plugeth/triedb/hashdb/database.go
2024-02-22 11:19:29 -08:00

661 lines
23 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package hashdb
import (
"errors"
"fmt"
"reflect"
"sync"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
)
var (
memcacheCleanHitMeter = metrics.NewRegisteredMeter("hashdb/memcache/clean/hit", nil)
memcacheCleanMissMeter = metrics.NewRegisteredMeter("hashdb/memcache/clean/miss", nil)
memcacheCleanReadMeter = metrics.NewRegisteredMeter("hashdb/memcache/clean/read", nil)
memcacheCleanWriteMeter = metrics.NewRegisteredMeter("hashdb/memcache/clean/write", nil)
memcacheDirtyHitMeter = metrics.NewRegisteredMeter("hashdb/memcache/dirty/hit", nil)
memcacheDirtyMissMeter = metrics.NewRegisteredMeter("hashdb/memcache/dirty/miss", nil)
memcacheDirtyReadMeter = metrics.NewRegisteredMeter("hashdb/memcache/dirty/read", nil)
memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("hashdb/memcache/dirty/write", nil)
memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("hashdb/memcache/flush/time", nil)
memcacheFlushNodesMeter = metrics.NewRegisteredMeter("hashdb/memcache/flush/nodes", nil)
memcacheFlushBytesMeter = metrics.NewRegisteredMeter("hashdb/memcache/flush/bytes", nil)
memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("hashdb/memcache/gc/time", nil)
memcacheGCNodesMeter = metrics.NewRegisteredMeter("hashdb/memcache/gc/nodes", nil)
memcacheGCBytesMeter = metrics.NewRegisteredMeter("hashdb/memcache/gc/bytes", nil)
memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("hashdb/memcache/commit/time", nil)
memcacheCommitNodesMeter = metrics.NewRegisteredMeter("hashdb/memcache/commit/nodes", nil)
memcacheCommitBytesMeter = metrics.NewRegisteredMeter("hashdb/memcache/commit/bytes", nil)
)
// ChildResolver defines the required method to decode the provided
// trie node and iterate the children on top.
type ChildResolver interface {
ForEach(node []byte, onChild func(common.Hash))
}
// Config contains the settings for database.
type Config struct {
CleanCacheSize int // Maximum memory allowance (in bytes) for caching clean nodes
}
// Defaults is the default setting for database if it's not specified.
// Notably, clean cache is disabled explicitly,
var Defaults = &Config{
// Explicitly set clean cache size to 0 to avoid creating fastcache,
// otherwise database must be closed when it's no longer needed to
// prevent memory leak.
CleanCacheSize: 0,
}
// Database is an intermediate write layer between the trie data structures and
// the disk database. The aim is to accumulate trie writes in-memory and only
// periodically flush a couple tries to disk, garbage collecting the remainder.
type Database struct {
diskdb ethdb.Database // Persistent storage for matured trie nodes
resolver ChildResolver // The handler to resolve children of nodes
cleans *fastcache.Cache // GC friendly memory cache of clean node RLPs
dirties map[common.Hash]*cachedNode // Data and references relationships of dirty trie nodes
oldest common.Hash // Oldest tracked node, flush-list head
newest common.Hash // Newest tracked node, flush-list tail
gctime time.Duration // Time spent on garbage collection since last commit
gcnodes uint64 // Nodes garbage collected since last commit
gcsize common.StorageSize // Data storage garbage collected since last commit
flushtime time.Duration // Time spent on data flushing since last commit
flushnodes uint64 // Nodes flushed since last commit
flushsize common.StorageSize // Data storage flushed since last commit
dirtiesSize common.StorageSize // Storage size of the dirty node cache (exc. metadata)
childrenSize common.StorageSize // Storage size of the external children tracking
lock sync.RWMutex
}
// cachedNode is all the information we know about a single cached trie node
// in the memory database write layer.
type cachedNode struct {
node []byte // Encoded node blob, immutable
parents uint32 // Number of live nodes referencing this one
external map[common.Hash]struct{} // The set of external children
flushPrev common.Hash // Previous node in the flush-list
flushNext common.Hash // Next node in the flush-list
}
// cachedNodeSize is the raw size of a cachedNode data structure without any
// node data included. It's an approximate size, but should be a lot better
// than not counting them.
var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size())
// forChildren invokes the callback for all the tracked children of this node,
// both the implicit ones from inside the node as well as the explicit ones
// from outside the node.
func (n *cachedNode) forChildren(resolver ChildResolver, onChild func(hash common.Hash)) {
for child := range n.external {
onChild(child)
}
resolver.ForEach(n.node, onChild)
}
// New initializes the hash-based node database.
func New(diskdb ethdb.Database, config *Config, resolver ChildResolver) *Database {
if config == nil {
config = Defaults
}
var cleans *fastcache.Cache
if config.CleanCacheSize > 0 {
cleans = fastcache.New(config.CleanCacheSize)
}
return &Database{
diskdb: diskdb,
resolver: resolver,
cleans: cleans,
dirties: make(map[common.Hash]*cachedNode),
}
}
// insert inserts a trie node into the memory database. All nodes inserted by
// this function will be reference tracked. This function assumes the lock is
// already held.
func (db *Database) insert(hash common.Hash, node []byte) {
// If the node's already cached, skip
if _, ok := db.dirties[hash]; ok {
return
}
memcacheDirtyWriteMeter.Mark(int64(len(node)))
// Create the cached entry for this node
entry := &cachedNode{
node: node,
flushPrev: db.newest,
}
entry.forChildren(db.resolver, func(child common.Hash) {
if c := db.dirties[child]; c != nil {
c.parents++
}
})
db.dirties[hash] = entry
// Update the flush-list endpoints
if db.oldest == (common.Hash{}) {
db.oldest, db.newest = hash, hash
} else {
db.dirties[db.newest].flushNext, db.newest = hash, hash
}
db.dirtiesSize += common.StorageSize(common.HashLength + len(node))
}
// node retrieves an encoded cached trie node from memory. If it cannot be found
// cached, the method queries the persistent database for the content.
func (db *Database) node(hash common.Hash) ([]byte, error) {
// It doesn't make sense to retrieve the metaroot
if hash == (common.Hash{}) {
return nil, errors.New("not found")
}
// Retrieve the node from the clean cache if available
if db.cleans != nil {
if enc := db.cleans.Get(nil, hash[:]); enc != nil {
memcacheCleanHitMeter.Mark(1)
memcacheCleanReadMeter.Mark(int64(len(enc)))
return enc, nil
}
}
// Retrieve the node from the dirty cache if available.
db.lock.RLock()
dirty := db.dirties[hash]
db.lock.RUnlock()
// Return the cached node if it's found in the dirty set.
// The dirty.node field is immutable and safe to read it
// even without lock guard.
if dirty != nil {
memcacheDirtyHitMeter.Mark(1)
memcacheDirtyReadMeter.Mark(int64(len(dirty.node)))
return dirty.node, nil
}
memcacheDirtyMissMeter.Mark(1)
// Content unavailable in memory, attempt to retrieve from disk
enc := rawdb.ReadLegacyTrieNode(db.diskdb, hash)
if len(enc) != 0 {
if db.cleans != nil {
db.cleans.Set(hash[:], enc)
memcacheCleanMissMeter.Mark(1)
memcacheCleanWriteMeter.Mark(int64(len(enc)))
}
return enc, nil
}
return nil, errors.New("not found")
}
// Reference adds a new reference from a parent node to a child node.
// This function is used to add reference between internal trie node
// and external node(e.g. storage trie root), all internal trie nodes
// are referenced together by database itself.
func (db *Database) Reference(child common.Hash, parent common.Hash) {
db.lock.Lock()
defer db.lock.Unlock()
db.reference(child, parent)
}
// reference is the private locked version of Reference.
func (db *Database) reference(child common.Hash, parent common.Hash) {
// If the node does not exist, it's a node pulled from disk, skip
node, ok := db.dirties[child]
if !ok {
return
}
// The reference is for state root, increase the reference counter.
if parent == (common.Hash{}) {
node.parents += 1
return
}
// The reference is for external storage trie, don't duplicate if
// the reference is already existent.
if db.dirties[parent].external == nil {
db.dirties[parent].external = make(map[common.Hash]struct{})
}
if _, ok := db.dirties[parent].external[child]; ok {
return
}
node.parents++
db.dirties[parent].external[child] = struct{}{}
db.childrenSize += common.HashLength
}
// Dereference removes an existing reference from a root node.
func (db *Database) Dereference(root common.Hash) {
// Sanity check to ensure that the meta-root is not removed
if root == (common.Hash{}) {
log.Error("Attempted to dereference the trie cache meta root")
return
}
db.lock.Lock()
defer db.lock.Unlock()
nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
db.dereference(root)
db.gcnodes += uint64(nodes - len(db.dirties))
db.gcsize += storage - db.dirtiesSize
db.gctime += time.Since(start)
memcacheGCTimeTimer.Update(time.Since(start))
memcacheGCBytesMeter.Mark(int64(storage - db.dirtiesSize))
memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
}
// dereference is the private locked version of Dereference.
func (db *Database) dereference(hash common.Hash) {
// If the node does not exist, it's a previously committed node.
node, ok := db.dirties[hash]
if !ok {
return
}
// If there are no more references to the node, delete it and cascade
if node.parents > 0 {
// This is a special cornercase where a node loaded from disk (i.e. not in the
// memcache any more) gets reinjected as a new node (short node split into full,
// then reverted into short), causing a cached node to have no parents. That is
// no problem in itself, but don't make maxint parents out of it.
node.parents--
}
if node.parents == 0 {
// Remove the node from the flush-list
switch hash {
case db.oldest:
db.oldest = node.flushNext
if node.flushNext != (common.Hash{}) {
db.dirties[node.flushNext].flushPrev = common.Hash{}
}
case db.newest:
db.newest = node.flushPrev
if node.flushPrev != (common.Hash{}) {
db.dirties[node.flushPrev].flushNext = common.Hash{}
}
default:
db.dirties[node.flushPrev].flushNext = node.flushNext
db.dirties[node.flushNext].flushPrev = node.flushPrev
}
// Dereference all children and delete the node
node.forChildren(db.resolver, func(child common.Hash) {
db.dereference(child)
})
delete(db.dirties, hash)
db.dirtiesSize -= common.StorageSize(common.HashLength + len(node.node))
if node.external != nil {
db.childrenSize -= common.StorageSize(len(node.external) * common.HashLength)
}
}
}
// Cap iteratively flushes old but still referenced trie nodes until the total
// memory usage goes below the given threshold.
func (db *Database) Cap(limit common.StorageSize) error {
db.lock.Lock()
defer db.lock.Unlock()
// Create a database batch to flush persistent data out. It is important that
// outside code doesn't see an inconsistent state (referenced data removed from
// memory cache during commit but not yet in persistent storage). This is ensured
// by only uncaching existing data when the database write finalizes.
batch := db.diskdb.NewBatch()
nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
// db.dirtiesSize only contains the useful data in the cache, but when reporting
// the total memory consumption, the maintenance metadata is also needed to be
// counted.
size := db.dirtiesSize + common.StorageSize(len(db.dirties)*cachedNodeSize)
size += db.childrenSize
// Keep committing nodes from the flush-list until we're below allowance
oldest := db.oldest
for size > limit && oldest != (common.Hash{}) {
// Fetch the oldest referenced node and push into the batch
node := db.dirties[oldest]
rawdb.WriteLegacyTrieNode(batch, oldest, node.node)
// If we exceeded the ideal batch size, commit and reset
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Error("Failed to write flush list to disk", "err", err)
return err
}
batch.Reset()
}
// Iterate to the next flush item, or abort if the size cap was achieved. Size
// is the total size, including the useful cached data (hash -> blob), the
// cache item metadata, as well as external children mappings.
size -= common.StorageSize(common.HashLength + len(node.node) + cachedNodeSize)
if node.external != nil {
size -= common.StorageSize(len(node.external) * common.HashLength)
}
oldest = node.flushNext
}
// Flush out any remainder data from the last batch
if err := batch.Write(); err != nil {
log.Error("Failed to write flush list to disk", "err", err)
return err
}
// Write successful, clear out the flushed data
for db.oldest != oldest {
node := db.dirties[db.oldest]
delete(db.dirties, db.oldest)
db.oldest = node.flushNext
db.dirtiesSize -= common.StorageSize(common.HashLength + len(node.node))
if node.external != nil {
db.childrenSize -= common.StorageSize(len(node.external) * common.HashLength)
}
}
if db.oldest != (common.Hash{}) {
db.dirties[db.oldest].flushPrev = common.Hash{}
}
db.flushnodes += uint64(nodes - len(db.dirties))
db.flushsize += storage - db.dirtiesSize
db.flushtime += time.Since(start)
memcacheFlushTimeTimer.Update(time.Since(start))
memcacheFlushBytesMeter.Mark(int64(storage - db.dirtiesSize))
memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
return nil
}
// Commit iterates over all the children of a particular node, writes them out
// to disk, forcefully tearing down all references in both directions. As a side
// effect, all pre-images accumulated up to this point are also written.
func (db *Database) Commit(node common.Hash, report bool) error {
db.lock.Lock()
defer db.lock.Unlock()
// Create a database batch to flush persistent data out. It is important that
// outside code doesn't see an inconsistent state (referenced data removed from
// memory cache during commit but not yet in persistent storage). This is ensured
// by only uncaching existing data when the database write finalizes.
// begin PluGeth injection
pluginPreTrieCommit(node)
// end PluGeth injection
start := time.Now()
batch := db.diskdb.NewBatch()
// Move the trie itself into the batch, flushing if enough data is accumulated
nodes, storage := len(db.dirties), db.dirtiesSize
uncacher := &cleaner{db}
if err := db.commit(node, batch, uncacher); err != nil {
log.Error("Failed to commit trie from trie database", "err", err)
return err
}
// Trie mostly committed to disk, flush any batch leftovers
if err := batch.Write(); err != nil {
log.Error("Failed to write trie to disk", "err", err)
return err
}
// Uncache any leftovers in the last batch
if err := batch.Replay(uncacher); err != nil {
return err
}
batch.Reset()
// Reset the storage counters and bumped metrics
memcacheCommitTimeTimer.Update(time.Since(start))
memcacheCommitBytesMeter.Mark(int64(storage - db.dirtiesSize))
memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
logger := log.Info
if !report {
logger = log.Debug
}
logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
// Reset the garbage collection statistics
db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0
// begin PluGeth injection
pluginPostTrieCommit(node)
// end PluGeth injection
return nil
}
// commit is the private locked version of Commit.
func (db *Database) commit(hash common.Hash, batch ethdb.Batch, uncacher *cleaner) error {
// If the node does not exist, it's a previously committed node
node, ok := db.dirties[hash]
if !ok {
return nil
}
var err error
// Dereference all children and delete the node
node.forChildren(db.resolver, func(child common.Hash) {
if err == nil {
err = db.commit(child, batch, uncacher)
}
})
if err != nil {
return err
}
// If we've reached an optimal batch size, commit and start over
rawdb.WriteLegacyTrieNode(batch, hash, node.node)
if batch.ValueSize() >= ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
return err
}
err := batch.Replay(uncacher)
if err != nil {
return err
}
batch.Reset()
}
return nil
}
// cleaner is a database batch replayer that takes a batch of write operations
// and cleans up the trie database from anything written to disk.
type cleaner struct {
db *Database
}
// Put reacts to database writes and implements dirty data uncaching. This is the
// post-processing step of a commit operation where the already persisted trie is
// removed from the dirty cache and moved into the clean cache. The reason behind
// the two-phase commit is to ensure data availability while moving from memory
// to disk.
func (c *cleaner) Put(key []byte, rlp []byte) error {
hash := common.BytesToHash(key)
// If the node does not exist, we're done on this path
node, ok := c.db.dirties[hash]
if !ok {
return nil
}
// Node still exists, remove it from the flush-list
switch hash {
case c.db.oldest:
c.db.oldest = node.flushNext
if node.flushNext != (common.Hash{}) {
c.db.dirties[node.flushNext].flushPrev = common.Hash{}
}
case c.db.newest:
c.db.newest = node.flushPrev
if node.flushPrev != (common.Hash{}) {
c.db.dirties[node.flushPrev].flushNext = common.Hash{}
}
default:
c.db.dirties[node.flushPrev].flushNext = node.flushNext
c.db.dirties[node.flushNext].flushPrev = node.flushPrev
}
// Remove the node from the dirty cache
delete(c.db.dirties, hash)
c.db.dirtiesSize -= common.StorageSize(common.HashLength + len(node.node))
if node.external != nil {
c.db.childrenSize -= common.StorageSize(len(node.external) * common.HashLength)
}
// Move the flushed node into the clean cache to prevent insta-reloads
if c.db.cleans != nil {
c.db.cleans.Set(hash[:], rlp)
memcacheCleanWriteMeter.Mark(int64(len(rlp)))
}
return nil
}
func (c *cleaner) Delete(key []byte) error {
panic("not implemented")
}
// Initialized returns an indicator if state data is already initialized
// in hash-based scheme by checking the presence of genesis state.
func (db *Database) Initialized(genesisRoot common.Hash) bool {
return rawdb.HasLegacyTrieNode(db.diskdb, genesisRoot)
}
// Update inserts the dirty nodes in provided nodeset into database and link the
// account trie with multiple storage tries if necessary.
func (db *Database) Update(root common.Hash, parent common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *triestate.Set) error {
// Ensure the parent state is present and signal a warning if not.
if parent != types.EmptyRootHash {
if blob, _ := db.node(parent); len(blob) == 0 {
log.Error("parent state is not present")
}
}
db.lock.Lock()
defer db.lock.Unlock()
// Insert dirty nodes into the database. In the same tree, it must be
// ensured that children are inserted first, then parent so that children
// can be linked with their parent correctly.
//
// Note, the storage tries must be flushed before the account trie to
// retain the invariant that children go into the dirty cache first.
var order []common.Hash
for owner := range nodes.Sets {
if owner == (common.Hash{}) {
continue
}
order = append(order, owner)
}
if _, ok := nodes.Sets[common.Hash{}]; ok {
order = append(order, common.Hash{})
}
for _, owner := range order {
subset := nodes.Sets[owner]
subset.ForEachWithOrder(func(path string, n *trienode.Node) {
if n.IsDeleted() {
return // ignore deletion
}
db.insert(n.Hash, n.Blob)
})
}
// Link up the account trie and storage trie if the node points
// to an account trie leaf.
if set, present := nodes.Sets[common.Hash{}]; present {
for _, n := range set.Leaves {
var account types.StateAccount
if err := rlp.DecodeBytes(n.Blob, &account); err != nil {
return err
}
if account.Root != types.EmptyRootHash {
db.reference(account.Root, n.Parent)
}
}
}
return nil
}
// Size returns the current storage size of the memory cache in front of the
// persistent database layer.
//
// The first return will always be 0, representing the memory stored in unbounded
// diff layers above the dirty cache. This is only available in pathdb.
func (db *Database) Size() (common.StorageSize, common.StorageSize) {
db.lock.RLock()
defer db.lock.RUnlock()
// db.dirtiesSize only contains the useful data in the cache, but when reporting
// the total memory consumption, the maintenance metadata is also needed to be
// counted.
var metadataSize = common.StorageSize(len(db.dirties) * cachedNodeSize)
return 0, db.dirtiesSize + db.childrenSize + metadataSize
}
// Close closes the trie database and releases all held resources.
func (db *Database) Close() error {
if db.cleans != nil {
db.cleans.Reset()
db.cleans = nil
}
return nil
}
// Scheme returns the node scheme used in the database.
func (db *Database) Scheme() string {
return rawdb.HashScheme
}
// Reader retrieves a node reader belonging to the given state root.
// An error will be returned if the requested state is not available.
func (db *Database) Reader(root common.Hash) (*reader, error) {
if _, err := db.node(root); err != nil {
return nil, fmt.Errorf("state %#x is not available, %v", root, err)
}
return &reader{db: db}, nil
}
// reader is a state reader of Database which implements the Reader interface.
type reader struct {
db *Database
}
// Node retrieves the trie node with the given node hash. No error will be
// returned if the node is not found.
func (reader *reader) Node(owner common.Hash, path []byte, hash common.Hash) ([]byte, error) {
blob, _ := reader.db.node(hash)
return blob, nil
}