plugeth/core/state_transition.go
2024-02-22 11:19:29 -08:00

513 lines
18 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"fmt"
"math"
"math/big"
"github.com/ethereum/go-ethereum/common"
cmath "github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto/kzg4844"
"github.com/ethereum/go-ethereum/params"
"github.com/holiman/uint256"
)
// ExecutionResult includes all output after executing given evm
// message no matter the execution itself is successful or not.
type ExecutionResult struct {
UsedGas uint64 // Total used gas, not including the refunded gas
RefundedGas uint64 // Total gas refunded after execution
Err error // Any error encountered during the execution(listed in core/vm/errors.go)
ReturnData []byte // Returned data from evm(function result or data supplied with revert opcode)
}
// Unwrap returns the internal evm error which allows us for further
// analysis outside.
func (result *ExecutionResult) Unwrap() error {
return result.Err
}
// Failed returns the indicator whether the execution is successful or not
func (result *ExecutionResult) Failed() bool { return result.Err != nil }
// Return is a helper function to help caller distinguish between revert reason
// and function return. Return returns the data after execution if no error occurs.
func (result *ExecutionResult) Return() []byte {
if result.Err != nil {
return nil
}
return common.CopyBytes(result.ReturnData)
}
// Revert returns the concrete revert reason if the execution is aborted by `REVERT`
// opcode. Note the reason can be nil if no data supplied with revert opcode.
func (result *ExecutionResult) Revert() []byte {
if result.Err != vm.ErrExecutionReverted {
return nil
}
return common.CopyBytes(result.ReturnData)
}
// IntrinsicGas computes the 'intrinsic gas' for a message with the given data.
func IntrinsicGas(data []byte, accessList types.AccessList, isContractCreation bool, isHomestead, isEIP2028, isEIP3860 bool) (uint64, error) {
// Set the starting gas for the raw transaction
var gas uint64
if isContractCreation && isHomestead {
gas = params.TxGasContractCreation
} else {
gas = params.TxGas
}
dataLen := uint64(len(data))
// Bump the required gas by the amount of transactional data
if dataLen > 0 {
// Zero and non-zero bytes are priced differently
var nz uint64
for _, byt := range data {
if byt != 0 {
nz++
}
}
// Make sure we don't exceed uint64 for all data combinations
nonZeroGas := params.TxDataNonZeroGasFrontier
if isEIP2028 {
nonZeroGas = params.TxDataNonZeroGasEIP2028
}
if (math.MaxUint64-gas)/nonZeroGas < nz {
return 0, ErrGasUintOverflow
}
gas += nz * nonZeroGas
z := dataLen - nz
if (math.MaxUint64-gas)/params.TxDataZeroGas < z {
return 0, ErrGasUintOverflow
}
gas += z * params.TxDataZeroGas
if isContractCreation && isEIP3860 {
lenWords := toWordSize(dataLen)
if (math.MaxUint64-gas)/params.InitCodeWordGas < lenWords {
return 0, ErrGasUintOverflow
}
gas += lenWords * params.InitCodeWordGas
}
}
if accessList != nil {
gas += uint64(len(accessList)) * params.TxAccessListAddressGas
gas += uint64(accessList.StorageKeys()) * params.TxAccessListStorageKeyGas
}
return gas, nil
}
// toWordSize returns the ceiled word size required for init code payment calculation.
func toWordSize(size uint64) uint64 {
if size > math.MaxUint64-31 {
return math.MaxUint64/32 + 1
}
return (size + 31) / 32
}
// A Message contains the data derived from a single transaction that is relevant to state
// processing.
type Message struct {
To *common.Address
From common.Address
Nonce uint64
Value *big.Int
GasLimit uint64
GasPrice *big.Int
GasFeeCap *big.Int
GasTipCap *big.Int
Data []byte
AccessList types.AccessList
BlobGasFeeCap *big.Int
BlobHashes []common.Hash
// When SkipAccountChecks is true, the message nonce is not checked against the
// account nonce in state. It also disables checking that the sender is an EOA.
// This field will be set to true for operations like RPC eth_call.
SkipAccountChecks bool
}
// TransactionToMessage converts a transaction into a Message.
func TransactionToMessage(tx *types.Transaction, s types.Signer, baseFee *big.Int) (*Message, error) {
msg := &Message{
Nonce: tx.Nonce(),
GasLimit: tx.Gas(),
GasPrice: new(big.Int).Set(tx.GasPrice()),
GasFeeCap: new(big.Int).Set(tx.GasFeeCap()),
GasTipCap: new(big.Int).Set(tx.GasTipCap()),
To: tx.To(),
Value: tx.Value(),
Data: tx.Data(),
AccessList: tx.AccessList(),
SkipAccountChecks: false,
BlobHashes: tx.BlobHashes(),
BlobGasFeeCap: tx.BlobGasFeeCap(),
}
// If baseFee provided, set gasPrice to effectiveGasPrice.
if baseFee != nil {
msg.GasPrice = cmath.BigMin(msg.GasPrice.Add(msg.GasTipCap, baseFee), msg.GasFeeCap)
}
var err error
msg.From, err = types.Sender(s, tx)
return msg, err
}
// ApplyMessage computes the new state by applying the given message
// against the old state within the environment.
//
// ApplyMessage returns the bytes returned by any EVM execution (if it took place),
// the gas used (which includes gas refunds) and an error if it failed. An error always
// indicates a core error meaning that the message would always fail for that particular
// state and would never be accepted within a block.
func ApplyMessage(evm *vm.EVM, msg *Message, gp *GasPool) (*ExecutionResult, error) {
return NewStateTransition(evm, msg, gp).TransitionDb()
}
// StateTransition represents a state transition.
//
// == The State Transitioning Model
//
// A state transition is a change made when a transaction is applied to the current world
// state. The state transitioning model does all the necessary work to work out a valid new
// state root.
//
// 1. Nonce handling
// 2. Pre pay gas
// 3. Create a new state object if the recipient is nil
// 4. Value transfer
//
// == If contract creation ==
//
// 4a. Attempt to run transaction data
// 4b. If valid, use result as code for the new state object
//
// == end ==
//
// 5. Run Script section
// 6. Derive new state root
type StateTransition struct {
gp *GasPool
msg *Message
gasRemaining uint64
initialGas uint64
state vm.StateDB
evm *vm.EVM
}
// NewStateTransition initialises and returns a new state transition object.
func NewStateTransition(evm *vm.EVM, msg *Message, gp *GasPool) *StateTransition {
return &StateTransition{
gp: gp,
evm: evm,
msg: msg,
state: evm.StateDB,
}
}
// to returns the recipient of the message.
func (st *StateTransition) to() common.Address {
if st.msg == nil || st.msg.To == nil /* contract creation */ {
return common.Address{}
}
return *st.msg.To
}
func (st *StateTransition) buyGas() error {
mgval := new(big.Int).SetUint64(st.msg.GasLimit)
mgval = mgval.Mul(mgval, st.msg.GasPrice)
balanceCheck := new(big.Int).Set(mgval)
if st.msg.GasFeeCap != nil {
balanceCheck.SetUint64(st.msg.GasLimit)
balanceCheck = balanceCheck.Mul(balanceCheck, st.msg.GasFeeCap)
balanceCheck.Add(balanceCheck, st.msg.Value)
}
if st.evm.ChainConfig().IsCancun(st.evm.Context.BlockNumber, st.evm.Context.Time) {
if blobGas := st.blobGasUsed(); blobGas > 0 {
// Check that the user has enough funds to cover blobGasUsed * tx.BlobGasFeeCap
blobBalanceCheck := new(big.Int).SetUint64(blobGas)
blobBalanceCheck.Mul(blobBalanceCheck, st.msg.BlobGasFeeCap)
balanceCheck.Add(balanceCheck, blobBalanceCheck)
// Pay for blobGasUsed * actual blob fee
blobFee := new(big.Int).SetUint64(blobGas)
blobFee.Mul(blobFee, st.evm.Context.BlobBaseFee)
mgval.Add(mgval, blobFee)
}
}
balanceCheckU256, overflow := uint256.FromBig(balanceCheck)
if overflow {
return fmt.Errorf("%w: address %v required balance exceeds 256 bits", ErrInsufficientFunds, st.msg.From.Hex())
}
if have, want := st.state.GetBalance(st.msg.From), balanceCheckU256; have.Cmp(want) < 0 {
return fmt.Errorf("%w: address %v have %v want %v", ErrInsufficientFunds, st.msg.From.Hex(), have, want)
}
if err := st.gp.SubGas(st.msg.GasLimit); err != nil {
return err
}
st.gasRemaining += st.msg.GasLimit
st.initialGas = st.msg.GasLimit
mgvalU256, _ := uint256.FromBig(mgval)
st.state.SubBalance(st.msg.From, mgvalU256)
return nil
}
func (st *StateTransition) preCheck() error {
// Only check transactions that are not fake
msg := st.msg
if !msg.SkipAccountChecks {
// Make sure this transaction's nonce is correct.
stNonce := st.state.GetNonce(msg.From)
if msgNonce := msg.Nonce; stNonce < msgNonce {
return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooHigh,
msg.From.Hex(), msgNonce, stNonce)
} else if stNonce > msgNonce {
return fmt.Errorf("%w: address %v, tx: %d state: %d", ErrNonceTooLow,
msg.From.Hex(), msgNonce, stNonce)
} else if stNonce+1 < stNonce {
return fmt.Errorf("%w: address %v, nonce: %d", ErrNonceMax,
msg.From.Hex(), stNonce)
}
// Make sure the sender is an EOA
codeHash := st.state.GetCodeHash(msg.From)
if codeHash != (common.Hash{}) && codeHash != types.EmptyCodeHash {
return fmt.Errorf("%w: address %v, codehash: %s", ErrSenderNoEOA,
msg.From.Hex(), codeHash)
}
}
// Make sure that transaction gasFeeCap is greater than the baseFee (post london)
// begin PluGeth injection
if st.evm.ChainConfig().Is1559(st.evm.Context.BlockNumber) {
// end PluGeth injection
// Skip the checks if gas fields are zero and baseFee was explicitly disabled (eth_call)
skipCheck := st.evm.Config.NoBaseFee && msg.GasFeeCap.BitLen() == 0 && msg.GasTipCap.BitLen() == 0
if !skipCheck {
if l := msg.GasFeeCap.BitLen(); l > 256 {
return fmt.Errorf("%w: address %v, maxFeePerGas bit length: %d", ErrFeeCapVeryHigh,
msg.From.Hex(), l)
}
if l := msg.GasTipCap.BitLen(); l > 256 {
return fmt.Errorf("%w: address %v, maxPriorityFeePerGas bit length: %d", ErrTipVeryHigh,
msg.From.Hex(), l)
}
if msg.GasFeeCap.Cmp(msg.GasTipCap) < 0 {
return fmt.Errorf("%w: address %v, maxPriorityFeePerGas: %s, maxFeePerGas: %s", ErrTipAboveFeeCap,
msg.From.Hex(), msg.GasTipCap, msg.GasFeeCap)
}
// This will panic if baseFee is nil, but basefee presence is verified
// as part of header validation.
if msg.GasFeeCap.Cmp(st.evm.Context.BaseFee) < 0 {
return fmt.Errorf("%w: address %v, maxFeePerGas: %s, baseFee: %s", ErrFeeCapTooLow,
msg.From.Hex(), msg.GasFeeCap, st.evm.Context.BaseFee)
}
}
}
// Check the blob version validity
if msg.BlobHashes != nil {
// The to field of a blob tx type is mandatory, and a `BlobTx` transaction internally
// has it as a non-nillable value, so any msg derived from blob transaction has it non-nil.
// However, messages created through RPC (eth_call) don't have this restriction.
if msg.To == nil {
return ErrBlobTxCreate
}
if len(msg.BlobHashes) == 0 {
return ErrMissingBlobHashes
}
for i, hash := range msg.BlobHashes {
if !kzg4844.IsValidVersionedHash(hash[:]) {
return fmt.Errorf("blob %d has invalid hash version", i)
}
}
}
// Check that the user is paying at least the current blob fee
if st.evm.ChainConfig().IsCancun(st.evm.Context.BlockNumber, st.evm.Context.Time) {
if st.blobGasUsed() > 0 {
// Skip the checks if gas fields are zero and blobBaseFee was explicitly disabled (eth_call)
skipCheck := st.evm.Config.NoBaseFee && msg.BlobGasFeeCap.BitLen() == 0
if !skipCheck {
// This will panic if blobBaseFee is nil, but blobBaseFee presence
// is verified as part of header validation.
if msg.BlobGasFeeCap.Cmp(st.evm.Context.BlobBaseFee) < 0 {
return fmt.Errorf("%w: address %v blobGasFeeCap: %v, blobBaseFee: %v", ErrBlobFeeCapTooLow,
msg.From.Hex(), msg.BlobGasFeeCap, st.evm.Context.BlobBaseFee)
}
}
}
}
return st.buyGas()
}
// TransitionDb will transition the state by applying the current message and
// returning the evm execution result with following fields.
//
// - used gas: total gas used (including gas being refunded)
// - returndata: the returned data from evm
// - concrete execution error: various EVM errors which abort the execution, e.g.
// ErrOutOfGas, ErrExecutionReverted
//
// However if any consensus issue encountered, return the error directly with
// nil evm execution result.
func (st *StateTransition) TransitionDb() (*ExecutionResult, error) {
// First check this message satisfies all consensus rules before
// applying the message. The rules include these clauses
//
// 1. the nonce of the message caller is correct
// 2. caller has enough balance to cover transaction fee(gaslimit * gasprice)
// 3. the amount of gas required is available in the block
// 4. the purchased gas is enough to cover intrinsic usage
// 5. there is no overflow when calculating intrinsic gas
// 6. caller has enough balance to cover asset transfer for **topmost** call
// Check clauses 1-3, buy gas if everything is correct
// begin PluGeth injection
if v, ok := st.evm.Config.Tracer.(PreTracer); ok {
v.CapturePreStart(st.msg.From, st.msg.To, st.msg.Data, st.msg.GasLimit, st.msg.Value)
}
// end PluGeth injection
if err := st.preCheck(); err != nil {
return nil, err
}
if tracer := st.evm.Config.Tracer; tracer != nil {
tracer.CaptureTxStart(st.initialGas)
defer func() {
tracer.CaptureTxEnd(st.gasRemaining)
}()
}
var (
msg = st.msg
sender = vm.AccountRef(msg.From)
rules = st.evm.ChainConfig().Rules(st.evm.Context.BlockNumber, st.evm.Context.Random != nil, st.evm.Context.Time)
contractCreation = msg.To == nil
)
// Check clauses 4-5, subtract intrinsic gas if everything is correct
gas, err := IntrinsicGas(msg.Data, msg.AccessList, contractCreation, rules.IsHomestead, rules.IsIstanbul, rules.IsShanghai)
if err != nil {
return nil, err
}
if st.gasRemaining < gas {
return nil, fmt.Errorf("%w: have %d, want %d", ErrIntrinsicGas, st.gasRemaining, gas)
}
st.gasRemaining -= gas
// Check clause 6
value, overflow := uint256.FromBig(msg.Value)
if overflow {
return nil, fmt.Errorf("%w: address %v", ErrInsufficientFundsForTransfer, msg.From.Hex())
}
if !value.IsZero() && !st.evm.Context.CanTransfer(st.state, msg.From, value) {
return nil, fmt.Errorf("%w: address %v", ErrInsufficientFundsForTransfer, msg.From.Hex())
}
// Check whether the init code size has been exceeded.
if rules.IsShanghai && contractCreation && len(msg.Data) > params.MaxInitCodeSize {
return nil, fmt.Errorf("%w: code size %v limit %v", ErrMaxInitCodeSizeExceeded, len(msg.Data), params.MaxInitCodeSize)
}
// Execute the preparatory steps for state transition which includes:
// - prepare accessList(post-berlin)
// - reset transient storage(eip 1153)
st.state.Prepare(rules, msg.From, st.evm.Context.Coinbase, msg.To, vm.ActivePrecompiles(rules), msg.AccessList)
var (
ret []byte
vmerr error // vm errors do not effect consensus and are therefore not assigned to err
)
if contractCreation {
ret, _, st.gasRemaining, vmerr = st.evm.Create(sender, msg.Data, st.gasRemaining, value)
} else {
// Increment the nonce for the next transaction
st.state.SetNonce(msg.From, st.state.GetNonce(sender.Address())+1)
ret, st.gasRemaining, vmerr = st.evm.Call(sender, st.to(), msg.Data, st.gasRemaining, value)
}
var gasRefund uint64
if !rules.IsLondon {
// Before EIP-3529: refunds were capped to gasUsed / 2
gasRefund = st.refundGas(params.RefundQuotient)
} else {
// After EIP-3529: refunds are capped to gasUsed / 5
gasRefund = st.refundGas(params.RefundQuotientEIP3529)
}
effectiveTip := msg.GasPrice
if rules.IsLondon {
// begin PluGeth injection
if st.evm.ChainConfig().Is1559(st.evm.Context.BlockNumber) {
// end PluGeth injection
effectiveTip = cmath.BigMin(msg.GasTipCap, new(big.Int).Sub(msg.GasFeeCap, st.evm.Context.BaseFee))
}
}
effectiveTipU256, _ := uint256.FromBig(effectiveTip)
if st.evm.Config.NoBaseFee && msg.GasFeeCap.Sign() == 0 && msg.GasTipCap.Sign() == 0 {
// Skip fee payment when NoBaseFee is set and the fee fields
// are 0. This avoids a negative effectiveTip being applied to
// the coinbase when simulating calls.
} else {
fee := new(uint256.Int).SetUint64(st.gasUsed())
fee.Mul(fee, effectiveTipU256)
st.state.AddBalance(st.evm.Context.Coinbase, fee)
}
return &ExecutionResult{
UsedGas: st.gasUsed(),
RefundedGas: gasRefund,
Err: vmerr,
ReturnData: ret,
}, nil
}
func (st *StateTransition) refundGas(refundQuotient uint64) uint64 {
// Apply refund counter, capped to a refund quotient
refund := st.gasUsed() / refundQuotient
if refund > st.state.GetRefund() {
refund = st.state.GetRefund()
}
st.gasRemaining += refund
// Return ETH for remaining gas, exchanged at the original rate.
remaining := uint256.NewInt(st.gasRemaining)
remaining = remaining.Mul(remaining, uint256.MustFromBig(st.msg.GasPrice))
st.state.AddBalance(st.msg.From, remaining)
// Also return remaining gas to the block gas counter so it is
// available for the next transaction.
st.gp.AddGas(st.gasRemaining)
return refund
}
// gasUsed returns the amount of gas used up by the state transition.
func (st *StateTransition) gasUsed() uint64 {
return st.initialGas - st.gasRemaining
}
// blobGasUsed returns the amount of blob gas used by the message.
func (st *StateTransition) blobGasUsed() uint64 {
return uint64(len(st.msg.BlobHashes) * params.BlobTxBlobGasPerBlob)
}