plugeth/eth/peer.go
2020-05-06 12:47:27 +03:00

819 lines
26 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package eth
import (
"errors"
"fmt"
"math/big"
"sync"
"time"
mapset "github.com/deckarep/golang-set"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/forkid"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/rlp"
)
var (
errClosed = errors.New("peer set is closed")
errAlreadyRegistered = errors.New("peer is already registered")
errNotRegistered = errors.New("peer is not registered")
)
const (
maxKnownTxs = 32768 // Maximum transactions hashes to keep in the known list (prevent DOS)
maxKnownBlocks = 1024 // Maximum block hashes to keep in the known list (prevent DOS)
// maxQueuedTxs is the maximum number of transactions to queue up before dropping
// older broadcasts.
maxQueuedTxs = 4096
// maxQueuedTxAnns is the maximum number of transaction announcements to queue up
// before dropping older announcements.
maxQueuedTxAnns = 4096
// maxQueuedBlocks is the maximum number of block propagations to queue up before
// dropping broadcasts. There's not much point in queueing stale blocks, so a few
// that might cover uncles should be enough.
maxQueuedBlocks = 4
// maxQueuedBlockAnns is the maximum number of block announcements to queue up before
// dropping broadcasts. Similarly to block propagations, there's no point to queue
// above some healthy uncle limit, so use that.
maxQueuedBlockAnns = 4
handshakeTimeout = 5 * time.Second
)
// max is a helper function which returns the larger of the two given integers.
func max(a, b int) int {
if a > b {
return a
}
return b
}
// PeerInfo represents a short summary of the Ethereum sub-protocol metadata known
// about a connected peer.
type PeerInfo struct {
Version int `json:"version"` // Ethereum protocol version negotiated
Difficulty *big.Int `json:"difficulty"` // Total difficulty of the peer's blockchain
Head string `json:"head"` // SHA3 hash of the peer's best owned block
}
// propEvent is a block propagation, waiting for its turn in the broadcast queue.
type propEvent struct {
block *types.Block
td *big.Int
}
type peer struct {
id string
*p2p.Peer
rw p2p.MsgReadWriter
version int // Protocol version negotiated
syncDrop *time.Timer // Timed connection dropper if sync progress isn't validated in time
head common.Hash
td *big.Int
lock sync.RWMutex
knownBlocks mapset.Set // Set of block hashes known to be known by this peer
queuedBlocks chan *propEvent // Queue of blocks to broadcast to the peer
queuedBlockAnns chan *types.Block // Queue of blocks to announce to the peer
knownTxs mapset.Set // Set of transaction hashes known to be known by this peer
txBroadcast chan []common.Hash // Channel used to queue transaction propagation requests
txAnnounce chan []common.Hash // Channel used to queue transaction announcement requests
getPooledTx func(common.Hash) *types.Transaction // Callback used to retrieve transaction from txpool
term chan struct{} // Termination channel to stop the broadcaster
}
func newPeer(version int, p *p2p.Peer, rw p2p.MsgReadWriter, getPooledTx func(hash common.Hash) *types.Transaction) *peer {
return &peer{
Peer: p,
rw: rw,
version: version,
id: fmt.Sprintf("%x", p.ID().Bytes()[:8]),
knownTxs: mapset.NewSet(),
knownBlocks: mapset.NewSet(),
queuedBlocks: make(chan *propEvent, maxQueuedBlocks),
queuedBlockAnns: make(chan *types.Block, maxQueuedBlockAnns),
txBroadcast: make(chan []common.Hash),
txAnnounce: make(chan []common.Hash),
getPooledTx: getPooledTx,
term: make(chan struct{}),
}
}
// broadcastBlocks is a write loop that multiplexes blocks and block accouncements
// to the remote peer. The goal is to have an async writer that does not lock up
// node internals and at the same time rate limits queued data.
func (p *peer) broadcastBlocks() {
for {
select {
case prop := <-p.queuedBlocks:
if err := p.SendNewBlock(prop.block, prop.td); err != nil {
return
}
p.Log().Trace("Propagated block", "number", prop.block.Number(), "hash", prop.block.Hash(), "td", prop.td)
case block := <-p.queuedBlockAnns:
if err := p.SendNewBlockHashes([]common.Hash{block.Hash()}, []uint64{block.NumberU64()}); err != nil {
return
}
p.Log().Trace("Announced block", "number", block.Number(), "hash", block.Hash())
case <-p.term:
return
}
}
}
// broadcastTransactions is a write loop that schedules transaction broadcasts
// to the remote peer. The goal is to have an async writer that does not lock up
// node internals and at the same time rate limits queued data.
func (p *peer) broadcastTransactions() {
var (
queue []common.Hash // Queue of hashes to broadcast as full transactions
done chan struct{} // Non-nil if background broadcaster is running
fail = make(chan error, 1) // Channel used to receive network error
)
for {
// If there's no in-flight broadcast running, check if a new one is needed
if done == nil && len(queue) > 0 {
// Pile transaction until we reach our allowed network limit
var (
hashes []common.Hash
txs []*types.Transaction
size common.StorageSize
)
for i := 0; i < len(queue) && size < txsyncPackSize; i++ {
if tx := p.getPooledTx(queue[i]); tx != nil {
txs = append(txs, tx)
size += tx.Size()
}
hashes = append(hashes, queue[i])
}
queue = queue[:copy(queue, queue[len(hashes):])]
// If there's anything available to transfer, fire up an async writer
if len(txs) > 0 {
done = make(chan struct{})
go func() {
if err := p.sendTransactions(txs); err != nil {
fail <- err
return
}
close(done)
p.Log().Trace("Sent transactions", "count", len(txs))
}()
}
}
// Transfer goroutine may or may not have been started, listen for events
select {
case hashes := <-p.txBroadcast:
// New batch of transactions to be broadcast, queue them (with cap)
queue = append(queue, hashes...)
if len(queue) > maxQueuedTxs {
// Fancy copy and resize to ensure buffer doesn't grow indefinitely
queue = queue[:copy(queue, queue[len(queue)-maxQueuedTxs:])]
}
case <-done:
done = nil
case <-fail:
return
case <-p.term:
return
}
}
}
// announceTransactions is a write loop that schedules transaction broadcasts
// to the remote peer. The goal is to have an async writer that does not lock up
// node internals and at the same time rate limits queued data.
func (p *peer) announceTransactions() {
var (
queue []common.Hash // Queue of hashes to announce as transaction stubs
done chan struct{} // Non-nil if background announcer is running
fail = make(chan error, 1) // Channel used to receive network error
)
for {
// If there's no in-flight announce running, check if a new one is needed
if done == nil && len(queue) > 0 {
// Pile transaction hashes until we reach our allowed network limit
var (
hashes []common.Hash
pending []common.Hash
size common.StorageSize
)
for i := 0; i < len(queue) && size < txsyncPackSize; i++ {
if p.getPooledTx(queue[i]) != nil {
pending = append(pending, queue[i])
size += common.HashLength
}
hashes = append(hashes, queue[i])
}
queue = queue[:copy(queue, queue[len(hashes):])]
// If there's anything available to transfer, fire up an async writer
if len(pending) > 0 {
done = make(chan struct{})
go func() {
if err := p.sendPooledTransactionHashes(pending); err != nil {
fail <- err
return
}
close(done)
p.Log().Trace("Sent transaction announcements", "count", len(pending))
}()
}
}
// Transfer goroutine may or may not have been started, listen for events
select {
case hashes := <-p.txAnnounce:
// New batch of transactions to be broadcast, queue them (with cap)
queue = append(queue, hashes...)
if len(queue) > maxQueuedTxAnns {
// Fancy copy and resize to ensure buffer doesn't grow indefinitely
queue = queue[:copy(queue, queue[len(queue)-maxQueuedTxs:])]
}
case <-done:
done = nil
case <-fail:
return
case <-p.term:
return
}
}
}
// close signals the broadcast goroutine to terminate.
func (p *peer) close() {
close(p.term)
}
// Info gathers and returns a collection of metadata known about a peer.
func (p *peer) Info() *PeerInfo {
hash, td := p.Head()
return &PeerInfo{
Version: p.version,
Difficulty: td,
Head: hash.Hex(),
}
}
// Head retrieves a copy of the current head hash and total difficulty of the
// peer.
func (p *peer) Head() (hash common.Hash, td *big.Int) {
p.lock.RLock()
defer p.lock.RUnlock()
copy(hash[:], p.head[:])
return hash, new(big.Int).Set(p.td)
}
// SetHead updates the head hash and total difficulty of the peer.
func (p *peer) SetHead(hash common.Hash, td *big.Int) {
p.lock.Lock()
defer p.lock.Unlock()
copy(p.head[:], hash[:])
p.td.Set(td)
}
// MarkBlock marks a block as known for the peer, ensuring that the block will
// never be propagated to this particular peer.
func (p *peer) MarkBlock(hash common.Hash) {
// If we reached the memory allowance, drop a previously known block hash
for p.knownBlocks.Cardinality() >= maxKnownBlocks {
p.knownBlocks.Pop()
}
p.knownBlocks.Add(hash)
}
// MarkTransaction marks a transaction as known for the peer, ensuring that it
// will never be propagated to this particular peer.
func (p *peer) MarkTransaction(hash common.Hash) {
// If we reached the memory allowance, drop a previously known transaction hash
for p.knownTxs.Cardinality() >= maxKnownTxs {
p.knownTxs.Pop()
}
p.knownTxs.Add(hash)
}
// SendTransactions64 sends transactions to the peer and includes the hashes
// in its transaction hash set for future reference.
//
// This method is legacy support for initial transaction exchange in eth/64 and
// prior. For eth/65 and higher use SendPooledTransactionHashes.
func (p *peer) SendTransactions64(txs types.Transactions) error {
return p.sendTransactions(txs)
}
// sendTransactions sends transactions to the peer and includes the hashes
// in its transaction hash set for future reference.
//
// This method is a helper used by the async transaction sender. Don't call it
// directly as the queueing (memory) and transmission (bandwidth) costs should
// not be managed directly.
func (p *peer) sendTransactions(txs types.Transactions) error {
// Mark all the transactions as known, but ensure we don't overflow our limits
for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(txs)) {
p.knownTxs.Pop()
}
for _, tx := range txs {
p.knownTxs.Add(tx.Hash())
}
return p2p.Send(p.rw, TransactionMsg, txs)
}
// AsyncSendTransactions queues a list of transactions (by hash) to eventually
// propagate to a remote peer. The number of pending sends are capped (new ones
// will force old sends to be dropped)
func (p *peer) AsyncSendTransactions(hashes []common.Hash) {
select {
case p.txBroadcast <- hashes:
// Mark all the transactions as known, but ensure we don't overflow our limits
for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) {
p.knownTxs.Pop()
}
for _, hash := range hashes {
p.knownTxs.Add(hash)
}
case <-p.term:
p.Log().Debug("Dropping transaction propagation", "count", len(hashes))
}
}
// sendPooledTransactionHashes sends transaction hashes to the peer and includes
// them in its transaction hash set for future reference.
//
// This method is a helper used by the async transaction announcer. Don't call it
// directly as the queueing (memory) and transmission (bandwidth) costs should
// not be managed directly.
func (p *peer) sendPooledTransactionHashes(hashes []common.Hash) error {
// Mark all the transactions as known, but ensure we don't overflow our limits
for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) {
p.knownTxs.Pop()
}
for _, hash := range hashes {
p.knownTxs.Add(hash)
}
return p2p.Send(p.rw, NewPooledTransactionHashesMsg, hashes)
}
// AsyncSendPooledTransactionHashes queues a list of transactions hashes to eventually
// announce to a remote peer. The number of pending sends are capped (new ones
// will force old sends to be dropped)
func (p *peer) AsyncSendPooledTransactionHashes(hashes []common.Hash) {
select {
case p.txAnnounce <- hashes:
// Mark all the transactions as known, but ensure we don't overflow our limits
for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) {
p.knownTxs.Pop()
}
for _, hash := range hashes {
p.knownTxs.Add(hash)
}
case <-p.term:
p.Log().Debug("Dropping transaction announcement", "count", len(hashes))
}
}
// SendPooledTransactionsRLP sends requested transactions to the peer and adds the
// hashes in its transaction hash set for future reference.
//
// Note, the method assumes the hashes are correct and correspond to the list of
// transactions being sent.
func (p *peer) SendPooledTransactionsRLP(hashes []common.Hash, txs []rlp.RawValue) error {
// Mark all the transactions as known, but ensure we don't overflow our limits
for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) {
p.knownTxs.Pop()
}
for _, hash := range hashes {
p.knownTxs.Add(hash)
}
return p2p.Send(p.rw, PooledTransactionsMsg, txs)
}
// SendNewBlockHashes announces the availability of a number of blocks through
// a hash notification.
func (p *peer) SendNewBlockHashes(hashes []common.Hash, numbers []uint64) error {
// Mark all the block hashes as known, but ensure we don't overflow our limits
for p.knownBlocks.Cardinality() > max(0, maxKnownBlocks-len(hashes)) {
p.knownBlocks.Pop()
}
for _, hash := range hashes {
p.knownBlocks.Add(hash)
}
request := make(newBlockHashesData, len(hashes))
for i := 0; i < len(hashes); i++ {
request[i].Hash = hashes[i]
request[i].Number = numbers[i]
}
return p2p.Send(p.rw, NewBlockHashesMsg, request)
}
// AsyncSendNewBlockHash queues the availability of a block for propagation to a
// remote peer. If the peer's broadcast queue is full, the event is silently
// dropped.
func (p *peer) AsyncSendNewBlockHash(block *types.Block) {
select {
case p.queuedBlockAnns <- block:
// Mark all the block hash as known, but ensure we don't overflow our limits
for p.knownBlocks.Cardinality() >= maxKnownBlocks {
p.knownBlocks.Pop()
}
p.knownBlocks.Add(block.Hash())
default:
p.Log().Debug("Dropping block announcement", "number", block.NumberU64(), "hash", block.Hash())
}
}
// SendNewBlock propagates an entire block to a remote peer.
func (p *peer) SendNewBlock(block *types.Block, td *big.Int) error {
// Mark all the block hash as known, but ensure we don't overflow our limits
for p.knownBlocks.Cardinality() >= maxKnownBlocks {
p.knownBlocks.Pop()
}
p.knownBlocks.Add(block.Hash())
return p2p.Send(p.rw, NewBlockMsg, []interface{}{block, td})
}
// AsyncSendNewBlock queues an entire block for propagation to a remote peer. If
// the peer's broadcast queue is full, the event is silently dropped.
func (p *peer) AsyncSendNewBlock(block *types.Block, td *big.Int) {
select {
case p.queuedBlocks <- &propEvent{block: block, td: td}:
// Mark all the block hash as known, but ensure we don't overflow our limits
for p.knownBlocks.Cardinality() >= maxKnownBlocks {
p.knownBlocks.Pop()
}
p.knownBlocks.Add(block.Hash())
default:
p.Log().Debug("Dropping block propagation", "number", block.NumberU64(), "hash", block.Hash())
}
}
// SendBlockHeaders sends a batch of block headers to the remote peer.
func (p *peer) SendBlockHeaders(headers []*types.Header) error {
return p2p.Send(p.rw, BlockHeadersMsg, headers)
}
// SendBlockBodies sends a batch of block contents to the remote peer.
func (p *peer) SendBlockBodies(bodies []*blockBody) error {
return p2p.Send(p.rw, BlockBodiesMsg, blockBodiesData(bodies))
}
// SendBlockBodiesRLP sends a batch of block contents to the remote peer from
// an already RLP encoded format.
func (p *peer) SendBlockBodiesRLP(bodies []rlp.RawValue) error {
return p2p.Send(p.rw, BlockBodiesMsg, bodies)
}
// SendNodeDataRLP sends a batch of arbitrary internal data, corresponding to the
// hashes requested.
func (p *peer) SendNodeData(data [][]byte) error {
return p2p.Send(p.rw, NodeDataMsg, data)
}
// SendReceiptsRLP sends a batch of transaction receipts, corresponding to the
// ones requested from an already RLP encoded format.
func (p *peer) SendReceiptsRLP(receipts []rlp.RawValue) error {
return p2p.Send(p.rw, ReceiptsMsg, receipts)
}
// RequestOneHeader is a wrapper around the header query functions to fetch a
// single header. It is used solely by the fetcher.
func (p *peer) RequestOneHeader(hash common.Hash) error {
p.Log().Debug("Fetching single header", "hash", hash)
return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: hash}, Amount: uint64(1), Skip: uint64(0), Reverse: false})
}
// RequestHeadersByHash fetches a batch of blocks' headers corresponding to the
// specified header query, based on the hash of an origin block.
func (p *peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool) error {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse)
return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
}
// RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the
// specified header query, based on the number of an origin block.
func (p *peer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool) error {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse)
return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Number: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
}
// RequestBodies fetches a batch of blocks' bodies corresponding to the hashes
// specified.
func (p *peer) RequestBodies(hashes []common.Hash) error {
p.Log().Debug("Fetching batch of block bodies", "count", len(hashes))
return p2p.Send(p.rw, GetBlockBodiesMsg, hashes)
}
// RequestNodeData fetches a batch of arbitrary data from a node's known state
// data, corresponding to the specified hashes.
func (p *peer) RequestNodeData(hashes []common.Hash) error {
p.Log().Debug("Fetching batch of state data", "count", len(hashes))
return p2p.Send(p.rw, GetNodeDataMsg, hashes)
}
// RequestReceipts fetches a batch of transaction receipts from a remote node.
func (p *peer) RequestReceipts(hashes []common.Hash) error {
p.Log().Debug("Fetching batch of receipts", "count", len(hashes))
return p2p.Send(p.rw, GetReceiptsMsg, hashes)
}
// RequestTxs fetches a batch of transactions from a remote node.
func (p *peer) RequestTxs(hashes []common.Hash) error {
p.Log().Debug("Fetching batch of transactions", "count", len(hashes))
return p2p.Send(p.rw, GetPooledTransactionsMsg, hashes)
}
// Handshake executes the eth protocol handshake, negotiating version number,
// network IDs, difficulties, head and genesis blocks.
func (p *peer) Handshake(network uint64, td *big.Int, head common.Hash, genesis common.Hash, forkID forkid.ID, forkFilter forkid.Filter) error {
// Send out own handshake in a new thread
errc := make(chan error, 2)
var (
status63 statusData63 // safe to read after two values have been received from errc
status statusData // safe to read after two values have been received from errc
)
go func() {
switch {
case p.version == eth63:
errc <- p2p.Send(p.rw, StatusMsg, &statusData63{
ProtocolVersion: uint32(p.version),
NetworkId: network,
TD: td,
CurrentBlock: head,
GenesisBlock: genesis,
})
case p.version >= eth64:
errc <- p2p.Send(p.rw, StatusMsg, &statusData{
ProtocolVersion: uint32(p.version),
NetworkID: network,
TD: td,
Head: head,
Genesis: genesis,
ForkID: forkID,
})
default:
panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version))
}
}()
go func() {
switch {
case p.version == eth63:
errc <- p.readStatusLegacy(network, &status63, genesis)
case p.version >= eth64:
errc <- p.readStatus(network, &status, genesis, forkFilter)
default:
panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version))
}
}()
timeout := time.NewTimer(handshakeTimeout)
defer timeout.Stop()
for i := 0; i < 2; i++ {
select {
case err := <-errc:
if err != nil {
return err
}
case <-timeout.C:
return p2p.DiscReadTimeout
}
}
switch {
case p.version == eth63:
p.td, p.head = status63.TD, status63.CurrentBlock
case p.version >= eth64:
p.td, p.head = status.TD, status.Head
default:
panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version))
}
return nil
}
func (p *peer) readStatusLegacy(network uint64, status *statusData63, genesis common.Hash) error {
msg, err := p.rw.ReadMsg()
if err != nil {
return err
}
if msg.Code != StatusMsg {
return errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg)
}
if msg.Size > protocolMaxMsgSize {
return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, protocolMaxMsgSize)
}
// Decode the handshake and make sure everything matches
if err := msg.Decode(&status); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
if status.GenesisBlock != genesis {
return errResp(ErrGenesisMismatch, "%x (!= %x)", status.GenesisBlock[:8], genesis[:8])
}
if status.NetworkId != network {
return errResp(ErrNetworkIDMismatch, "%d (!= %d)", status.NetworkId, network)
}
if int(status.ProtocolVersion) != p.version {
return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", status.ProtocolVersion, p.version)
}
return nil
}
func (p *peer) readStatus(network uint64, status *statusData, genesis common.Hash, forkFilter forkid.Filter) error {
msg, err := p.rw.ReadMsg()
if err != nil {
return err
}
if msg.Code != StatusMsg {
return errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg)
}
if msg.Size > protocolMaxMsgSize {
return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, protocolMaxMsgSize)
}
// Decode the handshake and make sure everything matches
if err := msg.Decode(&status); err != nil {
return errResp(ErrDecode, "msg %v: %v", msg, err)
}
if status.NetworkID != network {
return errResp(ErrNetworkIDMismatch, "%d (!= %d)", status.NetworkID, network)
}
if int(status.ProtocolVersion) != p.version {
return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", status.ProtocolVersion, p.version)
}
if status.Genesis != genesis {
return errResp(ErrGenesisMismatch, "%x (!= %x)", status.Genesis, genesis)
}
if err := forkFilter(status.ForkID); err != nil {
return errResp(ErrForkIDRejected, "%v", err)
}
return nil
}
// String implements fmt.Stringer.
func (p *peer) String() string {
return fmt.Sprintf("Peer %s [%s]", p.id,
fmt.Sprintf("eth/%2d", p.version),
)
}
// peerSet represents the collection of active peers currently participating in
// the Ethereum sub-protocol.
type peerSet struct {
peers map[string]*peer
lock sync.RWMutex
closed bool
}
// newPeerSet creates a new peer set to track the active participants.
func newPeerSet() *peerSet {
return &peerSet{
peers: make(map[string]*peer),
}
}
// Register injects a new peer into the working set, or returns an error if the
// peer is already known. If a new peer it registered, its broadcast loop is also
// started.
func (ps *peerSet) Register(p *peer) error {
ps.lock.Lock()
defer ps.lock.Unlock()
if ps.closed {
return errClosed
}
if _, ok := ps.peers[p.id]; ok {
return errAlreadyRegistered
}
ps.peers[p.id] = p
go p.broadcastBlocks()
go p.broadcastTransactions()
if p.version >= eth65 {
go p.announceTransactions()
}
return nil
}
// Unregister removes a remote peer from the active set, disabling any further
// actions to/from that particular entity.
func (ps *peerSet) Unregister(id string) error {
ps.lock.Lock()
defer ps.lock.Unlock()
p, ok := ps.peers[id]
if !ok {
return errNotRegistered
}
delete(ps.peers, id)
p.close()
return nil
}
// Peer retrieves the registered peer with the given id.
func (ps *peerSet) Peer(id string) *peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
return ps.peers[id]
}
// Len returns if the current number of peers in the set.
func (ps *peerSet) Len() int {
ps.lock.RLock()
defer ps.lock.RUnlock()
return len(ps.peers)
}
// PeersWithoutBlock retrieves a list of peers that do not have a given block in
// their set of known hashes.
func (ps *peerSet) PeersWithoutBlock(hash common.Hash) []*peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peer, 0, len(ps.peers))
for _, p := range ps.peers {
if !p.knownBlocks.Contains(hash) {
list = append(list, p)
}
}
return list
}
// PeersWithoutTx retrieves a list of peers that do not have a given transaction
// in their set of known hashes.
func (ps *peerSet) PeersWithoutTx(hash common.Hash) []*peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
list := make([]*peer, 0, len(ps.peers))
for _, p := range ps.peers {
if !p.knownTxs.Contains(hash) {
list = append(list, p)
}
}
return list
}
// BestPeer retrieves the known peer with the currently highest total difficulty.
func (ps *peerSet) BestPeer() *peer {
ps.lock.RLock()
defer ps.lock.RUnlock()
var (
bestPeer *peer
bestTd *big.Int
)
for _, p := range ps.peers {
if _, td := p.Head(); bestPeer == nil || td.Cmp(bestTd) > 0 {
bestPeer, bestTd = p, td
}
}
return bestPeer
}
// Close disconnects all peers.
// No new peers can be registered after Close has returned.
func (ps *peerSet) Close() {
ps.lock.Lock()
defer ps.lock.Unlock()
for _, p := range ps.peers {
p.Disconnect(p2p.DiscQuitting)
}
ps.closed = true
}