plugeth/core/txpool/blobpool/evictheap_test.go
Péter Szilágyi 1662228ac6
core/txpool/blobpool: 4844 blob transaction pool (#26940)
* core/blobpool: implement txpool for blob txs

* core/txpool: track address reservations to notice any weird bugs

* core/txpool/blobpool: add support for in-memory operation for tests

* core/txpool/blobpool: fix heap updating after SetGasTip if account is evicted

* core/txpool/blobpool: fix eviction order if cheap leading txs are included

* core/txpool/blobpool: add note as to why the eviction fields are not inited in reinject

* go.mod: pull in inmem billy form upstream

* core/txpool/blobpool: fix review commens

* core/txpool/blobpool: make heap and heap test deterministic

* core/txpool/blobpool: luv u linter

* core/txpool: limit blob transactions to 16 per account

* core/txpool/blobpool: fix rebase errors

* core/txpool/blobpool: luv you linter

* go.mod: revert some strange crypto package dep updates
2023-07-27 13:45:35 +03:00

321 lines
12 KiB
Go

// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package blobpool
import (
"container/heap"
mrand "math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/params"
"github.com/holiman/uint256"
)
var rand = mrand.New(mrand.NewSource(1))
// verifyHeapInternals verifies that all accounts present in the index are also
// present in the heap and internals are consistent across various indices.
func verifyHeapInternals(t *testing.T, evict *evictHeap) {
t.Helper()
// Ensure that all accounts are present in the heap and no extras
seen := make(map[common.Address]struct{})
for i, addr := range evict.addrs {
seen[addr] = struct{}{}
if _, ok := (*evict.metas)[addr]; !ok {
t.Errorf("heap contains unexpected address at slot %d: %v", i, addr)
}
}
for addr := range *evict.metas {
if _, ok := seen[addr]; !ok {
t.Errorf("heap is missing required address %v", addr)
}
}
if len(evict.addrs) != len(*evict.metas) {
t.Errorf("heap size %d mismatches metadata size %d", len(evict.addrs), len(*evict.metas))
}
// Ensure that all accounts are present in the heap order index and no extras
have := make([]common.Address, len(evict.index))
for addr, i := range evict.index {
have[i] = addr
}
if len(have) != len(evict.addrs) {
t.Errorf("heap index size %d mismatches heap size %d", len(have), len(evict.addrs))
}
for i := 0; i < len(have) && i < len(evict.addrs); i++ {
if have[i] != evict.addrs[i] {
t.Errorf("heap index for slot %d mismatches: have %v, want %v", i, have[i], evict.addrs[i])
}
}
}
// Tests that the price heap can correctly sort its set of transactions based on
// an input base- and blob fee.
func TestPriceHeapSorting(t *testing.T) {
tests := []struct {
execTips []uint64
execFees []uint64
blobFees []uint64
basefee uint64
blobfee uint64
order []int
}{
// If everything is above the basefee and blobfee, order by miner tip
{
execTips: []uint64{1, 0, 2},
execFees: []uint64{1, 2, 3},
blobFees: []uint64{3, 2, 1},
basefee: 0,
blobfee: 0,
order: []int{1, 0, 2},
},
// If only basefees are used (blob fee matches with network), return the
// ones the furthest below the current basefee, splitting same ones with
// the tip. Anything above the basefee should be split by tip.
{
execTips: []uint64{100, 50, 100, 50, 1, 2, 3},
execFees: []uint64{1000, 1000, 500, 500, 2000, 2000, 2000},
blobFees: []uint64{0, 0, 0, 0, 0, 0, 0},
basefee: 1999,
blobfee: 0,
order: []int{3, 2, 1, 0, 4, 5, 6},
},
// If only blobfees are used (base fee matches with network), return the
// ones the furthest below the current blobfee, splitting same ones with
// the tip. Anything above the blobfee should be split by tip.
{
execTips: []uint64{100, 50, 100, 50, 1, 2, 3},
execFees: []uint64{0, 0, 0, 0, 0, 0, 0},
blobFees: []uint64{1000, 1000, 500, 500, 2000, 2000, 2000},
basefee: 0,
blobfee: 1999,
order: []int{3, 2, 1, 0, 4, 5, 6},
},
// If both basefee and blobfee is specified, sort by the larger distance
// of the two from the current network conditions, splitting same (loglog)
// ones via the tip.
//
// Basefee: 1000
// Blobfee: 100
//
// Tx #0: (800, 80) - 2 jumps below both => priority -1
// Tx #1: (630, 63) - 4 jumps below both => priority -2
// Tx #2: (800, 63) - 2 jumps below basefee, 4 jumps below blobfee => priority -2 (blob penalty dominates)
// Tx #3: (630, 80) - 4 jumps below basefee, 2 jumps below blobfee => priority -2 (base penalty dominates)
//
// Txs 1, 2, 3 share the same priority, split via tip, prefer 0 as the best
{
execTips: []uint64{1, 2, 3, 4},
execFees: []uint64{800, 630, 800, 630},
blobFees: []uint64{80, 63, 63, 80},
basefee: 1000,
blobfee: 100,
order: []int{1, 2, 3, 0},
},
}
for i, tt := range tests {
// Create an index of the transactions
index := make(map[common.Address][]*blobTxMeta)
for j := byte(0); j < byte(len(tt.execTips)); j++ {
addr := common.Address{j}
var (
execTip = uint256.NewInt(tt.execTips[j])
execFee = uint256.NewInt(tt.execFees[j])
blobFee = uint256.NewInt(tt.blobFees[j])
basefeeJumps = dynamicFeeJumps(execFee)
blobfeeJumps = dynamicFeeJumps(blobFee)
)
index[addr] = []*blobTxMeta{{
id: uint64(j),
size: 128 * 1024,
nonce: 0,
execTipCap: execTip,
execFeeCap: execFee,
blobFeeCap: blobFee,
basefeeJumps: basefeeJumps,
blobfeeJumps: blobfeeJumps,
evictionExecTip: execTip,
evictionExecFeeJumps: basefeeJumps,
evictionBlobFeeJumps: blobfeeJumps,
}}
}
// Create a price heap and check the pop order
priceheap := newPriceHeap(uint256.NewInt(tt.basefee), uint256.NewInt(tt.blobfee), &index)
verifyHeapInternals(t, priceheap)
for j := 0; j < len(tt.order); j++ {
if next := heap.Pop(priceheap); int(next.(common.Address)[0]) != tt.order[j] {
t.Errorf("test %d, item %d: order mismatch: have %d, want %d", i, j, next.(common.Address)[0], tt.order[j])
} else {
delete(index, next.(common.Address)) // remove to simulate a correct pool for the test
}
verifyHeapInternals(t, priceheap)
}
}
}
// Benchmarks reheaping the entire set of accounts in the blob pool.
func BenchmarkPriceHeapReinit1MB(b *testing.B) { benchmarkPriceHeapReinit(b, 1024*1024) }
func BenchmarkPriceHeapReinit10MB(b *testing.B) { benchmarkPriceHeapReinit(b, 10*1024*1024) }
func BenchmarkPriceHeapReinit100MB(b *testing.B) { benchmarkPriceHeapReinit(b, 100*1024*1024) }
func BenchmarkPriceHeapReinit1GB(b *testing.B) { benchmarkPriceHeapReinit(b, 1024*1024*1024) }
func BenchmarkPriceHeapReinit10GB(b *testing.B) { benchmarkPriceHeapReinit(b, 10*1024*1024*1024) }
func BenchmarkPriceHeapReinit25GB(b *testing.B) { benchmarkPriceHeapReinit(b, 25*1024*1024*1024) }
func BenchmarkPriceHeapReinit50GB(b *testing.B) { benchmarkPriceHeapReinit(b, 50*1024*1024*1024) }
func BenchmarkPriceHeapReinit100GB(b *testing.B) { benchmarkPriceHeapReinit(b, 100*1024*1024*1024) }
func benchmarkPriceHeapReinit(b *testing.B, datacap uint64) {
// Calculate how many unique transactions we can fit into the provided disk
// data cap
blobs := datacap / (params.BlobTxBytesPerFieldElement * params.BlobTxFieldElementsPerBlob)
// Create a random set of transactions with random fees. Use a separate account
// for each transaction to make it worse case.
index := make(map[common.Address][]*blobTxMeta)
for i := 0; i < int(blobs); i++ {
var addr common.Address
rand.Read(addr[:])
var (
execTip = uint256.NewInt(rand.Uint64())
execFee = uint256.NewInt(rand.Uint64())
blobFee = uint256.NewInt(rand.Uint64())
basefeeJumps = dynamicFeeJumps(execFee)
blobfeeJumps = dynamicFeeJumps(blobFee)
)
index[addr] = []*blobTxMeta{{
id: uint64(i),
size: 128 * 1024,
nonce: 0,
execTipCap: execTip,
execFeeCap: execFee,
blobFeeCap: blobFee,
basefeeJumps: basefeeJumps,
blobfeeJumps: blobfeeJumps,
evictionExecTip: execTip,
evictionExecFeeJumps: basefeeJumps,
evictionBlobFeeJumps: blobfeeJumps,
}}
}
// Create a price heap and reinit it over and over
heap := newPriceHeap(uint256.NewInt(rand.Uint64()), uint256.NewInt(rand.Uint64()), &index)
basefees := make([]*uint256.Int, b.N)
blobfees := make([]*uint256.Int, b.N)
for i := 0; i < b.N; i++ {
basefees[i] = uint256.NewInt(rand.Uint64())
blobfees[i] = uint256.NewInt(rand.Uint64())
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
heap.reinit(basefees[i], blobfees[i], true)
}
}
// Benchmarks overflowing the heap over and over (add and then drop).
func BenchmarkPriceHeapOverflow1MB(b *testing.B) { benchmarkPriceHeapOverflow(b, 1024*1024) }
func BenchmarkPriceHeapOverflow10MB(b *testing.B) { benchmarkPriceHeapOverflow(b, 10*1024*1024) }
func BenchmarkPriceHeapOverflow100MB(b *testing.B) { benchmarkPriceHeapOverflow(b, 100*1024*1024) }
func BenchmarkPriceHeapOverflow1GB(b *testing.B) { benchmarkPriceHeapOverflow(b, 1024*1024*1024) }
func BenchmarkPriceHeapOverflow10GB(b *testing.B) { benchmarkPriceHeapOverflow(b, 10*1024*1024*1024) }
func BenchmarkPriceHeapOverflow25GB(b *testing.B) { benchmarkPriceHeapOverflow(b, 25*1024*1024*1024) }
func BenchmarkPriceHeapOverflow50GB(b *testing.B) { benchmarkPriceHeapOverflow(b, 50*1024*1024*1024) }
func BenchmarkPriceHeapOverflow100GB(b *testing.B) { benchmarkPriceHeapOverflow(b, 100*1024*1024*1024) }
func benchmarkPriceHeapOverflow(b *testing.B, datacap uint64) {
// Calculate how many unique transactions we can fit into the provided disk
// data cap
blobs := datacap / (params.BlobTxBytesPerFieldElement * params.BlobTxFieldElementsPerBlob)
// Create a random set of transactions with random fees. Use a separate account
// for each transaction to make it worse case.
index := make(map[common.Address][]*blobTxMeta)
for i := 0; i < int(blobs); i++ {
var addr common.Address
rand.Read(addr[:])
var (
execTip = uint256.NewInt(rand.Uint64())
execFee = uint256.NewInt(rand.Uint64())
blobFee = uint256.NewInt(rand.Uint64())
basefeeJumps = dynamicFeeJumps(execFee)
blobfeeJumps = dynamicFeeJumps(blobFee)
)
index[addr] = []*blobTxMeta{{
id: uint64(i),
size: 128 * 1024,
nonce: 0,
execTipCap: execTip,
execFeeCap: execFee,
blobFeeCap: blobFee,
basefeeJumps: basefeeJumps,
blobfeeJumps: blobfeeJumps,
evictionExecTip: execTip,
evictionExecFeeJumps: basefeeJumps,
evictionBlobFeeJumps: blobfeeJumps,
}}
}
// Create a price heap and overflow it over and over
evict := newPriceHeap(uint256.NewInt(rand.Uint64()), uint256.NewInt(rand.Uint64()), &index)
var (
addrs = make([]common.Address, b.N)
metas = make([]*blobTxMeta, b.N)
)
for i := 0; i < b.N; i++ {
rand.Read(addrs[i][:])
var (
execTip = uint256.NewInt(rand.Uint64())
execFee = uint256.NewInt(rand.Uint64())
blobFee = uint256.NewInt(rand.Uint64())
basefeeJumps = dynamicFeeJumps(execFee)
blobfeeJumps = dynamicFeeJumps(blobFee)
)
metas[i] = &blobTxMeta{
id: uint64(int(blobs) + i),
size: 128 * 1024,
nonce: 0,
execTipCap: execTip,
execFeeCap: execFee,
blobFeeCap: blobFee,
basefeeJumps: basefeeJumps,
blobfeeJumps: blobfeeJumps,
evictionExecTip: execTip,
evictionExecFeeJumps: basefeeJumps,
evictionBlobFeeJumps: blobfeeJumps,
}
}
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
index[addrs[i]] = []*blobTxMeta{metas[i]}
heap.Push(evict, addrs[i])
drop := heap.Pop(evict)
delete(index, drop.(common.Address))
}
}