaded block(s) in", time.Since(start))
return nil
}
func (d *Downloader) AddHashes(id string, hashes []common.Hash) error {
// make sure that the hashes that are being added are actually from the peer
// that's the current active peer. hashes that have been received from other
// peers are dropped and ignored.
if d.activePeer != id {
return fmt.Errorf("received hashes from %s while active peer is %s", id, d.activePeer)
}
d.hashCh <- hashes
return nil
}
// Add an (unrequested) block to the downloader. This is usually done through the
// NewBlockMsg by the protocol handler.
// Adding blocks is done synchronously. if there are missing blocks, blocks will be
// fetched first. If the downloader is busy or if some other processed failed an error
// will be returned.
func (d *Downloader) AddBlock(id string, block *types.Block, td *big.Int) error {
hash := block.Hash()
if d.hasBlock(hash) {
return fmt.Errorf("known block %x", hash.Bytes()[:4])
}
peer := d.peers.getPeer(id)
// if the peer is in our healthy list of peers; update the td
// and add the block. Otherwise just ignore it
if peer == nil {
glog.V(logger.Detail).Infof("Ignored block from bad peer %s\n", id)
return errBadPeer
}
peer.mu.Lock()
peer.td = td
peer.recentHash = block.Hash()
peer.mu.Unlock()
peer.promote()
glog.V(logger.Detail).Infoln("Inserting new block from:", id)
d.queue.addBlock(id, block, td)
// if neither go ahead to process
if d.isBusy() {
return errBusy
}
// Check if the parent of the received block is known.
// If the block is not know, request it otherwise, request.
phash := block.ParentHash()
if !d.hasBlock(phash) {
glog.V(logger.Detail).Infof("Missing parent %x, requires fetching\n", phash.Bytes()[:4])
// Get the missing hashes from the peer (synchronously)
err := d.getFromPeer(peer, peer.recentHash, true)
if err != nil {
return err
}
}
return d.process()
}
// Deliver a chunk to the downloader. This is usually done through the BlocksMsg by
// the protocol handler.
func (d *Downloader) DeliverChunk(id string, blocks []*types.Block) {
d.blockCh <- blockPack{id, blocks}
}
func (d *Downloader) process() error {
atomic.StoreInt32(&d.processingBlocks, 1)
defer atomic.StoreInt32(&d.processingBlocks, 0)
// XXX this will move when optimised
// Sort the blocks by number. This bit needs much improvement. Right now
// it assumes full honesty form peers (i.e. it's not checked when the blocks
// link). We should at least check whihc queue match. This code could move
// to a seperate goroutine where it periodically checks for linked pieces.
types.BlockBy(types.Number).Sort(d.queue.blocks)
blocks := d.queue.blocks
if len(blocks) == 0 {
return nil
}
glog.V(logger.Debug).Infof("Inserting chain with %d blocks (#%v - #%v)\n", len(blocks), blocks[0].Number(), blocks[len(blocks)-1].Number())
var err error
// Loop untill we're out of blocks
for len(blocks) != 0 {
max := int(math.Min(float64(len(blocks)), 256))
// TODO check for parent error. When there's a parent error we should stop
// processing and start requesting the `block.hash` so that it's parent and
// grandparents can be requested and queued.
err = d.insertChain(blocks[:max])
if err != nil && core.IsParentErr(err) {
glog.V(logger.Debug).Infoln("Aborting process due to missing parent. Fetching hashes")
// TODO change this. This shite
for i, block := range blocks[:max] {
if !d.hasBlock(block.ParentHash()) {
d.syncCh <- syncPack{d.peers.bestPeer(), block.Hash(), true}
// remove processed blocks
blocks = blocks[i:]
break
}
}
break
} else if err != nil {
// Reset chain completely. This needs much, much improvement.
// instead: check all blocks leading down to this block false block and remove it
blocks = nil
break
}
blocks = blocks[max:]
}
// This will allow the GC to remove the in memory blocks
if len(blocks) == 0 {
d.queue.blocks = nil
} else {
d.queue.blocks = blocks
}
return err
}
func (d *Downloader) isFetchingHashes() bool {
return atomic.LoadInt32(&d.fetchingHashes) == 1
}
func (d *Downloader) isDownloadingBlocks() bool {
return atomic.LoadInt32(&d.downloadingBlocks) == 1
}
func (d *Downloader) isProcessing() bool {
return atomic.LoadInt32(&d.processingBlocks) == 1
}
func (d *Downloader) isBusy() bool {
return d.isFetchingHashes() || d.isDownloadingBlocks() || d.isProcessing()
}