plugeth/eth/protocols/eth/peer.go
s7v7nislands 1c90d97c1e
eth/protocols/eth: fix godoc comments (#24810)
Co-authored-by: Martin Holst Swende <martin@swende.se>
2022-05-05 17:35:36 +02:00

523 lines
17 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package eth
import (
"math/big"
"math/rand"
"sync"
mapset "github.com/deckarep/golang-set"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/rlp"
)
const (
// maxKnownTxs is the maximum transactions hashes to keep in the known list
// before starting to randomly evict them.
maxKnownTxs = 32768
// maxKnownBlocks is the maximum block hashes to keep in the known list
// before starting to randomly evict them.
maxKnownBlocks = 1024
// maxQueuedTxs is the maximum number of transactions to queue up before dropping
// older broadcasts.
maxQueuedTxs = 4096
// maxQueuedTxAnns is the maximum number of transaction announcements to queue up
// before dropping older announcements.
maxQueuedTxAnns = 4096
// maxQueuedBlocks is the maximum number of block propagations to queue up before
// dropping broadcasts. There's not much point in queueing stale blocks, so a few
// that might cover uncles should be enough.
maxQueuedBlocks = 4
// maxQueuedBlockAnns is the maximum number of block announcements to queue up before
// dropping broadcasts. Similarly to block propagations, there's no point to queue
// above some healthy uncle limit, so use that.
maxQueuedBlockAnns = 4
)
// max is a helper function which returns the larger of the two given integers.
func max(a, b int) int {
if a > b {
return a
}
return b
}
// Peer is a collection of relevant information we have about a `eth` peer.
type Peer struct {
id string // Unique ID for the peer, cached
*p2p.Peer // The embedded P2P package peer
rw p2p.MsgReadWriter // Input/output streams for snap
version uint // Protocol version negotiated
head common.Hash // Latest advertised head block hash
td *big.Int // Latest advertised head block total difficulty
knownBlocks *knownCache // Set of block hashes known to be known by this peer
queuedBlocks chan *blockPropagation // Queue of blocks to broadcast to the peer
queuedBlockAnns chan *types.Block // Queue of blocks to announce to the peer
txpool TxPool // Transaction pool used by the broadcasters for liveness checks
knownTxs *knownCache // Set of transaction hashes known to be known by this peer
txBroadcast chan []common.Hash // Channel used to queue transaction propagation requests
txAnnounce chan []common.Hash // Channel used to queue transaction announcement requests
reqDispatch chan *request // Dispatch channel to send requests and track then until fulfilment
reqCancel chan *cancel // Dispatch channel to cancel pending requests and untrack them
resDispatch chan *response // Dispatch channel to fulfil pending requests and untrack them
term chan struct{} // Termination channel to stop the broadcasters
lock sync.RWMutex // Mutex protecting the internal fields
}
// NewPeer create a wrapper for a network connection and negotiated protocol
// version.
func NewPeer(version uint, p *p2p.Peer, rw p2p.MsgReadWriter, txpool TxPool) *Peer {
peer := &Peer{
id: p.ID().String(),
Peer: p,
rw: rw,
version: version,
knownTxs: newKnownCache(maxKnownTxs),
knownBlocks: newKnownCache(maxKnownBlocks),
queuedBlocks: make(chan *blockPropagation, maxQueuedBlocks),
queuedBlockAnns: make(chan *types.Block, maxQueuedBlockAnns),
txBroadcast: make(chan []common.Hash),
txAnnounce: make(chan []common.Hash),
reqDispatch: make(chan *request),
reqCancel: make(chan *cancel),
resDispatch: make(chan *response),
txpool: txpool,
term: make(chan struct{}),
}
// Start up all the broadcasters
go peer.broadcastBlocks()
go peer.broadcastTransactions()
go peer.announceTransactions()
go peer.dispatcher()
return peer
}
// Close signals the broadcast goroutine to terminate. Only ever call this if
// you created the peer yourself via NewPeer. Otherwise let whoever created it
// clean it up!
func (p *Peer) Close() {
close(p.term)
}
// ID retrieves the peer's unique identifier.
func (p *Peer) ID() string {
return p.id
}
// Version retrieves the peer's negoatiated `eth` protocol version.
func (p *Peer) Version() uint {
return p.version
}
// Head retrieves the current head hash and total difficulty of the peer.
func (p *Peer) Head() (hash common.Hash, td *big.Int) {
p.lock.RLock()
defer p.lock.RUnlock()
copy(hash[:], p.head[:])
return hash, new(big.Int).Set(p.td)
}
// SetHead updates the head hash and total difficulty of the peer.
func (p *Peer) SetHead(hash common.Hash, td *big.Int) {
p.lock.Lock()
defer p.lock.Unlock()
copy(p.head[:], hash[:])
p.td.Set(td)
}
// KnownBlock returns whether peer is known to already have a block.
func (p *Peer) KnownBlock(hash common.Hash) bool {
return p.knownBlocks.Contains(hash)
}
// KnownTransaction returns whether peer is known to already have a transaction.
func (p *Peer) KnownTransaction(hash common.Hash) bool {
return p.knownTxs.Contains(hash)
}
// markBlock marks a block as known for the peer, ensuring that the block will
// never be propagated to this particular peer.
func (p *Peer) markBlock(hash common.Hash) {
// If we reached the memory allowance, drop a previously known block hash
p.knownBlocks.Add(hash)
}
// markTransaction marks a transaction as known for the peer, ensuring that it
// will never be propagated to this particular peer.
func (p *Peer) markTransaction(hash common.Hash) {
// If we reached the memory allowance, drop a previously known transaction hash
p.knownTxs.Add(hash)
}
// SendTransactions sends transactions to the peer and includes the hashes
// in its transaction hash set for future reference.
//
// This method is a helper used by the async transaction sender. Don't call it
// directly as the queueing (memory) and transmission (bandwidth) costs should
// not be managed directly.
//
// The reasons this is public is to allow packages using this protocol to write
// tests that directly send messages without having to do the asyn queueing.
func (p *Peer) SendTransactions(txs types.Transactions) error {
// Mark all the transactions as known, but ensure we don't overflow our limits
for _, tx := range txs {
p.knownTxs.Add(tx.Hash())
}
return p2p.Send(p.rw, TransactionsMsg, txs)
}
// AsyncSendTransactions queues a list of transactions (by hash) to eventually
// propagate to a remote peer. The number of pending sends are capped (new ones
// will force old sends to be dropped)
func (p *Peer) AsyncSendTransactions(hashes []common.Hash) {
select {
case p.txBroadcast <- hashes:
// Mark all the transactions as known, but ensure we don't overflow our limits
p.knownTxs.Add(hashes...)
case <-p.term:
p.Log().Debug("Dropping transaction propagation", "count", len(hashes))
}
}
// sendPooledTransactionHashes sends transaction hashes to the peer and includes
// them in its transaction hash set for future reference.
//
// This method is a helper used by the async transaction announcer. Don't call it
// directly as the queueing (memory) and transmission (bandwidth) costs should
// not be managed directly.
func (p *Peer) sendPooledTransactionHashes(hashes []common.Hash) error {
// Mark all the transactions as known, but ensure we don't overflow our limits
p.knownTxs.Add(hashes...)
return p2p.Send(p.rw, NewPooledTransactionHashesMsg, NewPooledTransactionHashesPacket(hashes))
}
// AsyncSendPooledTransactionHashes queues a list of transactions hashes to eventually
// announce to a remote peer. The number of pending sends are capped (new ones
// will force old sends to be dropped)
func (p *Peer) AsyncSendPooledTransactionHashes(hashes []common.Hash) {
select {
case p.txAnnounce <- hashes:
// Mark all the transactions as known, but ensure we don't overflow our limits
p.knownTxs.Add(hashes...)
case <-p.term:
p.Log().Debug("Dropping transaction announcement", "count", len(hashes))
}
}
// ReplyPooledTransactionsRLP is the eth/66 version of SendPooledTransactionsRLP.
func (p *Peer) ReplyPooledTransactionsRLP(id uint64, hashes []common.Hash, txs []rlp.RawValue) error {
// Mark all the transactions as known, but ensure we don't overflow our limits
p.knownTxs.Add(hashes...)
// Not packed into PooledTransactionsPacket to avoid RLP decoding
return p2p.Send(p.rw, PooledTransactionsMsg, &PooledTransactionsRLPPacket66{
RequestId: id,
PooledTransactionsRLPPacket: txs,
})
}
// SendNewBlockHashes announces the availability of a number of blocks through
// a hash notification.
func (p *Peer) SendNewBlockHashes(hashes []common.Hash, numbers []uint64) error {
// Mark all the block hashes as known, but ensure we don't overflow our limits
p.knownBlocks.Add(hashes...)
request := make(NewBlockHashesPacket, len(hashes))
for i := 0; i < len(hashes); i++ {
request[i].Hash = hashes[i]
request[i].Number = numbers[i]
}
return p2p.Send(p.rw, NewBlockHashesMsg, request)
}
// AsyncSendNewBlockHash queues the availability of a block for propagation to a
// remote peer. If the peer's broadcast queue is full, the event is silently
// dropped.
func (p *Peer) AsyncSendNewBlockHash(block *types.Block) {
select {
case p.queuedBlockAnns <- block:
// Mark all the block hash as known, but ensure we don't overflow our limits
p.knownBlocks.Add(block.Hash())
default:
p.Log().Debug("Dropping block announcement", "number", block.NumberU64(), "hash", block.Hash())
}
}
// SendNewBlock propagates an entire block to a remote peer.
func (p *Peer) SendNewBlock(block *types.Block, td *big.Int) error {
// Mark all the block hash as known, but ensure we don't overflow our limits
p.knownBlocks.Add(block.Hash())
return p2p.Send(p.rw, NewBlockMsg, &NewBlockPacket{
Block: block,
TD: td,
})
}
// AsyncSendNewBlock queues an entire block for propagation to a remote peer. If
// the peer's broadcast queue is full, the event is silently dropped.
func (p *Peer) AsyncSendNewBlock(block *types.Block, td *big.Int) {
select {
case p.queuedBlocks <- &blockPropagation{block: block, td: td}:
// Mark all the block hash as known, but ensure we don't overflow our limits
p.knownBlocks.Add(block.Hash())
default:
p.Log().Debug("Dropping block propagation", "number", block.NumberU64(), "hash", block.Hash())
}
}
// ReplyBlockHeadersRLP is the eth/66 response to GetBlockHeaders.
func (p *Peer) ReplyBlockHeadersRLP(id uint64, headers []rlp.RawValue) error {
return p2p.Send(p.rw, BlockHeadersMsg, &BlockHeadersRLPPacket66{
RequestId: id,
BlockHeadersRLPPacket: headers,
})
}
// ReplyBlockBodiesRLP is the eth/66 response to GetBlockBodies.
func (p *Peer) ReplyBlockBodiesRLP(id uint64, bodies []rlp.RawValue) error {
// Not packed into BlockBodiesPacket to avoid RLP decoding
return p2p.Send(p.rw, BlockBodiesMsg, &BlockBodiesRLPPacket66{
RequestId: id,
BlockBodiesRLPPacket: bodies,
})
}
// ReplyNodeData is the eth/66 response to GetNodeData.
func (p *Peer) ReplyNodeData(id uint64, data [][]byte) error {
return p2p.Send(p.rw, NodeDataMsg, &NodeDataPacket66{
RequestId: id,
NodeDataPacket: data,
})
}
// ReplyReceiptsRLP is the eth/66 response to GetReceipts.
func (p *Peer) ReplyReceiptsRLP(id uint64, receipts []rlp.RawValue) error {
return p2p.Send(p.rw, ReceiptsMsg, &ReceiptsRLPPacket66{
RequestId: id,
ReceiptsRLPPacket: receipts,
})
}
// RequestOneHeader is a wrapper around the header query functions to fetch a
// single header. It is used solely by the fetcher.
func (p *Peer) RequestOneHeader(hash common.Hash, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching single header", "hash", hash)
id := rand.Uint64()
req := &Request{
id: id,
sink: sink,
code: GetBlockHeadersMsg,
want: BlockHeadersMsg,
data: &GetBlockHeadersPacket66{
RequestId: id,
GetBlockHeadersPacket: &GetBlockHeadersPacket{
Origin: HashOrNumber{Hash: hash},
Amount: uint64(1),
Skip: uint64(0),
Reverse: false,
},
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestHeadersByHash fetches a batch of blocks' headers corresponding to the
// specified header query, based on the hash of an origin block.
func (p *Peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse)
id := rand.Uint64()
req := &Request{
id: id,
sink: sink,
code: GetBlockHeadersMsg,
want: BlockHeadersMsg,
data: &GetBlockHeadersPacket66{
RequestId: id,
GetBlockHeadersPacket: &GetBlockHeadersPacket{
Origin: HashOrNumber{Hash: origin},
Amount: uint64(amount),
Skip: uint64(skip),
Reverse: reverse,
},
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the
// specified header query, based on the number of an origin block.
func (p *Peer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse)
id := rand.Uint64()
req := &Request{
id: id,
sink: sink,
code: GetBlockHeadersMsg,
want: BlockHeadersMsg,
data: &GetBlockHeadersPacket66{
RequestId: id,
GetBlockHeadersPacket: &GetBlockHeadersPacket{
Origin: HashOrNumber{Number: origin},
Amount: uint64(amount),
Skip: uint64(skip),
Reverse: reverse,
},
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestBodies fetches a batch of blocks' bodies corresponding to the hashes
// specified.
func (p *Peer) RequestBodies(hashes []common.Hash, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of block bodies", "count", len(hashes))
id := rand.Uint64()
req := &Request{
id: id,
sink: sink,
code: GetBlockBodiesMsg,
want: BlockBodiesMsg,
data: &GetBlockBodiesPacket66{
RequestId: id,
GetBlockBodiesPacket: hashes,
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestNodeData fetches a batch of arbitrary data from a node's known state
// data, corresponding to the specified hashes.
func (p *Peer) RequestNodeData(hashes []common.Hash, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of state data", "count", len(hashes))
id := rand.Uint64()
req := &Request{
id: id,
sink: sink,
code: GetNodeDataMsg,
want: NodeDataMsg,
data: &GetNodeDataPacket66{
RequestId: id,
GetNodeDataPacket: hashes,
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestReceipts fetches a batch of transaction receipts from a remote node.
func (p *Peer) RequestReceipts(hashes []common.Hash, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of receipts", "count", len(hashes))
id := rand.Uint64()
req := &Request{
id: id,
sink: sink,
code: GetReceiptsMsg,
want: ReceiptsMsg,
data: &GetReceiptsPacket66{
RequestId: id,
GetReceiptsPacket: hashes,
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestTxs fetches a batch of transactions from a remote node.
func (p *Peer) RequestTxs(hashes []common.Hash) error {
p.Log().Debug("Fetching batch of transactions", "count", len(hashes))
id := rand.Uint64()
requestTracker.Track(p.id, p.version, GetPooledTransactionsMsg, PooledTransactionsMsg, id)
return p2p.Send(p.rw, GetPooledTransactionsMsg, &GetPooledTransactionsPacket66{
RequestId: id,
GetPooledTransactionsPacket: hashes,
})
}
// knownCache is a cache for known hashes.
type knownCache struct {
hashes mapset.Set
max int
}
// newKnownCache creates a new knownCache with a max capacity.
func newKnownCache(max int) *knownCache {
return &knownCache{
max: max,
hashes: mapset.NewSet(),
}
}
// Add adds a list of elements to the set.
func (k *knownCache) Add(hashes ...common.Hash) {
for k.hashes.Cardinality() > max(0, k.max-len(hashes)) {
k.hashes.Pop()
}
for _, hash := range hashes {
k.hashes.Add(hash)
}
}
// Contains returns whether the given item is in the set.
func (k *knownCache) Contains(hash common.Hash) bool {
return k.hashes.Contains(hash)
}
// Cardinality returns the number of elements in the set.
func (k *knownCache) Cardinality() int {
return k.hashes.Cardinality()
}