plugeth/core/txpool/legacypool/legacypool.go
Péter Szilágyi d40a255e97
all: move main transaction pool into a subpool (#27463)
* all: move main transaction pool into a subpool

* go.mod: remove superfluous updates

* core/txpool: review fixes, handle txs rejected by all subpools

* core/txpool: typos
2023-06-16 15:29:40 +03:00

1848 lines
63 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package legacypool implements the normal EVM execution transaction pool.
package legacypool
import (
"errors"
"math"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/txpool"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/params"
)
const (
// txSlotSize is used to calculate how many data slots a single transaction
// takes up based on its size. The slots are used as DoS protection, ensuring
// that validating a new transaction remains a constant operation (in reality
// O(maxslots), where max slots are 4 currently).
txSlotSize = 32 * 1024
// txMaxSize is the maximum size a single transaction can have. This field has
// non-trivial consequences: larger transactions are significantly harder and
// more expensive to propagate; larger transactions also take more resources
// to validate whether they fit into the pool or not.
txMaxSize = 4 * txSlotSize // 128KB
)
var (
// ErrAlreadyKnown is returned if the transactions is already contained
// within the pool.
ErrAlreadyKnown = errors.New("already known")
// ErrTxPoolOverflow is returned if the transaction pool is full and can't accept
// another remote transaction.
ErrTxPoolOverflow = errors.New("txpool is full")
)
var (
evictionInterval = time.Minute // Time interval to check for evictable transactions
statsReportInterval = 8 * time.Second // Time interval to report transaction pool stats
)
var (
// Metrics for the pending pool
pendingDiscardMeter = metrics.NewRegisteredMeter("txpool/pending/discard", nil)
pendingReplaceMeter = metrics.NewRegisteredMeter("txpool/pending/replace", nil)
pendingRateLimitMeter = metrics.NewRegisteredMeter("txpool/pending/ratelimit", nil) // Dropped due to rate limiting
pendingNofundsMeter = metrics.NewRegisteredMeter("txpool/pending/nofunds", nil) // Dropped due to out-of-funds
// Metrics for the queued pool
queuedDiscardMeter = metrics.NewRegisteredMeter("txpool/queued/discard", nil)
queuedReplaceMeter = metrics.NewRegisteredMeter("txpool/queued/replace", nil)
queuedRateLimitMeter = metrics.NewRegisteredMeter("txpool/queued/ratelimit", nil) // Dropped due to rate limiting
queuedNofundsMeter = metrics.NewRegisteredMeter("txpool/queued/nofunds", nil) // Dropped due to out-of-funds
queuedEvictionMeter = metrics.NewRegisteredMeter("txpool/queued/eviction", nil) // Dropped due to lifetime
// General tx metrics
knownTxMeter = metrics.NewRegisteredMeter("txpool/known", nil)
validTxMeter = metrics.NewRegisteredMeter("txpool/valid", nil)
invalidTxMeter = metrics.NewRegisteredMeter("txpool/invalid", nil)
underpricedTxMeter = metrics.NewRegisteredMeter("txpool/underpriced", nil)
overflowedTxMeter = metrics.NewRegisteredMeter("txpool/overflowed", nil)
// throttleTxMeter counts how many transactions are rejected due to too-many-changes between
// txpool reorgs.
throttleTxMeter = metrics.NewRegisteredMeter("txpool/throttle", nil)
// reorgDurationTimer measures how long time a txpool reorg takes.
reorgDurationTimer = metrics.NewRegisteredTimer("txpool/reorgtime", nil)
// dropBetweenReorgHistogram counts how many drops we experience between two reorg runs. It is expected
// that this number is pretty low, since txpool reorgs happen very frequently.
dropBetweenReorgHistogram = metrics.NewRegisteredHistogram("txpool/dropbetweenreorg", nil, metrics.NewExpDecaySample(1028, 0.015))
pendingGauge = metrics.NewRegisteredGauge("txpool/pending", nil)
queuedGauge = metrics.NewRegisteredGauge("txpool/queued", nil)
localGauge = metrics.NewRegisteredGauge("txpool/local", nil)
slotsGauge = metrics.NewRegisteredGauge("txpool/slots", nil)
reheapTimer = metrics.NewRegisteredTimer("txpool/reheap", nil)
)
// BlockChain defines the minimal set of methods needed to back a tx pool with
// a chain. Exists to allow mocking the live chain out of tests.
type BlockChain interface {
// Config retrieves the chain's fork configuration.
Config() *params.ChainConfig
// CurrentBlock returns the current head of the chain.
CurrentBlock() *types.Header
// GetBlock retrieves a specific block, used during pool resets.
GetBlock(hash common.Hash, number uint64) *types.Block
// StateAt returns a state database for a given root hash (generally the head).
StateAt(root common.Hash) (*state.StateDB, error)
}
// Config are the configuration parameters of the transaction pool.
type Config struct {
Locals []common.Address // Addresses that should be treated by default as local
NoLocals bool // Whether local transaction handling should be disabled
Journal string // Journal of local transactions to survive node restarts
Rejournal time.Duration // Time interval to regenerate the local transaction journal
PriceLimit uint64 // Minimum gas price to enforce for acceptance into the pool
PriceBump uint64 // Minimum price bump percentage to replace an already existing transaction (nonce)
AccountSlots uint64 // Number of executable transaction slots guaranteed per account
GlobalSlots uint64 // Maximum number of executable transaction slots for all accounts
AccountQueue uint64 // Maximum number of non-executable transaction slots permitted per account
GlobalQueue uint64 // Maximum number of non-executable transaction slots for all accounts
Lifetime time.Duration // Maximum amount of time non-executable transaction are queued
}
// DefaultConfig contains the default configurations for the transaction pool.
var DefaultConfig = Config{
Journal: "transactions.rlp",
Rejournal: time.Hour,
PriceLimit: 1,
PriceBump: 10,
AccountSlots: 16,
GlobalSlots: 4096 + 1024, // urgent + floating queue capacity with 4:1 ratio
AccountQueue: 64,
GlobalQueue: 1024,
Lifetime: 3 * time.Hour,
}
// sanitize checks the provided user configurations and changes anything that's
// unreasonable or unworkable.
func (config *Config) sanitize() Config {
conf := *config
if conf.Rejournal < time.Second {
log.Warn("Sanitizing invalid txpool journal time", "provided", conf.Rejournal, "updated", time.Second)
conf.Rejournal = time.Second
}
if conf.PriceLimit < 1 {
log.Warn("Sanitizing invalid txpool price limit", "provided", conf.PriceLimit, "updated", DefaultConfig.PriceLimit)
conf.PriceLimit = DefaultConfig.PriceLimit
}
if conf.PriceBump < 1 {
log.Warn("Sanitizing invalid txpool price bump", "provided", conf.PriceBump, "updated", DefaultConfig.PriceBump)
conf.PriceBump = DefaultConfig.PriceBump
}
if conf.AccountSlots < 1 {
log.Warn("Sanitizing invalid txpool account slots", "provided", conf.AccountSlots, "updated", DefaultConfig.AccountSlots)
conf.AccountSlots = DefaultConfig.AccountSlots
}
if conf.GlobalSlots < 1 {
log.Warn("Sanitizing invalid txpool global slots", "provided", conf.GlobalSlots, "updated", DefaultConfig.GlobalSlots)
conf.GlobalSlots = DefaultConfig.GlobalSlots
}
if conf.AccountQueue < 1 {
log.Warn("Sanitizing invalid txpool account queue", "provided", conf.AccountQueue, "updated", DefaultConfig.AccountQueue)
conf.AccountQueue = DefaultConfig.AccountQueue
}
if conf.GlobalQueue < 1 {
log.Warn("Sanitizing invalid txpool global queue", "provided", conf.GlobalQueue, "updated", DefaultConfig.GlobalQueue)
conf.GlobalQueue = DefaultConfig.GlobalQueue
}
if conf.Lifetime < 1 {
log.Warn("Sanitizing invalid txpool lifetime", "provided", conf.Lifetime, "updated", DefaultConfig.Lifetime)
conf.Lifetime = DefaultConfig.Lifetime
}
return conf
}
// LegacyPool contains all currently known transactions. Transactions
// enter the pool when they are received from the network or submitted
// locally. They exit the pool when they are included in the blockchain.
//
// The pool separates processable transactions (which can be applied to the
// current state) and future transactions. Transactions move between those
// two states over time as they are received and processed.
type LegacyPool struct {
config Config
chainconfig *params.ChainConfig
chain BlockChain
gasTip atomic.Pointer[big.Int]
txFeed event.Feed
scope event.SubscriptionScope
signer types.Signer
mu sync.RWMutex
currentHead atomic.Pointer[types.Header] // Current head of the blockchain
currentState *state.StateDB // Current state in the blockchain head
pendingNonces *noncer // Pending state tracking virtual nonces
locals *accountSet // Set of local transaction to exempt from eviction rules
journal *journal // Journal of local transaction to back up to disk
pending map[common.Address]*list // All currently processable transactions
queue map[common.Address]*list // Queued but non-processable transactions
beats map[common.Address]time.Time // Last heartbeat from each known account
all *lookup // All transactions to allow lookups
priced *pricedList // All transactions sorted by price
reqResetCh chan *txpoolResetRequest
reqPromoteCh chan *accountSet
queueTxEventCh chan *types.Transaction
reorgDoneCh chan chan struct{}
reorgShutdownCh chan struct{} // requests shutdown of scheduleReorgLoop
wg sync.WaitGroup // tracks loop, scheduleReorgLoop
initDoneCh chan struct{} // is closed once the pool is initialized (for tests)
changesSinceReorg int // A counter for how many drops we've performed in-between reorg.
}
type txpoolResetRequest struct {
oldHead, newHead *types.Header
}
// New creates a new transaction pool to gather, sort and filter inbound
// transactions from the network.
func New(config Config, chain BlockChain) *LegacyPool {
// Sanitize the input to ensure no vulnerable gas prices are set
config = (&config).sanitize()
// Create the transaction pool with its initial settings
pool := &LegacyPool{
config: config,
chain: chain,
chainconfig: chain.Config(),
signer: types.LatestSigner(chain.Config()),
pending: make(map[common.Address]*list),
queue: make(map[common.Address]*list),
beats: make(map[common.Address]time.Time),
all: newLookup(),
reqResetCh: make(chan *txpoolResetRequest),
reqPromoteCh: make(chan *accountSet),
queueTxEventCh: make(chan *types.Transaction),
reorgDoneCh: make(chan chan struct{}),
reorgShutdownCh: make(chan struct{}),
initDoneCh: make(chan struct{}),
}
pool.locals = newAccountSet(pool.signer)
for _, addr := range config.Locals {
log.Info("Setting new local account", "address", addr)
pool.locals.add(addr)
}
pool.priced = newPricedList(pool.all)
if !config.NoLocals && config.Journal != "" {
pool.journal = newTxJournal(config.Journal)
}
return pool
}
// Filter returns whether the given transaction can be consumed by the legacy
// pool, specifically, whether it is a Legacy, AccessList or Dynamic transaction.
func (pool *LegacyPool) Filter(tx *types.Transaction) bool {
switch tx.Type() {
case types.LegacyTxType, types.AccessListTxType, types.DynamicFeeTxType:
return true
default:
return false
}
}
// Init sets the gas price needed to keep a transaction in the pool and the chain
// head to allow balance / nonce checks. The transaction journal will be loaded
// from disk and filtered based on the provided starting settings. The internal
// goroutines will be spun up and the pool deemed operational afterwards.
func (pool *LegacyPool) Init(gasTip *big.Int, head *types.Header) error {
// Set the basic pool parameters
pool.gasTip.Store(gasTip)
pool.reset(nil, head)
// Start the reorg loop early, so it can handle requests generated during
// journal loading.
pool.wg.Add(1)
go pool.scheduleReorgLoop()
// If local transactions and journaling is enabled, load from disk
if pool.journal != nil {
if err := pool.journal.load(pool.addLocals); err != nil {
log.Warn("Failed to load transaction journal", "err", err)
}
if err := pool.journal.rotate(pool.local()); err != nil {
log.Warn("Failed to rotate transaction journal", "err", err)
}
}
pool.wg.Add(1)
go pool.loop()
return nil
}
// loop is the transaction pool's main event loop, waiting for and reacting to
// outside blockchain events as well as for various reporting and transaction
// eviction events.
func (pool *LegacyPool) loop() {
defer pool.wg.Done()
var (
prevPending, prevQueued, prevStales int
// Start the stats reporting and transaction eviction tickers
report = time.NewTicker(statsReportInterval)
evict = time.NewTicker(evictionInterval)
journal = time.NewTicker(pool.config.Rejournal)
)
defer report.Stop()
defer evict.Stop()
defer journal.Stop()
// Notify tests that the init phase is done
close(pool.initDoneCh)
for {
select {
// Handle pool shutdown
case <-pool.reorgShutdownCh:
return
// Handle stats reporting ticks
case <-report.C:
pool.mu.RLock()
pending, queued := pool.stats()
pool.mu.RUnlock()
stales := int(pool.priced.stales.Load())
if pending != prevPending || queued != prevQueued || stales != prevStales {
log.Debug("Transaction pool status report", "executable", pending, "queued", queued, "stales", stales)
prevPending, prevQueued, prevStales = pending, queued, stales
}
// Handle inactive account transaction eviction
case <-evict.C:
pool.mu.Lock()
for addr := range pool.queue {
// Skip local transactions from the eviction mechanism
if pool.locals.contains(addr) {
continue
}
// Any non-locals old enough should be removed
if time.Since(pool.beats[addr]) > pool.config.Lifetime {
list := pool.queue[addr].Flatten()
for _, tx := range list {
pool.removeTx(tx.Hash(), true)
}
queuedEvictionMeter.Mark(int64(len(list)))
}
}
pool.mu.Unlock()
// Handle local transaction journal rotation
case <-journal.C:
if pool.journal != nil {
pool.mu.Lock()
if err := pool.journal.rotate(pool.local()); err != nil {
log.Warn("Failed to rotate local tx journal", "err", err)
}
pool.mu.Unlock()
}
}
}
}
// Close terminates the transaction pool.
func (pool *LegacyPool) Close() error {
// Unsubscribe all subscriptions registered from txpool
pool.scope.Close()
// Terminate the pool reorger and return
close(pool.reorgShutdownCh)
pool.wg.Wait()
if pool.journal != nil {
pool.journal.close()
}
log.Info("Transaction pool stopped")
return nil
}
// Reset implements txpool.SubPool, allowing the legacy pool's internal state to be
// kept in sync with the main transacion pool's internal state.
func (pool *LegacyPool) Reset(oldHead, newHead *types.Header) {
wait := pool.requestReset(oldHead, newHead)
<-wait
}
// SubscribeTransactions registers a subscription of NewTxsEvent and
// starts sending event to the given channel.
func (pool *LegacyPool) SubscribeTransactions(ch chan<- core.NewTxsEvent) event.Subscription {
return pool.scope.Track(pool.txFeed.Subscribe(ch))
}
// SetGasTip updates the minimum gas tip required by the transaction pool for a
// new transaction, and drops all transactions below this threshold.
func (pool *LegacyPool) SetGasTip(tip *big.Int) {
pool.mu.Lock()
defer pool.mu.Unlock()
old := pool.gasTip.Load()
pool.gasTip.Store(new(big.Int).Set(tip))
// If the min miner fee increased, remove transactions below the new threshold
if tip.Cmp(old) > 0 {
// pool.priced is sorted by GasFeeCap, so we have to iterate through pool.all instead
drop := pool.all.RemotesBelowTip(tip)
for _, tx := range drop {
pool.removeTx(tx.Hash(), false)
}
pool.priced.Removed(len(drop))
}
log.Info("LEgacy pool tip threshold updated", "tip", tip)
}
// Nonce returns the next nonce of an account, with all transactions executable
// by the pool already applied on top.
func (pool *LegacyPool) Nonce(addr common.Address) uint64 {
pool.mu.RLock()
defer pool.mu.RUnlock()
return pool.pendingNonces.get(addr)
}
// Stats retrieves the current pool stats, namely the number of pending and the
// number of queued (non-executable) transactions.
func (pool *LegacyPool) Stats() (int, int) {
pool.mu.RLock()
defer pool.mu.RUnlock()
return pool.stats()
}
// stats retrieves the current pool stats, namely the number of pending and the
// number of queued (non-executable) transactions.
func (pool *LegacyPool) stats() (int, int) {
pending := 0
for _, list := range pool.pending {
pending += list.Len()
}
queued := 0
for _, list := range pool.queue {
queued += list.Len()
}
return pending, queued
}
// Content retrieves the data content of the transaction pool, returning all the
// pending as well as queued transactions, grouped by account and sorted by nonce.
func (pool *LegacyPool) Content() (map[common.Address][]*types.Transaction, map[common.Address][]*types.Transaction) {
pool.mu.Lock()
defer pool.mu.Unlock()
pending := make(map[common.Address][]*types.Transaction, len(pool.pending))
for addr, list := range pool.pending {
pending[addr] = list.Flatten()
}
queued := make(map[common.Address][]*types.Transaction, len(pool.queue))
for addr, list := range pool.queue {
queued[addr] = list.Flatten()
}
return pending, queued
}
// ContentFrom retrieves the data content of the transaction pool, returning the
// pending as well as queued transactions of this address, grouped by nonce.
func (pool *LegacyPool) ContentFrom(addr common.Address) ([]*types.Transaction, []*types.Transaction) {
pool.mu.RLock()
defer pool.mu.RUnlock()
var pending []*types.Transaction
if list, ok := pool.pending[addr]; ok {
pending = list.Flatten()
}
var queued []*types.Transaction
if list, ok := pool.queue[addr]; ok {
queued = list.Flatten()
}
return pending, queued
}
// Pending retrieves all currently processable transactions, grouped by origin
// account and sorted by nonce. The returned transaction set is a copy and can be
// freely modified by calling code.
//
// The enforceTips parameter can be used to do an extra filtering on the pending
// transactions and only return those whose **effective** tip is large enough in
// the next pending execution environment.
func (pool *LegacyPool) Pending(enforceTips bool) map[common.Address][]*types.Transaction {
pool.mu.Lock()
defer pool.mu.Unlock()
pending := make(map[common.Address][]*types.Transaction, len(pool.pending))
for addr, list := range pool.pending {
txs := list.Flatten()
// If the miner requests tip enforcement, cap the lists now
if enforceTips && !pool.locals.contains(addr) {
for i, tx := range txs {
if tx.EffectiveGasTipIntCmp(pool.gasTip.Load(), pool.priced.urgent.baseFee) < 0 {
txs = txs[:i]
break
}
}
}
if len(txs) > 0 {
pending[addr] = txs
}
}
return pending
}
// Locals retrieves the accounts currently considered local by the pool.
func (pool *LegacyPool) Locals() []common.Address {
pool.mu.Lock()
defer pool.mu.Unlock()
return pool.locals.flatten()
}
// local retrieves all currently known local transactions, grouped by origin
// account and sorted by nonce. The returned transaction set is a copy and can be
// freely modified by calling code.
func (pool *LegacyPool) local() map[common.Address]types.Transactions {
txs := make(map[common.Address]types.Transactions)
for addr := range pool.locals.accounts {
if pending := pool.pending[addr]; pending != nil {
txs[addr] = append(txs[addr], pending.Flatten()...)
}
if queued := pool.queue[addr]; queued != nil {
txs[addr] = append(txs[addr], queued.Flatten()...)
}
}
return txs
}
// validateTxBasics checks whether a transaction is valid according to the consensus
// rules, but does not check state-dependent validation such as sufficient balance.
// This check is meant as an early check which only needs to be performed once,
// and does not require the pool mutex to be held.
func (pool *LegacyPool) validateTxBasics(tx *types.Transaction, local bool) error {
opts := &txpool.ValidationOptions{
Config: pool.chainconfig,
Accept: 0 |
1<<types.LegacyTxType |
1<<types.AccessListTxType |
1<<types.DynamicFeeTxType,
MaxSize: txMaxSize,
MinTip: pool.gasTip.Load(),
}
if local {
opts.MinTip = new(big.Int)
}
if err := txpool.ValidateTransaction(tx, nil, nil, nil, pool.currentHead.Load(), pool.signer, opts); err != nil {
return err
}
return nil
}
// validateTx checks whether a transaction is valid according to the consensus
// rules and adheres to some heuristic limits of the local node (price and size).
func (pool *LegacyPool) validateTx(tx *types.Transaction, local bool) error {
opts := &txpool.ValidationOptionsWithState{
State: pool.currentState,
FirstNonceGap: nil, // Pool allows arbitrary arrival order, don't invalidate nonce gaps
ExistingExpenditure: func(addr common.Address) *big.Int {
if list := pool.pending[addr]; list != nil {
return list.totalcost
}
return new(big.Int)
},
ExistingCost: func(addr common.Address, nonce uint64) *big.Int {
if list := pool.pending[addr]; list != nil {
if tx := list.txs.Get(nonce); tx != nil {
return tx.Cost()
}
}
return nil
},
}
if err := txpool.ValidateTransactionWithState(tx, pool.signer, opts); err != nil {
return err
}
return nil
}
// add validates a transaction and inserts it into the non-executable queue for later
// pending promotion and execution. If the transaction is a replacement for an already
// pending or queued one, it overwrites the previous transaction if its price is higher.
//
// If a newly added transaction is marked as local, its sending account will be
// be added to the allowlist, preventing any associated transaction from being dropped
// out of the pool due to pricing constraints.
func (pool *LegacyPool) add(tx *types.Transaction, local bool) (replaced bool, err error) {
// If the transaction is already known, discard it
hash := tx.Hash()
if pool.all.Get(hash) != nil {
log.Trace("Discarding already known transaction", "hash", hash)
knownTxMeter.Mark(1)
return false, ErrAlreadyKnown
}
// Make the local flag. If it's from local source or it's from the network but
// the sender is marked as local previously, treat it as the local transaction.
isLocal := local || pool.locals.containsTx(tx)
// If the transaction fails basic validation, discard it
if err := pool.validateTx(tx, isLocal); err != nil {
log.Trace("Discarding invalid transaction", "hash", hash, "err", err)
invalidTxMeter.Mark(1)
return false, err
}
// already validated by this point
from, _ := types.Sender(pool.signer, tx)
// If the transaction pool is full, discard underpriced transactions
if uint64(pool.all.Slots()+numSlots(tx)) > pool.config.GlobalSlots+pool.config.GlobalQueue {
// If the new transaction is underpriced, don't accept it
if !isLocal && pool.priced.Underpriced(tx) {
log.Trace("Discarding underpriced transaction", "hash", hash, "gasTipCap", tx.GasTipCap(), "gasFeeCap", tx.GasFeeCap())
underpricedTxMeter.Mark(1)
return false, txpool.ErrUnderpriced
}
// We're about to replace a transaction. The reorg does a more thorough
// analysis of what to remove and how, but it runs async. We don't want to
// do too many replacements between reorg-runs, so we cap the number of
// replacements to 25% of the slots
if pool.changesSinceReorg > int(pool.config.GlobalSlots/4) {
throttleTxMeter.Mark(1)
return false, ErrTxPoolOverflow
}
// New transaction is better than our worse ones, make room for it.
// If it's a local transaction, forcibly discard all available transactions.
// Otherwise if we can't make enough room for new one, abort the operation.
drop, success := pool.priced.Discard(pool.all.Slots()-int(pool.config.GlobalSlots+pool.config.GlobalQueue)+numSlots(tx), isLocal)
// Special case, we still can't make the room for the new remote one.
if !isLocal && !success {
log.Trace("Discarding overflown transaction", "hash", hash)
overflowedTxMeter.Mark(1)
return false, ErrTxPoolOverflow
}
// If the new transaction is a future transaction it should never churn pending transactions
if !isLocal && pool.isGapped(from, tx) {
var replacesPending bool
for _, dropTx := range drop {
dropSender, _ := types.Sender(pool.signer, dropTx)
if list := pool.pending[dropSender]; list != nil && list.Contains(dropTx.Nonce()) {
replacesPending = true
break
}
}
// Add all transactions back to the priced queue
if replacesPending {
for _, dropTx := range drop {
pool.priced.Put(dropTx, false)
}
log.Trace("Discarding future transaction replacing pending tx", "hash", hash)
return false, txpool.ErrFutureReplacePending
}
}
// Kick out the underpriced remote transactions.
for _, tx := range drop {
log.Trace("Discarding freshly underpriced transaction", "hash", tx.Hash(), "gasTipCap", tx.GasTipCap(), "gasFeeCap", tx.GasFeeCap())
underpricedTxMeter.Mark(1)
dropped := pool.removeTx(tx.Hash(), false)
pool.changesSinceReorg += dropped
}
}
// Try to replace an existing transaction in the pending pool
if list := pool.pending[from]; list != nil && list.Contains(tx.Nonce()) {
// Nonce already pending, check if required price bump is met
inserted, old := list.Add(tx, pool.config.PriceBump)
if !inserted {
pendingDiscardMeter.Mark(1)
return false, txpool.ErrReplaceUnderpriced
}
// New transaction is better, replace old one
if old != nil {
pool.all.Remove(old.Hash())
pool.priced.Removed(1)
pendingReplaceMeter.Mark(1)
}
pool.all.Add(tx, isLocal)
pool.priced.Put(tx, isLocal)
pool.journalTx(from, tx)
pool.queueTxEvent(tx)
log.Trace("Pooled new executable transaction", "hash", hash, "from", from, "to", tx.To())
// Successful promotion, bump the heartbeat
pool.beats[from] = time.Now()
return old != nil, nil
}
// New transaction isn't replacing a pending one, push into queue
replaced, err = pool.enqueueTx(hash, tx, isLocal, true)
if err != nil {
return false, err
}
// Mark local addresses and journal local transactions
if local && !pool.locals.contains(from) {
log.Info("Setting new local account", "address", from)
pool.locals.add(from)
pool.priced.Removed(pool.all.RemoteToLocals(pool.locals)) // Migrate the remotes if it's marked as local first time.
}
if isLocal {
localGauge.Inc(1)
}
pool.journalTx(from, tx)
log.Trace("Pooled new future transaction", "hash", hash, "from", from, "to", tx.To())
return replaced, nil
}
// isGapped reports whether the given transaction is immediately executable.
func (pool *LegacyPool) isGapped(from common.Address, tx *types.Transaction) bool {
// Short circuit if transaction falls within the scope of the pending list
// or matches the next pending nonce which can be promoted as an executable
// transaction afterwards. Note, the tx staleness is already checked in
// 'validateTx' function previously.
next := pool.pendingNonces.get(from)
if tx.Nonce() <= next {
return false
}
// The transaction has a nonce gap with pending list, it's only considered
// as executable if transactions in queue can fill up the nonce gap.
queue, ok := pool.queue[from]
if !ok {
return true
}
for nonce := next; nonce < tx.Nonce(); nonce++ {
if !queue.Contains(nonce) {
return true // txs in queue can't fill up the nonce gap
}
}
return false
}
// enqueueTx inserts a new transaction into the non-executable transaction queue.
//
// Note, this method assumes the pool lock is held!
func (pool *LegacyPool) enqueueTx(hash common.Hash, tx *types.Transaction, local bool, addAll bool) (bool, error) {
// Try to insert the transaction into the future queue
from, _ := types.Sender(pool.signer, tx) // already validated
if pool.queue[from] == nil {
pool.queue[from] = newList(false)
}
inserted, old := pool.queue[from].Add(tx, pool.config.PriceBump)
if !inserted {
// An older transaction was better, discard this
queuedDiscardMeter.Mark(1)
return false, txpool.ErrReplaceUnderpriced
}
// Discard any previous transaction and mark this
if old != nil {
pool.all.Remove(old.Hash())
pool.priced.Removed(1)
queuedReplaceMeter.Mark(1)
} else {
// Nothing was replaced, bump the queued counter
queuedGauge.Inc(1)
}
// If the transaction isn't in lookup set but it's expected to be there,
// show the error log.
if pool.all.Get(hash) == nil && !addAll {
log.Error("Missing transaction in lookup set, please report the issue", "hash", hash)
}
if addAll {
pool.all.Add(tx, local)
pool.priced.Put(tx, local)
}
// If we never record the heartbeat, do it right now.
if _, exist := pool.beats[from]; !exist {
pool.beats[from] = time.Now()
}
return old != nil, nil
}
// journalTx adds the specified transaction to the local disk journal if it is
// deemed to have been sent from a local account.
func (pool *LegacyPool) journalTx(from common.Address, tx *types.Transaction) {
// Only journal if it's enabled and the transaction is local
if pool.journal == nil || !pool.locals.contains(from) {
return
}
if err := pool.journal.insert(tx); err != nil {
log.Warn("Failed to journal local transaction", "err", err)
}
}
// promoteTx adds a transaction to the pending (processable) list of transactions
// and returns whether it was inserted or an older was better.
//
// Note, this method assumes the pool lock is held!
func (pool *LegacyPool) promoteTx(addr common.Address, hash common.Hash, tx *types.Transaction) bool {
// Try to insert the transaction into the pending queue
if pool.pending[addr] == nil {
pool.pending[addr] = newList(true)
}
list := pool.pending[addr]
inserted, old := list.Add(tx, pool.config.PriceBump)
if !inserted {
// An older transaction was better, discard this
pool.all.Remove(hash)
pool.priced.Removed(1)
pendingDiscardMeter.Mark(1)
return false
}
// Otherwise discard any previous transaction and mark this
if old != nil {
pool.all.Remove(old.Hash())
pool.priced.Removed(1)
pendingReplaceMeter.Mark(1)
} else {
// Nothing was replaced, bump the pending counter
pendingGauge.Inc(1)
}
// Set the potentially new pending nonce and notify any subsystems of the new tx
pool.pendingNonces.set(addr, tx.Nonce()+1)
// Successful promotion, bump the heartbeat
pool.beats[addr] = time.Now()
return true
}
// Add enqueues a batch of transactions into the pool if they are valid. Depending
// on the local flag, full pricing contraints will or will not be applied.
//
// If sync is set, the method will block until all internal maintenance related
// to the add is finished. Only use this during tests for determinism!
func (pool *LegacyPool) Add(txs []*txpool.Transaction, local bool, sync bool) []error {
unwrapped := make([]*types.Transaction, len(txs))
for i, tx := range txs {
unwrapped[i] = tx.Tx
}
return pool.addTxs(unwrapped, local, sync)
}
// addLocals enqueues a batch of transactions into the pool if they are valid, marking the
// senders as a local ones, ensuring they go around the local pricing constraints.
//
// This method is used to add transactions from the RPC API and performs synchronous pool
// reorganization and event propagation.
func (pool *LegacyPool) addLocals(txs []*types.Transaction) []error {
return pool.addTxs(txs, !pool.config.NoLocals, true)
}
// addLocal enqueues a single local transaction into the pool if it is valid. This is
// a convenience wrapper around addLocals.
func (pool *LegacyPool) addLocal(tx *types.Transaction) error {
errs := pool.addLocals([]*types.Transaction{tx})
return errs[0]
}
// addRemotes enqueues a batch of transactions into the pool if they are valid. If the
// senders are not among the locally tracked ones, full pricing constraints will apply.
//
// This method is used to add transactions from the p2p network and does not wait for pool
// reorganization and internal event propagation.
func (pool *LegacyPool) addRemotes(txs []*types.Transaction) []error {
return pool.addTxs(txs, false, false)
}
// addRemote enqueues a single transaction into the pool if it is valid. This is a convenience
// wrapper around addRemotes.
func (pool *LegacyPool) addRemote(tx *types.Transaction) error {
errs := pool.addRemotes([]*types.Transaction{tx})
return errs[0]
}
// addRemotesSync is like addRemotes, but waits for pool reorganization. Tests use this method.
func (pool *LegacyPool) addRemotesSync(txs []*types.Transaction) []error {
return pool.addTxs(txs, false, true)
}
// This is like addRemotes with a single transaction, but waits for pool reorganization. Tests use this method.
func (pool *LegacyPool) addRemoteSync(tx *types.Transaction) error {
return pool.addTxs([]*types.Transaction{tx}, false, true)[0]
}
// addTxs attempts to queue a batch of transactions if they are valid.
func (pool *LegacyPool) addTxs(txs []*types.Transaction, local, sync bool) []error {
// Filter out known ones without obtaining the pool lock or recovering signatures
var (
errs = make([]error, len(txs))
news = make([]*types.Transaction, 0, len(txs))
)
for i, tx := range txs {
// If the transaction is known, pre-set the error slot
if pool.all.Get(tx.Hash()) != nil {
errs[i] = ErrAlreadyKnown
knownTxMeter.Mark(1)
continue
}
// Exclude transactions with basic errors, e.g invalid signatures and
// insufficient intrinsic gas as soon as possible and cache senders
// in transactions before obtaining lock
if err := pool.validateTxBasics(tx, local); err != nil {
errs[i] = err
invalidTxMeter.Mark(1)
continue
}
// Accumulate all unknown transactions for deeper processing
news = append(news, tx)
}
if len(news) == 0 {
return errs
}
// Process all the new transaction and merge any errors into the original slice
pool.mu.Lock()
newErrs, dirtyAddrs := pool.addTxsLocked(news, local)
pool.mu.Unlock()
var nilSlot = 0
for _, err := range newErrs {
for errs[nilSlot] != nil {
nilSlot++
}
errs[nilSlot] = err
nilSlot++
}
// Reorg the pool internals if needed and return
done := pool.requestPromoteExecutables(dirtyAddrs)
if sync {
<-done
}
return errs
}
// addTxsLocked attempts to queue a batch of transactions if they are valid.
// The transaction pool lock must be held.
func (pool *LegacyPool) addTxsLocked(txs []*types.Transaction, local bool) ([]error, *accountSet) {
dirty := newAccountSet(pool.signer)
errs := make([]error, len(txs))
for i, tx := range txs {
replaced, err := pool.add(tx, local)
errs[i] = err
if err == nil && !replaced {
dirty.addTx(tx)
}
}
validTxMeter.Mark(int64(len(dirty.accounts)))
return errs, dirty
}
// Status returns the status (unknown/pending/queued) of a batch of transactions
// identified by their hashes.
func (pool *LegacyPool) Status(hash common.Hash) txpool.TxStatus {
tx := pool.get(hash)
if tx == nil {
return txpool.TxStatusUnknown
}
from, _ := types.Sender(pool.signer, tx) // already validated
pool.mu.RLock()
defer pool.mu.RUnlock()
if txList := pool.pending[from]; txList != nil && txList.txs.items[tx.Nonce()] != nil {
return txpool.TxStatusPending
} else if txList := pool.queue[from]; txList != nil && txList.txs.items[tx.Nonce()] != nil {
return txpool.TxStatusQueued
}
return txpool.TxStatusUnknown
}
// Get returns a transaction if it is contained in the pool and nil otherwise.
func (pool *LegacyPool) Get(hash common.Hash) *txpool.Transaction {
tx := pool.get(hash)
if tx == nil {
return nil
}
return &txpool.Transaction{Tx: tx}
}
// get returns a transaction if it is contained in the pool and nil otherwise.
func (pool *LegacyPool) get(hash common.Hash) *types.Transaction {
return pool.all.Get(hash)
}
// Has returns an indicator whether txpool has a transaction cached with the
// given hash.
func (pool *LegacyPool) Has(hash common.Hash) bool {
return pool.all.Get(hash) != nil
}
// removeTx removes a single transaction from the queue, moving all subsequent
// transactions back to the future queue.
// Returns the number of transactions removed from the pending queue.
func (pool *LegacyPool) removeTx(hash common.Hash, outofbound bool) int {
// Fetch the transaction we wish to delete
tx := pool.all.Get(hash)
if tx == nil {
return 0
}
addr, _ := types.Sender(pool.signer, tx) // already validated during insertion
// Remove it from the list of known transactions
pool.all.Remove(hash)
if outofbound {
pool.priced.Removed(1)
}
if pool.locals.contains(addr) {
localGauge.Dec(1)
}
// Remove the transaction from the pending lists and reset the account nonce
if pending := pool.pending[addr]; pending != nil {
if removed, invalids := pending.Remove(tx); removed {
// If no more pending transactions are left, remove the list
if pending.Empty() {
delete(pool.pending, addr)
}
// Postpone any invalidated transactions
for _, tx := range invalids {
// Internal shuffle shouldn't touch the lookup set.
pool.enqueueTx(tx.Hash(), tx, false, false)
}
// Update the account nonce if needed
pool.pendingNonces.setIfLower(addr, tx.Nonce())
// Reduce the pending counter
pendingGauge.Dec(int64(1 + len(invalids)))
return 1 + len(invalids)
}
}
// Transaction is in the future queue
if future := pool.queue[addr]; future != nil {
if removed, _ := future.Remove(tx); removed {
// Reduce the queued counter
queuedGauge.Dec(1)
}
if future.Empty() {
delete(pool.queue, addr)
delete(pool.beats, addr)
}
}
return 0
}
// requestReset requests a pool reset to the new head block.
// The returned channel is closed when the reset has occurred.
func (pool *LegacyPool) requestReset(oldHead *types.Header, newHead *types.Header) chan struct{} {
select {
case pool.reqResetCh <- &txpoolResetRequest{oldHead, newHead}:
return <-pool.reorgDoneCh
case <-pool.reorgShutdownCh:
return pool.reorgShutdownCh
}
}
// requestPromoteExecutables requests transaction promotion checks for the given addresses.
// The returned channel is closed when the promotion checks have occurred.
func (pool *LegacyPool) requestPromoteExecutables(set *accountSet) chan struct{} {
select {
case pool.reqPromoteCh <- set:
return <-pool.reorgDoneCh
case <-pool.reorgShutdownCh:
return pool.reorgShutdownCh
}
}
// queueTxEvent enqueues a transaction event to be sent in the next reorg run.
func (pool *LegacyPool) queueTxEvent(tx *types.Transaction) {
select {
case pool.queueTxEventCh <- tx:
case <-pool.reorgShutdownCh:
}
}
// scheduleReorgLoop schedules runs of reset and promoteExecutables. Code above should not
// call those methods directly, but request them being run using requestReset and
// requestPromoteExecutables instead.
func (pool *LegacyPool) scheduleReorgLoop() {
defer pool.wg.Done()
var (
curDone chan struct{} // non-nil while runReorg is active
nextDone = make(chan struct{})
launchNextRun bool
reset *txpoolResetRequest
dirtyAccounts *accountSet
queuedEvents = make(map[common.Address]*sortedMap)
)
for {
// Launch next background reorg if needed
if curDone == nil && launchNextRun {
// Run the background reorg and announcements
go pool.runReorg(nextDone, reset, dirtyAccounts, queuedEvents)
// Prepare everything for the next round of reorg
curDone, nextDone = nextDone, make(chan struct{})
launchNextRun = false
reset, dirtyAccounts = nil, nil
queuedEvents = make(map[common.Address]*sortedMap)
}
select {
case req := <-pool.reqResetCh:
// Reset request: update head if request is already pending.
if reset == nil {
reset = req
} else {
reset.newHead = req.newHead
}
launchNextRun = true
pool.reorgDoneCh <- nextDone
case req := <-pool.reqPromoteCh:
// Promote request: update address set if request is already pending.
if dirtyAccounts == nil {
dirtyAccounts = req
} else {
dirtyAccounts.merge(req)
}
launchNextRun = true
pool.reorgDoneCh <- nextDone
case tx := <-pool.queueTxEventCh:
// Queue up the event, but don't schedule a reorg. It's up to the caller to
// request one later if they want the events sent.
addr, _ := types.Sender(pool.signer, tx)
if _, ok := queuedEvents[addr]; !ok {
queuedEvents[addr] = newSortedMap()
}
queuedEvents[addr].Put(tx)
case <-curDone:
curDone = nil
case <-pool.reorgShutdownCh:
// Wait for current run to finish.
if curDone != nil {
<-curDone
}
close(nextDone)
return
}
}
}
// runReorg runs reset and promoteExecutables on behalf of scheduleReorgLoop.
func (pool *LegacyPool) runReorg(done chan struct{}, reset *txpoolResetRequest, dirtyAccounts *accountSet, events map[common.Address]*sortedMap) {
defer func(t0 time.Time) {
reorgDurationTimer.Update(time.Since(t0))
}(time.Now())
defer close(done)
var promoteAddrs []common.Address
if dirtyAccounts != nil && reset == nil {
// Only dirty accounts need to be promoted, unless we're resetting.
// For resets, all addresses in the tx queue will be promoted and
// the flatten operation can be avoided.
promoteAddrs = dirtyAccounts.flatten()
}
pool.mu.Lock()
if reset != nil {
// Reset from the old head to the new, rescheduling any reorged transactions
pool.reset(reset.oldHead, reset.newHead)
// Nonces were reset, discard any events that became stale
for addr := range events {
events[addr].Forward(pool.pendingNonces.get(addr))
if events[addr].Len() == 0 {
delete(events, addr)
}
}
// Reset needs promote for all addresses
promoteAddrs = make([]common.Address, 0, len(pool.queue))
for addr := range pool.queue {
promoteAddrs = append(promoteAddrs, addr)
}
}
// Check for pending transactions for every account that sent new ones
promoted := pool.promoteExecutables(promoteAddrs)
// If a new block appeared, validate the pool of pending transactions. This will
// remove any transaction that has been included in the block or was invalidated
// because of another transaction (e.g. higher gas price).
if reset != nil {
pool.demoteUnexecutables()
if reset.newHead != nil && pool.chainconfig.IsLondon(new(big.Int).Add(reset.newHead.Number, big.NewInt(1))) {
pendingBaseFee := misc.CalcBaseFee(pool.chainconfig, reset.newHead)
pool.priced.SetBaseFee(pendingBaseFee)
}
// Update all accounts to the latest known pending nonce
nonces := make(map[common.Address]uint64, len(pool.pending))
for addr, list := range pool.pending {
highestPending := list.LastElement()
nonces[addr] = highestPending.Nonce() + 1
}
pool.pendingNonces.setAll(nonces)
}
// Ensure pool.queue and pool.pending sizes stay within the configured limits.
pool.truncatePending()
pool.truncateQueue()
dropBetweenReorgHistogram.Update(int64(pool.changesSinceReorg))
pool.changesSinceReorg = 0 // Reset change counter
pool.mu.Unlock()
// Notify subsystems for newly added transactions
for _, tx := range promoted {
addr, _ := types.Sender(pool.signer, tx)
if _, ok := events[addr]; !ok {
events[addr] = newSortedMap()
}
events[addr].Put(tx)
}
if len(events) > 0 {
var txs []*types.Transaction
for _, set := range events {
txs = append(txs, set.Flatten()...)
}
pool.txFeed.Send(core.NewTxsEvent{Txs: txs})
}
}
// reset retrieves the current state of the blockchain and ensures the content
// of the transaction pool is valid with regard to the chain state.
func (pool *LegacyPool) reset(oldHead, newHead *types.Header) {
// If we're reorging an old state, reinject all dropped transactions
var reinject types.Transactions
if oldHead != nil && oldHead.Hash() != newHead.ParentHash {
// If the reorg is too deep, avoid doing it (will happen during fast sync)
oldNum := oldHead.Number.Uint64()
newNum := newHead.Number.Uint64()
if depth := uint64(math.Abs(float64(oldNum) - float64(newNum))); depth > 64 {
log.Debug("Skipping deep transaction reorg", "depth", depth)
} else {
// Reorg seems shallow enough to pull in all transactions into memory
var discarded, included types.Transactions
var (
rem = pool.chain.GetBlock(oldHead.Hash(), oldHead.Number.Uint64())
add = pool.chain.GetBlock(newHead.Hash(), newHead.Number.Uint64())
)
if rem == nil {
// This can happen if a setHead is performed, where we simply discard the old
// head from the chain.
// If that is the case, we don't have the lost transactions anymore, and
// there's nothing to add
if newNum >= oldNum {
// If we reorged to a same or higher number, then it's not a case of setHead
log.Warn("Transaction pool reset with missing oldhead",
"old", oldHead.Hash(), "oldnum", oldNum, "new", newHead.Hash(), "newnum", newNum)
return
}
// If the reorg ended up on a lower number, it's indicative of setHead being the cause
log.Debug("Skipping transaction reset caused by setHead",
"old", oldHead.Hash(), "oldnum", oldNum, "new", newHead.Hash(), "newnum", newNum)
// We still need to update the current state s.th. the lost transactions can be readded by the user
} else {
for rem.NumberU64() > add.NumberU64() {
discarded = append(discarded, rem.Transactions()...)
if rem = pool.chain.GetBlock(rem.ParentHash(), rem.NumberU64()-1); rem == nil {
log.Error("Unrooted old chain seen by tx pool", "block", oldHead.Number, "hash", oldHead.Hash())
return
}
}
for add.NumberU64() > rem.NumberU64() {
included = append(included, add.Transactions()...)
if add = pool.chain.GetBlock(add.ParentHash(), add.NumberU64()-1); add == nil {
log.Error("Unrooted new chain seen by tx pool", "block", newHead.Number, "hash", newHead.Hash())
return
}
}
for rem.Hash() != add.Hash() {
discarded = append(discarded, rem.Transactions()...)
if rem = pool.chain.GetBlock(rem.ParentHash(), rem.NumberU64()-1); rem == nil {
log.Error("Unrooted old chain seen by tx pool", "block", oldHead.Number, "hash", oldHead.Hash())
return
}
included = append(included, add.Transactions()...)
if add = pool.chain.GetBlock(add.ParentHash(), add.NumberU64()-1); add == nil {
log.Error("Unrooted new chain seen by tx pool", "block", newHead.Number, "hash", newHead.Hash())
return
}
}
reinject = types.TxDifference(discarded, included)
}
}
}
// Initialize the internal state to the current head
if newHead == nil {
newHead = pool.chain.CurrentBlock() // Special case during testing
}
statedb, err := pool.chain.StateAt(newHead.Root)
if err != nil {
log.Error("Failed to reset txpool state", "err", err)
return
}
pool.currentHead.Store(newHead)
pool.currentState = statedb
pool.pendingNonces = newNoncer(statedb)
// Inject any transactions discarded due to reorgs
log.Debug("Reinjecting stale transactions", "count", len(reinject))
core.SenderCacher.Recover(pool.signer, reinject)
pool.addTxsLocked(reinject, false)
}
// promoteExecutables moves transactions that have become processable from the
// future queue to the set of pending transactions. During this process, all
// invalidated transactions (low nonce, low balance) are deleted.
func (pool *LegacyPool) promoteExecutables(accounts []common.Address) []*types.Transaction {
// Track the promoted transactions to broadcast them at once
var promoted []*types.Transaction
// Iterate over all accounts and promote any executable transactions
gasLimit := pool.currentHead.Load().GasLimit
for _, addr := range accounts {
list := pool.queue[addr]
if list == nil {
continue // Just in case someone calls with a non existing account
}
// Drop all transactions that are deemed too old (low nonce)
forwards := list.Forward(pool.currentState.GetNonce(addr))
for _, tx := range forwards {
hash := tx.Hash()
pool.all.Remove(hash)
}
log.Trace("Removed old queued transactions", "count", len(forwards))
// Drop all transactions that are too costly (low balance or out of gas)
drops, _ := list.Filter(pool.currentState.GetBalance(addr), gasLimit)
for _, tx := range drops {
hash := tx.Hash()
pool.all.Remove(hash)
}
log.Trace("Removed unpayable queued transactions", "count", len(drops))
queuedNofundsMeter.Mark(int64(len(drops)))
// Gather all executable transactions and promote them
readies := list.Ready(pool.pendingNonces.get(addr))
for _, tx := range readies {
hash := tx.Hash()
if pool.promoteTx(addr, hash, tx) {
promoted = append(promoted, tx)
}
}
log.Trace("Promoted queued transactions", "count", len(promoted))
queuedGauge.Dec(int64(len(readies)))
// Drop all transactions over the allowed limit
var caps types.Transactions
if !pool.locals.contains(addr) {
caps = list.Cap(int(pool.config.AccountQueue))
for _, tx := range caps {
hash := tx.Hash()
pool.all.Remove(hash)
log.Trace("Removed cap-exceeding queued transaction", "hash", hash)
}
queuedRateLimitMeter.Mark(int64(len(caps)))
}
// Mark all the items dropped as removed
pool.priced.Removed(len(forwards) + len(drops) + len(caps))
queuedGauge.Dec(int64(len(forwards) + len(drops) + len(caps)))
if pool.locals.contains(addr) {
localGauge.Dec(int64(len(forwards) + len(drops) + len(caps)))
}
// Delete the entire queue entry if it became empty.
if list.Empty() {
delete(pool.queue, addr)
delete(pool.beats, addr)
}
}
return promoted
}
// truncatePending removes transactions from the pending queue if the pool is above the
// pending limit. The algorithm tries to reduce transaction counts by an approximately
// equal number for all for accounts with many pending transactions.
func (pool *LegacyPool) truncatePending() {
pending := uint64(0)
for _, list := range pool.pending {
pending += uint64(list.Len())
}
if pending <= pool.config.GlobalSlots {
return
}
pendingBeforeCap := pending
// Assemble a spam order to penalize large transactors first
spammers := prque.New[int64, common.Address](nil)
for addr, list := range pool.pending {
// Only evict transactions from high rollers
if !pool.locals.contains(addr) && uint64(list.Len()) > pool.config.AccountSlots {
spammers.Push(addr, int64(list.Len()))
}
}
// Gradually drop transactions from offenders
offenders := []common.Address{}
for pending > pool.config.GlobalSlots && !spammers.Empty() {
// Retrieve the next offender if not local address
offender, _ := spammers.Pop()
offenders = append(offenders, offender)
// Equalize balances until all the same or below threshold
if len(offenders) > 1 {
// Calculate the equalization threshold for all current offenders
threshold := pool.pending[offender].Len()
// Iteratively reduce all offenders until below limit or threshold reached
for pending > pool.config.GlobalSlots && pool.pending[offenders[len(offenders)-2]].Len() > threshold {
for i := 0; i < len(offenders)-1; i++ {
list := pool.pending[offenders[i]]
caps := list.Cap(list.Len() - 1)
for _, tx := range caps {
// Drop the transaction from the global pools too
hash := tx.Hash()
pool.all.Remove(hash)
// Update the account nonce to the dropped transaction
pool.pendingNonces.setIfLower(offenders[i], tx.Nonce())
log.Trace("Removed fairness-exceeding pending transaction", "hash", hash)
}
pool.priced.Removed(len(caps))
pendingGauge.Dec(int64(len(caps)))
if pool.locals.contains(offenders[i]) {
localGauge.Dec(int64(len(caps)))
}
pending--
}
}
}
}
// If still above threshold, reduce to limit or min allowance
if pending > pool.config.GlobalSlots && len(offenders) > 0 {
for pending > pool.config.GlobalSlots && uint64(pool.pending[offenders[len(offenders)-1]].Len()) > pool.config.AccountSlots {
for _, addr := range offenders {
list := pool.pending[addr]
caps := list.Cap(list.Len() - 1)
for _, tx := range caps {
// Drop the transaction from the global pools too
hash := tx.Hash()
pool.all.Remove(hash)
// Update the account nonce to the dropped transaction
pool.pendingNonces.setIfLower(addr, tx.Nonce())
log.Trace("Removed fairness-exceeding pending transaction", "hash", hash)
}
pool.priced.Removed(len(caps))
pendingGauge.Dec(int64(len(caps)))
if pool.locals.contains(addr) {
localGauge.Dec(int64(len(caps)))
}
pending--
}
}
}
pendingRateLimitMeter.Mark(int64(pendingBeforeCap - pending))
}
// truncateQueue drops the oldest transactions in the queue if the pool is above the global queue limit.
func (pool *LegacyPool) truncateQueue() {
queued := uint64(0)
for _, list := range pool.queue {
queued += uint64(list.Len())
}
if queued <= pool.config.GlobalQueue {
return
}
// Sort all accounts with queued transactions by heartbeat
addresses := make(addressesByHeartbeat, 0, len(pool.queue))
for addr := range pool.queue {
if !pool.locals.contains(addr) { // don't drop locals
addresses = append(addresses, addressByHeartbeat{addr, pool.beats[addr]})
}
}
sort.Sort(sort.Reverse(addresses))
// Drop transactions until the total is below the limit or only locals remain
for drop := queued - pool.config.GlobalQueue; drop > 0 && len(addresses) > 0; {
addr := addresses[len(addresses)-1]
list := pool.queue[addr.address]
addresses = addresses[:len(addresses)-1]
// Drop all transactions if they are less than the overflow
if size := uint64(list.Len()); size <= drop {
for _, tx := range list.Flatten() {
pool.removeTx(tx.Hash(), true)
}
drop -= size
queuedRateLimitMeter.Mark(int64(size))
continue
}
// Otherwise drop only last few transactions
txs := list.Flatten()
for i := len(txs) - 1; i >= 0 && drop > 0; i-- {
pool.removeTx(txs[i].Hash(), true)
drop--
queuedRateLimitMeter.Mark(1)
}
}
}
// demoteUnexecutables removes invalid and processed transactions from the pools
// executable/pending queue and any subsequent transactions that become unexecutable
// are moved back into the future queue.
//
// Note: transactions are not marked as removed in the priced list because re-heaping
// is always explicitly triggered by SetBaseFee and it would be unnecessary and wasteful
// to trigger a re-heap is this function
func (pool *LegacyPool) demoteUnexecutables() {
// Iterate over all accounts and demote any non-executable transactions
gasLimit := pool.currentHead.Load().GasLimit
for addr, list := range pool.pending {
nonce := pool.currentState.GetNonce(addr)
// Drop all transactions that are deemed too old (low nonce)
olds := list.Forward(nonce)
for _, tx := range olds {
hash := tx.Hash()
pool.all.Remove(hash)
log.Trace("Removed old pending transaction", "hash", hash)
}
// Drop all transactions that are too costly (low balance or out of gas), and queue any invalids back for later
drops, invalids := list.Filter(pool.currentState.GetBalance(addr), gasLimit)
for _, tx := range drops {
hash := tx.Hash()
log.Trace("Removed unpayable pending transaction", "hash", hash)
pool.all.Remove(hash)
}
pendingNofundsMeter.Mark(int64(len(drops)))
for _, tx := range invalids {
hash := tx.Hash()
log.Trace("Demoting pending transaction", "hash", hash)
// Internal shuffle shouldn't touch the lookup set.
pool.enqueueTx(hash, tx, false, false)
}
pendingGauge.Dec(int64(len(olds) + len(drops) + len(invalids)))
if pool.locals.contains(addr) {
localGauge.Dec(int64(len(olds) + len(drops) + len(invalids)))
}
// If there's a gap in front, alert (should never happen) and postpone all transactions
if list.Len() > 0 && list.txs.Get(nonce) == nil {
gapped := list.Cap(0)
for _, tx := range gapped {
hash := tx.Hash()
log.Error("Demoting invalidated transaction", "hash", hash)
// Internal shuffle shouldn't touch the lookup set.
pool.enqueueTx(hash, tx, false, false)
}
pendingGauge.Dec(int64(len(gapped)))
}
// Delete the entire pending entry if it became empty.
if list.Empty() {
delete(pool.pending, addr)
}
}
}
// addressByHeartbeat is an account address tagged with its last activity timestamp.
type addressByHeartbeat struct {
address common.Address
heartbeat time.Time
}
type addressesByHeartbeat []addressByHeartbeat
func (a addressesByHeartbeat) Len() int { return len(a) }
func (a addressesByHeartbeat) Less(i, j int) bool { return a[i].heartbeat.Before(a[j].heartbeat) }
func (a addressesByHeartbeat) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// accountSet is simply a set of addresses to check for existence, and a signer
// capable of deriving addresses from transactions.
type accountSet struct {
accounts map[common.Address]struct{}
signer types.Signer
cache *[]common.Address
}
// newAccountSet creates a new address set with an associated signer for sender
// derivations.
func newAccountSet(signer types.Signer, addrs ...common.Address) *accountSet {
as := &accountSet{
accounts: make(map[common.Address]struct{}, len(addrs)),
signer: signer,
}
for _, addr := range addrs {
as.add(addr)
}
return as
}
// contains checks if a given address is contained within the set.
func (as *accountSet) contains(addr common.Address) bool {
_, exist := as.accounts[addr]
return exist
}
// containsTx checks if the sender of a given tx is within the set. If the sender
// cannot be derived, this method returns false.
func (as *accountSet) containsTx(tx *types.Transaction) bool {
if addr, err := types.Sender(as.signer, tx); err == nil {
return as.contains(addr)
}
return false
}
// add inserts a new address into the set to track.
func (as *accountSet) add(addr common.Address) {
as.accounts[addr] = struct{}{}
as.cache = nil
}
// addTx adds the sender of tx into the set.
func (as *accountSet) addTx(tx *types.Transaction) {
if addr, err := types.Sender(as.signer, tx); err == nil {
as.add(addr)
}
}
// flatten returns the list of addresses within this set, also caching it for later
// reuse. The returned slice should not be changed!
func (as *accountSet) flatten() []common.Address {
if as.cache == nil {
accounts := make([]common.Address, 0, len(as.accounts))
for account := range as.accounts {
accounts = append(accounts, account)
}
as.cache = &accounts
}
return *as.cache
}
// merge adds all addresses from the 'other' set into 'as'.
func (as *accountSet) merge(other *accountSet) {
for addr := range other.accounts {
as.accounts[addr] = struct{}{}
}
as.cache = nil
}
// lookup is used internally by LegacyPool to track transactions while allowing
// lookup without mutex contention.
//
// Note, although this type is properly protected against concurrent access, it
// is **not** a type that should ever be mutated or even exposed outside of the
// transaction pool, since its internal state is tightly coupled with the pools
// internal mechanisms. The sole purpose of the type is to permit out-of-bound
// peeking into the pool in LegacyPool.Get without having to acquire the widely scoped
// LegacyPool.mu mutex.
//
// This lookup set combines the notion of "local transactions", which is useful
// to build upper-level structure.
type lookup struct {
slots int
lock sync.RWMutex
locals map[common.Hash]*types.Transaction
remotes map[common.Hash]*types.Transaction
}
// newLookup returns a new lookup structure.
func newLookup() *lookup {
return &lookup{
locals: make(map[common.Hash]*types.Transaction),
remotes: make(map[common.Hash]*types.Transaction),
}
}
// Range calls f on each key and value present in the map. The callback passed
// should return the indicator whether the iteration needs to be continued.
// Callers need to specify which set (or both) to be iterated.
func (t *lookup) Range(f func(hash common.Hash, tx *types.Transaction, local bool) bool, local bool, remote bool) {
t.lock.RLock()
defer t.lock.RUnlock()
if local {
for key, value := range t.locals {
if !f(key, value, true) {
return
}
}
}
if remote {
for key, value := range t.remotes {
if !f(key, value, false) {
return
}
}
}
}
// Get returns a transaction if it exists in the lookup, or nil if not found.
func (t *lookup) Get(hash common.Hash) *types.Transaction {
t.lock.RLock()
defer t.lock.RUnlock()
if tx := t.locals[hash]; tx != nil {
return tx
}
return t.remotes[hash]
}
// GetLocal returns a transaction if it exists in the lookup, or nil if not found.
func (t *lookup) GetLocal(hash common.Hash) *types.Transaction {
t.lock.RLock()
defer t.lock.RUnlock()
return t.locals[hash]
}
// GetRemote returns a transaction if it exists in the lookup, or nil if not found.
func (t *lookup) GetRemote(hash common.Hash) *types.Transaction {
t.lock.RLock()
defer t.lock.RUnlock()
return t.remotes[hash]
}
// Count returns the current number of transactions in the lookup.
func (t *lookup) Count() int {
t.lock.RLock()
defer t.lock.RUnlock()
return len(t.locals) + len(t.remotes)
}
// LocalCount returns the current number of local transactions in the lookup.
func (t *lookup) LocalCount() int {
t.lock.RLock()
defer t.lock.RUnlock()
return len(t.locals)
}
// RemoteCount returns the current number of remote transactions in the lookup.
func (t *lookup) RemoteCount() int {
t.lock.RLock()
defer t.lock.RUnlock()
return len(t.remotes)
}
// Slots returns the current number of slots used in the lookup.
func (t *lookup) Slots() int {
t.lock.RLock()
defer t.lock.RUnlock()
return t.slots
}
// Add adds a transaction to the lookup.
func (t *lookup) Add(tx *types.Transaction, local bool) {
t.lock.Lock()
defer t.lock.Unlock()
t.slots += numSlots(tx)
slotsGauge.Update(int64(t.slots))
if local {
t.locals[tx.Hash()] = tx
} else {
t.remotes[tx.Hash()] = tx
}
}
// Remove removes a transaction from the lookup.
func (t *lookup) Remove(hash common.Hash) {
t.lock.Lock()
defer t.lock.Unlock()
tx, ok := t.locals[hash]
if !ok {
tx, ok = t.remotes[hash]
}
if !ok {
log.Error("No transaction found to be deleted", "hash", hash)
return
}
t.slots -= numSlots(tx)
slotsGauge.Update(int64(t.slots))
delete(t.locals, hash)
delete(t.remotes, hash)
}
// RemoteToLocals migrates the transactions belongs to the given locals to locals
// set. The assumption is held the locals set is thread-safe to be used.
func (t *lookup) RemoteToLocals(locals *accountSet) int {
t.lock.Lock()
defer t.lock.Unlock()
var migrated int
for hash, tx := range t.remotes {
if locals.containsTx(tx) {
t.locals[hash] = tx
delete(t.remotes, hash)
migrated += 1
}
}
return migrated
}
// RemotesBelowTip finds all remote transactions below the given tip threshold.
func (t *lookup) RemotesBelowTip(threshold *big.Int) types.Transactions {
found := make(types.Transactions, 0, 128)
t.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
if tx.GasTipCapIntCmp(threshold) < 0 {
found = append(found, tx)
}
return true
}, false, true) // Only iterate remotes
return found
}
// numSlots calculates the number of slots needed for a single transaction.
func numSlots(tx *types.Transaction) int {
return int((tx.Size() + txSlotSize - 1) / txSlotSize)
}