plugeth/trie/trie_test.go
rjl493456442 fe91d476ba
all: remove the dependency from trie to triedb (#28824)
This change removes the dependency from trie package to triedb package.
2024-02-13 14:49:53 +01:00

1215 lines
39 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"hash"
"io"
"math/rand"
"reflect"
"sort"
"testing"
"testing/quick"
"github.com/davecgh/go-spew/spew"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/holiman/uint256"
"golang.org/x/crypto/sha3"
)
func init() {
spew.Config.Indent = " "
spew.Config.DisableMethods = false
}
func TestEmptyTrie(t *testing.T) {
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
res := trie.Hash()
exp := types.EmptyRootHash
if res != exp {
t.Errorf("expected %x got %x", exp, res)
}
}
func TestNull(t *testing.T) {
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
key := make([]byte, 32)
value := []byte("test")
trie.MustUpdate(key, value)
if !bytes.Equal(trie.MustGet(key), value) {
t.Fatal("wrong value")
}
}
func TestMissingRoot(t *testing.T) {
testMissingRoot(t, rawdb.HashScheme)
testMissingRoot(t, rawdb.PathScheme)
}
func testMissingRoot(t *testing.T, scheme string) {
root := common.HexToHash("0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33")
trie, err := New(TrieID(root), newTestDatabase(rawdb.NewMemoryDatabase(), scheme))
if trie != nil {
t.Error("New returned non-nil trie for invalid root")
}
if _, ok := err.(*MissingNodeError); !ok {
t.Errorf("New returned wrong error: %v", err)
}
}
func TestMissingNode(t *testing.T) {
testMissingNode(t, false, rawdb.HashScheme)
testMissingNode(t, false, rawdb.PathScheme)
testMissingNode(t, true, rawdb.HashScheme)
testMissingNode(t, true, rawdb.PathScheme)
}
func testMissingNode(t *testing.T, memonly bool, scheme string) {
diskdb := rawdb.NewMemoryDatabase()
triedb := newTestDatabase(diskdb, scheme)
trie := NewEmpty(triedb)
updateString(trie, "120000", "qwerqwerqwerqwerqwerqwerqwerqwer")
updateString(trie, "123456", "asdfasdfasdfasdfasdfasdfasdfasdf")
root, nodes, _ := trie.Commit(false)
triedb.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
if !memonly {
triedb.Commit(root)
}
trie, _ = New(TrieID(root), triedb)
_, err := trie.Get([]byte("120000"))
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
trie, _ = New(TrieID(root), triedb)
_, err = trie.Get([]byte("120099"))
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
trie, _ = New(TrieID(root), triedb)
_, err = trie.Get([]byte("123456"))
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
trie, _ = New(TrieID(root), triedb)
err = trie.Update([]byte("120099"), []byte("zxcvzxcvzxcvzxcvzxcvzxcvzxcvzxcv"))
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
trie, _ = New(TrieID(root), triedb)
err = trie.Delete([]byte("123456"))
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
var (
path []byte
hash = common.HexToHash("0xe1d943cc8f061a0c0b98162830b970395ac9315654824bf21b73b891365262f9")
)
for p, n := range nodes.Nodes {
if n.Hash == hash {
path = common.CopyBytes([]byte(p))
break
}
}
trie, _ = New(TrieID(root), triedb)
if memonly {
trie.reader.banned = map[string]struct{}{string(path): {}}
} else {
rawdb.DeleteTrieNode(diskdb, common.Hash{}, path, hash, scheme)
}
_, err = trie.Get([]byte("120000"))
if _, ok := err.(*MissingNodeError); !ok {
t.Errorf("Wrong error: %v", err)
}
_, err = trie.Get([]byte("120099"))
if _, ok := err.(*MissingNodeError); !ok {
t.Errorf("Wrong error: %v", err)
}
_, err = trie.Get([]byte("123456"))
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
err = trie.Update([]byte("120099"), []byte("zxcv"))
if _, ok := err.(*MissingNodeError); !ok {
t.Errorf("Wrong error: %v", err)
}
err = trie.Delete([]byte("123456"))
if _, ok := err.(*MissingNodeError); !ok {
t.Errorf("Wrong error: %v", err)
}
}
func TestInsert(t *testing.T) {
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
updateString(trie, "doe", "reindeer")
updateString(trie, "dog", "puppy")
updateString(trie, "dogglesworth", "cat")
exp := common.HexToHash("8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3")
root := trie.Hash()
if root != exp {
t.Errorf("case 1: exp %x got %x", exp, root)
}
trie = NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
updateString(trie, "A", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa")
exp = common.HexToHash("d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab")
root, _, _ = trie.Commit(false)
if root != exp {
t.Errorf("case 2: exp %x got %x", exp, root)
}
}
func TestGet(t *testing.T) {
db := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie := NewEmpty(db)
updateString(trie, "doe", "reindeer")
updateString(trie, "dog", "puppy")
updateString(trie, "dogglesworth", "cat")
for i := 0; i < 2; i++ {
res := getString(trie, "dog")
if !bytes.Equal(res, []byte("puppy")) {
t.Errorf("expected puppy got %x", res)
}
unknown := getString(trie, "unknown")
if unknown != nil {
t.Errorf("expected nil got %x", unknown)
}
if i == 1 {
return
}
root, nodes, _ := trie.Commit(false)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
trie, _ = New(TrieID(root), db)
}
}
func TestDelete(t *testing.T) {
db := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie := NewEmpty(db)
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"ether", ""},
{"dog", "puppy"},
{"shaman", ""},
}
for _, val := range vals {
if val.v != "" {
updateString(trie, val.k, val.v)
} else {
deleteString(trie, val.k)
}
}
hash := trie.Hash()
exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84")
if hash != exp {
t.Errorf("expected %x got %x", exp, hash)
}
}
func TestEmptyValues(t *testing.T) {
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"ether", ""},
{"dog", "puppy"},
{"shaman", ""},
}
for _, val := range vals {
updateString(trie, val.k, val.v)
}
hash := trie.Hash()
exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84")
if hash != exp {
t.Errorf("expected %x got %x", exp, hash)
}
}
func TestReplication(t *testing.T) {
db := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie := NewEmpty(db)
vals := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
{"shaman", "horse"},
{"doge", "coin"},
{"dog", "puppy"},
{"somethingveryoddindeedthis is", "myothernodedata"},
}
for _, val := range vals {
updateString(trie, val.k, val.v)
}
root, nodes, _ := trie.Commit(false)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
// create a new trie on top of the database and check that lookups work.
trie2, err := New(TrieID(root), db)
if err != nil {
t.Fatalf("can't recreate trie at %x: %v", root, err)
}
for _, kv := range vals {
if string(getString(trie2, kv.k)) != kv.v {
t.Errorf("trie2 doesn't have %q => %q", kv.k, kv.v)
}
}
hash, nodes, _ := trie2.Commit(false)
if hash != root {
t.Errorf("root failure. expected %x got %x", root, hash)
}
// recreate the trie after commit
if nodes != nil {
db.Update(hash, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
}
trie2, err = New(TrieID(hash), db)
if err != nil {
t.Fatalf("can't recreate trie at %x: %v", hash, err)
}
// perform some insertions on the new trie.
vals2 := []struct{ k, v string }{
{"do", "verb"},
{"ether", "wookiedoo"},
{"horse", "stallion"},
// {"shaman", "horse"},
// {"doge", "coin"},
// {"ether", ""},
// {"dog", "puppy"},
// {"somethingveryoddindeedthis is", "myothernodedata"},
// {"shaman", ""},
}
for _, val := range vals2 {
updateString(trie2, val.k, val.v)
}
if trie2.Hash() != hash {
t.Errorf("root failure. expected %x got %x", hash, hash)
}
}
func TestLargeValue(t *testing.T) {
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
trie.MustUpdate([]byte("key1"), []byte{99, 99, 99, 99})
trie.MustUpdate([]byte("key2"), bytes.Repeat([]byte{1}, 32))
trie.Hash()
}
// TestRandomCases tests some cases that were found via random fuzzing
func TestRandomCases(t *testing.T) {
var rt = []randTestStep{
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 0
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 1
{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000002")}, // step 2
{op: 2, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 3
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 4
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 5
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 6
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 7
{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000008")}, // step 8
{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000009")}, // step 9
{op: 2, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 10
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 11
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 12
{op: 0, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("000000000000000d")}, // step 13
{op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 14
{op: 1, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 15
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 16
{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000011")}, // step 17
{op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 18
{op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 19
{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000014")}, // step 20
{op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000015")}, // step 21
{op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000016")}, // step 22
{op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 23
{op: 1, key: common.Hex2Bytes("980c393656413a15c8da01978ed9f89feb80b502f58f2d640e3a2f5f7a99a7018f1b573befd92053ac6f78fca4a87268"), value: common.Hex2Bytes("")}, // step 24
{op: 1, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 25
}
if err := runRandTest(rt); err != nil {
t.Fatal(err)
}
}
// randTest performs random trie operations.
// Instances of this test are created by Generate.
type randTest []randTestStep
// compile-time interface check
var _ quick.Generator = (randTest)(nil)
type randTestStep struct {
op int
key []byte // for opUpdate, opDelete, opGet
value []byte // for opUpdate
err error // for debugging
}
const (
opUpdate = iota
opDelete
opGet
opHash
opCommit
opItercheckhash
opNodeDiff
opProve
opMax // boundary value, not an actual op
)
func (randTest) Generate(r *rand.Rand, size int) reflect.Value {
var finishedFn = func() bool {
size--
return size == 0
}
return reflect.ValueOf(generateSteps(finishedFn, r))
}
func generateSteps(finished func() bool, r io.Reader) randTest {
var allKeys [][]byte
var one = []byte{0}
genKey := func() []byte {
r.Read(one)
if len(allKeys) < 2 || one[0]%100 > 90 {
// new key
size := one[0] % 50
key := make([]byte, size)
r.Read(key)
allKeys = append(allKeys, key)
return key
}
// use existing key
idx := int(one[0]) % len(allKeys)
return allKeys[idx]
}
var steps randTest
for !finished() {
r.Read(one)
step := randTestStep{op: int(one[0]) % opMax}
switch step.op {
case opUpdate:
step.key = genKey()
step.value = make([]byte, 8)
binary.BigEndian.PutUint64(step.value, uint64(len(steps)))
case opGet, opDelete, opProve:
step.key = genKey()
}
steps = append(steps, step)
}
return steps
}
func verifyAccessList(old *Trie, new *Trie, set *trienode.NodeSet) error {
deletes, inserts, updates := diffTries(old, new)
// Check insertion set
for path := range inserts {
n, ok := set.Nodes[path]
if !ok || n.IsDeleted() {
return errors.New("expect new node")
}
//if len(n.Prev) > 0 {
// return errors.New("unexpected origin value")
//}
}
// Check deletion set
for path := range deletes {
n, ok := set.Nodes[path]
if !ok || !n.IsDeleted() {
return errors.New("expect deleted node")
}
//if len(n.Prev) == 0 {
// return errors.New("expect origin value")
//}
//if !bytes.Equal(n.Prev, blob) {
// return errors.New("invalid origin value")
//}
}
// Check update set
for path := range updates {
n, ok := set.Nodes[path]
if !ok || n.IsDeleted() {
return errors.New("expect updated node")
}
//if len(n.Prev) == 0 {
// return errors.New("expect origin value")
//}
//if !bytes.Equal(n.Prev, blob) {
// return errors.New("invalid origin value")
//}
}
return nil
}
// runRandTestBool coerces error to boolean, for use in quick.Check
func runRandTestBool(rt randTest) bool {
return runRandTest(rt) == nil
}
func runRandTest(rt randTest) error {
var scheme = rawdb.HashScheme
if rand.Intn(2) == 0 {
scheme = rawdb.PathScheme
}
var (
origin = types.EmptyRootHash
triedb = newTestDatabase(rawdb.NewMemoryDatabase(), scheme)
tr = NewEmpty(triedb)
values = make(map[string]string) // tracks content of the trie
origTrie = NewEmpty(triedb)
)
for i, step := range rt {
// fmt.Printf("{op: %d, key: common.Hex2Bytes(\"%x\"), value: common.Hex2Bytes(\"%x\")}, // step %d\n",
// step.op, step.key, step.value, i)
switch step.op {
case opUpdate:
tr.MustUpdate(step.key, step.value)
values[string(step.key)] = string(step.value)
case opDelete:
tr.MustDelete(step.key)
delete(values, string(step.key))
case opGet:
v := tr.MustGet(step.key)
want := values[string(step.key)]
if string(v) != want {
rt[i].err = fmt.Errorf("mismatch for key %#x, got %#x want %#x", step.key, v, want)
}
case opProve:
hash := tr.Hash()
if hash == types.EmptyRootHash {
continue
}
proofDb := rawdb.NewMemoryDatabase()
err := tr.Prove(step.key, proofDb)
if err != nil {
rt[i].err = fmt.Errorf("failed for proving key %#x, %v", step.key, err)
}
_, err = VerifyProof(hash, step.key, proofDb)
if err != nil {
rt[i].err = fmt.Errorf("failed for verifying key %#x, %v", step.key, err)
}
case opHash:
tr.Hash()
case opCommit:
root, nodes, _ := tr.Commit(true)
if nodes != nil {
triedb.Update(root, origin, trienode.NewWithNodeSet(nodes))
}
newtr, err := New(TrieID(root), triedb)
if err != nil {
rt[i].err = err
return err
}
if nodes != nil {
if err := verifyAccessList(origTrie, newtr, nodes); err != nil {
rt[i].err = err
return err
}
}
tr = newtr
origTrie = tr.Copy()
origin = root
case opItercheckhash:
checktr := NewEmpty(triedb)
it := NewIterator(tr.MustNodeIterator(nil))
for it.Next() {
checktr.MustUpdate(it.Key, it.Value)
}
if tr.Hash() != checktr.Hash() {
rt[i].err = fmt.Errorf("hash mismatch in opItercheckhash")
}
case opNodeDiff:
var (
origIter = origTrie.MustNodeIterator(nil)
curIter = tr.MustNodeIterator(nil)
origSeen = make(map[string]struct{})
curSeen = make(map[string]struct{})
)
for origIter.Next(true) {
if origIter.Leaf() {
continue
}
origSeen[string(origIter.Path())] = struct{}{}
}
for curIter.Next(true) {
if curIter.Leaf() {
continue
}
curSeen[string(curIter.Path())] = struct{}{}
}
var (
insertExp = make(map[string]struct{})
deleteExp = make(map[string]struct{})
)
for path := range curSeen {
_, present := origSeen[path]
if !present {
insertExp[path] = struct{}{}
}
}
for path := range origSeen {
_, present := curSeen[path]
if !present {
deleteExp[path] = struct{}{}
}
}
if len(insertExp) != len(tr.tracer.inserts) {
rt[i].err = fmt.Errorf("insert set mismatch")
}
if len(deleteExp) != len(tr.tracer.deletes) {
rt[i].err = fmt.Errorf("delete set mismatch")
}
for insert := range tr.tracer.inserts {
if _, present := insertExp[insert]; !present {
rt[i].err = fmt.Errorf("missing inserted node")
}
}
for del := range tr.tracer.deletes {
if _, present := deleteExp[del]; !present {
rt[i].err = fmt.Errorf("missing deleted node")
}
}
}
// Abort the test on error.
if rt[i].err != nil {
return rt[i].err
}
}
return nil
}
func TestRandom(t *testing.T) {
if err := quick.Check(runRandTestBool, nil); err != nil {
if cerr, ok := err.(*quick.CheckError); ok {
t.Fatalf("random test iteration %d failed: %s", cerr.Count, spew.Sdump(cerr.In))
}
t.Fatal(err)
}
}
func BenchmarkGet(b *testing.B) { benchGet(b) }
func BenchmarkUpdateBE(b *testing.B) { benchUpdate(b, binary.BigEndian) }
func BenchmarkUpdateLE(b *testing.B) { benchUpdate(b, binary.LittleEndian) }
const benchElemCount = 20000
func benchGet(b *testing.B) {
triedb := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme)
trie := NewEmpty(triedb)
k := make([]byte, 32)
for i := 0; i < benchElemCount; i++ {
binary.LittleEndian.PutUint64(k, uint64(i))
v := make([]byte, 32)
binary.LittleEndian.PutUint64(v, uint64(i))
trie.MustUpdate(k, v)
}
binary.LittleEndian.PutUint64(k, benchElemCount/2)
b.ResetTimer()
for i := 0; i < b.N; i++ {
trie.MustGet(k)
}
b.StopTimer()
}
func benchUpdate(b *testing.B, e binary.ByteOrder) *Trie {
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
k := make([]byte, 32)
b.ReportAllocs()
for i := 0; i < b.N; i++ {
v := make([]byte, 32)
e.PutUint64(k, uint64(i))
e.PutUint64(v, uint64(i))
trie.MustUpdate(k, v)
}
return trie
}
// Benchmarks the trie hashing. Since the trie caches the result of any operation,
// we cannot use b.N as the number of hashing rounds, since all rounds apart from
// the first one will be NOOP. As such, we'll use b.N as the number of account to
// insert into the trie before measuring the hashing.
// BenchmarkHash-6 288680 4561 ns/op 682 B/op 9 allocs/op
// BenchmarkHash-6 275095 4800 ns/op 685 B/op 9 allocs/op
// pure hasher:
// BenchmarkHash-6 319362 4230 ns/op 675 B/op 9 allocs/op
// BenchmarkHash-6 257460 4674 ns/op 689 B/op 9 allocs/op
// With hashing in-between and pure hasher:
// BenchmarkHash-6 225417 7150 ns/op 982 B/op 12 allocs/op
// BenchmarkHash-6 220378 6197 ns/op 983 B/op 12 allocs/op
// same with old hasher
// BenchmarkHash-6 229758 6437 ns/op 981 B/op 12 allocs/op
// BenchmarkHash-6 212610 7137 ns/op 986 B/op 12 allocs/op
func BenchmarkHash(b *testing.B) {
// Create a realistic account trie to hash. We're first adding and hashing N
// entries, then adding N more.
addresses, accounts := makeAccounts(2 * b.N)
// Insert the accounts into the trie and hash it
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
i := 0
for ; i < len(addresses)/2; i++ {
trie.MustUpdate(crypto.Keccak256(addresses[i][:]), accounts[i])
}
trie.Hash()
for ; i < len(addresses); i++ {
trie.MustUpdate(crypto.Keccak256(addresses[i][:]), accounts[i])
}
b.ResetTimer()
b.ReportAllocs()
//trie.hashRoot(nil, nil)
trie.Hash()
}
// Benchmarks the trie Commit following a Hash. Since the trie caches the result of any operation,
// we cannot use b.N as the number of hashing rounds, since all rounds apart from
// the first one will be NOOP. As such, we'll use b.N as the number of account to
// insert into the trie before measuring the hashing.
func BenchmarkCommitAfterHash(b *testing.B) {
b.Run("no-onleaf", func(b *testing.B) {
benchmarkCommitAfterHash(b, false)
})
b.Run("with-onleaf", func(b *testing.B) {
benchmarkCommitAfterHash(b, true)
})
}
func benchmarkCommitAfterHash(b *testing.B, collectLeaf bool) {
// Make the random benchmark deterministic
addresses, accounts := makeAccounts(b.N)
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
for i := 0; i < len(addresses); i++ {
trie.MustUpdate(crypto.Keccak256(addresses[i][:]), accounts[i])
}
// Insert the accounts into the trie and hash it
trie.Hash()
b.ResetTimer()
b.ReportAllocs()
trie.Commit(collectLeaf)
}
func TestTinyTrie(t *testing.T) {
// Create a realistic account trie to hash
_, accounts := makeAccounts(5)
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
trie.MustUpdate(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001337"), accounts[3])
if exp, root := common.HexToHash("8c6a85a4d9fda98feff88450299e574e5378e32391f75a055d470ac0653f1005"), trie.Hash(); exp != root {
t.Errorf("1: got %x, exp %x", root, exp)
}
trie.MustUpdate(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001338"), accounts[4])
if exp, root := common.HexToHash("ec63b967e98a5720e7f720482151963982890d82c9093c0d486b7eb8883a66b1"), trie.Hash(); exp != root {
t.Errorf("2: got %x, exp %x", root, exp)
}
trie.MustUpdate(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001339"), accounts[4])
if exp, root := common.HexToHash("0608c1d1dc3905fa22204c7a0e43644831c3b6d3def0f274be623a948197e64a"), trie.Hash(); exp != root {
t.Errorf("3: got %x, exp %x", root, exp)
}
checktr := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
it := NewIterator(trie.MustNodeIterator(nil))
for it.Next() {
checktr.MustUpdate(it.Key, it.Value)
}
if troot, itroot := trie.Hash(), checktr.Hash(); troot != itroot {
t.Fatalf("hash mismatch in opItercheckhash, trie: %x, check: %x", troot, itroot)
}
}
func TestCommitAfterHash(t *testing.T) {
// Create a realistic account trie to hash
addresses, accounts := makeAccounts(1000)
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
for i := 0; i < len(addresses); i++ {
trie.MustUpdate(crypto.Keccak256(addresses[i][:]), accounts[i])
}
// Insert the accounts into the trie and hash it
trie.Hash()
trie.Commit(false)
root := trie.Hash()
exp := common.HexToHash("72f9d3f3fe1e1dd7b8936442e7642aef76371472d94319900790053c493f3fe6")
if exp != root {
t.Errorf("got %x, exp %x", root, exp)
}
root, _, _ = trie.Commit(false)
if exp != root {
t.Errorf("got %x, exp %x", root, exp)
}
}
func makeAccounts(size int) (addresses [][20]byte, accounts [][]byte) {
// Make the random benchmark deterministic
random := rand.New(rand.NewSource(0))
// Create a realistic account trie to hash
addresses = make([][20]byte, size)
for i := 0; i < len(addresses); i++ {
data := make([]byte, 20)
random.Read(data)
copy(addresses[i][:], data)
}
accounts = make([][]byte, len(addresses))
for i := 0; i < len(accounts); i++ {
var (
nonce = uint64(random.Int63())
root = types.EmptyRootHash
code = crypto.Keccak256(nil)
)
// The big.Rand function is not deterministic with regards to 64 vs 32 bit systems,
// and will consume different amount of data from the rand source.
//balance = new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil))
// Therefore, we instead just read via byte buffer
numBytes := random.Uint32() % 33 // [0, 32] bytes
balanceBytes := make([]byte, numBytes)
random.Read(balanceBytes)
balance := new(uint256.Int).SetBytes(balanceBytes)
data, _ := rlp.EncodeToBytes(&types.StateAccount{Nonce: nonce, Balance: balance, Root: root, CodeHash: code})
accounts[i] = data
}
return addresses, accounts
}
// spongeDb is a dummy db backend which accumulates writes in a sponge
type spongeDb struct {
sponge hash.Hash
id string
journal []string
keys []string
values map[string]string
}
func (s *spongeDb) Has(key []byte) (bool, error) { panic("implement me") }
func (s *spongeDb) Get(key []byte) ([]byte, error) { return nil, errors.New("no such elem") }
func (s *spongeDb) Delete(key []byte) error { panic("implement me") }
func (s *spongeDb) NewBatch() ethdb.Batch { return &spongeBatch{s} }
func (s *spongeDb) NewBatchWithSize(size int) ethdb.Batch { return &spongeBatch{s} }
func (s *spongeDb) NewSnapshot() (ethdb.Snapshot, error) { panic("implement me") }
func (s *spongeDb) Stat(property string) (string, error) { panic("implement me") }
func (s *spongeDb) Compact(start []byte, limit []byte) error { panic("implement me") }
func (s *spongeDb) Close() error { return nil }
func (s *spongeDb) Put(key []byte, value []byte) error {
var (
keybrief = key
valbrief = value
)
if len(keybrief) > 8 {
keybrief = keybrief[:8]
}
if len(valbrief) > 8 {
valbrief = valbrief[:8]
}
s.journal = append(s.journal, fmt.Sprintf("%v: PUT([%x...], [%d bytes] %x...)\n", s.id, keybrief, len(value), valbrief))
if s.values == nil {
s.sponge.Write(key)
s.sponge.Write(value)
} else {
s.keys = append(s.keys, string(key))
s.values[string(key)] = string(value)
}
return nil
}
func (s *spongeDb) NewIterator(prefix []byte, start []byte) ethdb.Iterator { panic("implement me") }
func (s *spongeDb) Flush() {
// Bottom-up, the longest path first
sort.Sort(sort.Reverse(sort.StringSlice(s.keys)))
for _, key := range s.keys {
s.sponge.Write([]byte(key))
s.sponge.Write([]byte(s.values[key]))
}
}
// spongeBatch is a dummy batch which immediately writes to the underlying spongedb
type spongeBatch struct {
db *spongeDb
}
func (b *spongeBatch) Put(key, value []byte) error {
b.db.Put(key, value)
return nil
}
func (b *spongeBatch) Delete(key []byte) error { panic("implement me") }
func (b *spongeBatch) ValueSize() int { return 100 }
func (b *spongeBatch) Write() error { return nil }
func (b *spongeBatch) Reset() {}
func (b *spongeBatch) Replay(w ethdb.KeyValueWriter) error { return nil }
// TestCommitSequence tests that the trie.Commit operation writes the elements of the trie
// in the expected order.
// The test data was based on the 'master' code, and is basically random. It can be used
// to check whether changes to the trie modifies the write order or data in any way.
func TestCommitSequence(t *testing.T) {
for i, tc := range []struct {
count int
expWriteSeqHash []byte
}{
{20, common.FromHex("330b0afae2853d96b9f015791fbe0fb7f239bf65f335f16dfc04b76c7536276d")},
{200, common.FromHex("5162b3735c06b5d606b043a3ee8adbdbbb408543f4966bca9dcc63da82684eeb")},
{2000, common.FromHex("4574cd8e6b17f3fe8ad89140d1d0bf4f1bd7a87a8ac3fb623b33550544c77635")},
} {
addresses, accounts := makeAccounts(tc.count)
// This spongeDb is used to check the sequence of disk-db-writes
s := &spongeDb{sponge: sha3.NewLegacyKeccak256()}
db := newTestDatabase(rawdb.NewDatabase(s), rawdb.HashScheme)
trie := NewEmpty(db)
// Fill the trie with elements
for i := 0; i < tc.count; i++ {
trie.MustUpdate(crypto.Keccak256(addresses[i][:]), accounts[i])
}
// Flush trie -> database
root, nodes, _ := trie.Commit(false)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
// Flush memdb -> disk (sponge)
db.Commit(root)
if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) {
t.Errorf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp)
}
}
}
// TestCommitSequenceRandomBlobs is identical to TestCommitSequence
// but uses random blobs instead of 'accounts'
func TestCommitSequenceRandomBlobs(t *testing.T) {
for i, tc := range []struct {
count int
expWriteSeqHash []byte
}{
{20, common.FromHex("8016650c7a50cf88485fd06cde52d634a89711051107f00d21fae98234f2f13d")},
{200, common.FromHex("dde92ca9812e068e6982d04b40846dc65a61a9fd4996fc0f55f2fde172a8e13c")},
{2000, common.FromHex("ab553a7f9aff82e3929c382908e30ef7dd17a332933e92ba3fe873fc661ef382")},
} {
prng := rand.New(rand.NewSource(int64(i)))
// This spongeDb is used to check the sequence of disk-db-writes
s := &spongeDb{sponge: sha3.NewLegacyKeccak256()}
db := newTestDatabase(rawdb.NewDatabase(s), rawdb.HashScheme)
trie := NewEmpty(db)
// Fill the trie with elements
for i := 0; i < tc.count; i++ {
key := make([]byte, 32)
var val []byte
// 50% short elements, 50% large elements
if prng.Intn(2) == 0 {
val = make([]byte, 1+prng.Intn(32))
} else {
val = make([]byte, 1+prng.Intn(4096))
}
prng.Read(key)
prng.Read(val)
trie.MustUpdate(key, val)
}
// Flush trie -> database
root, nodes, _ := trie.Commit(false)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
// Flush memdb -> disk (sponge)
db.Commit(root)
if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) {
t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp)
}
}
}
func TestCommitSequenceStackTrie(t *testing.T) {
for count := 1; count < 200; count++ {
prng := rand.New(rand.NewSource(int64(count)))
// This spongeDb is used to check the sequence of disk-db-writes
s := &spongeDb{
sponge: sha3.NewLegacyKeccak256(),
id: "a",
values: make(map[string]string),
}
db := newTestDatabase(rawdb.NewDatabase(s), rawdb.HashScheme)
trie := NewEmpty(db)
// Another sponge is used for the stacktrie commits
stackTrieSponge := &spongeDb{
sponge: sha3.NewLegacyKeccak256(),
id: "b",
values: make(map[string]string),
}
options := NewStackTrieOptions()
options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) {
rawdb.WriteTrieNode(stackTrieSponge, common.Hash{}, path, hash, blob, db.Scheme())
})
stTrie := NewStackTrie(options)
// Fill the trie with elements
for i := 0; i < count; i++ {
// For the stack trie, we need to do inserts in proper order
key := make([]byte, 32)
binary.BigEndian.PutUint64(key, uint64(i))
var val []byte
// 50% short elements, 50% large elements
if prng.Intn(2) == 0 {
val = make([]byte, 1+prng.Intn(32))
} else {
val = make([]byte, 1+prng.Intn(1024))
}
prng.Read(val)
trie.Update(key, val)
stTrie.Update(key, val)
}
// Flush trie -> database
root, nodes, _ := trie.Commit(false)
// Flush memdb -> disk (sponge)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
db.Commit(root)
s.Flush()
// And flush stacktrie -> disk
stRoot := stTrie.Commit()
if stRoot != root {
t.Fatalf("root wrong, got %x exp %x", stRoot, root)
}
stackTrieSponge.Flush()
if got, exp := stackTrieSponge.sponge.Sum(nil), s.sponge.Sum(nil); !bytes.Equal(got, exp) {
// Show the journal
t.Logf("Expected:")
for i, v := range s.journal {
t.Logf("op %d: %v", i, v)
}
t.Logf("Stacktrie:")
for i, v := range stackTrieSponge.journal {
t.Logf("op %d: %v", i, v)
}
t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", count, got, exp)
}
}
}
// TestCommitSequenceSmallRoot tests that a trie which is essentially only a
// small (<32 byte) shortnode with an included value is properly committed to a
// database.
// This case might not matter, since in practice, all keys are 32 bytes, which means
// that even a small trie which contains a leaf will have an extension making it
// not fit into 32 bytes, rlp-encoded. However, it's still the correct thing to do.
func TestCommitSequenceSmallRoot(t *testing.T) {
s := &spongeDb{
sponge: sha3.NewLegacyKeccak256(),
id: "a",
values: make(map[string]string),
}
db := newTestDatabase(rawdb.NewDatabase(s), rawdb.HashScheme)
trie := NewEmpty(db)
// Another sponge is used for the stacktrie commits
stackTrieSponge := &spongeDb{
sponge: sha3.NewLegacyKeccak256(),
id: "b",
values: make(map[string]string),
}
options := NewStackTrieOptions()
options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) {
rawdb.WriteTrieNode(stackTrieSponge, common.Hash{}, path, hash, blob, db.Scheme())
})
stTrie := NewStackTrie(options)
// Add a single small-element to the trie(s)
key := make([]byte, 5)
key[0] = 1
trie.Update(key, []byte{0x1})
stTrie.Update(key, []byte{0x1})
// Flush trie -> database
root, nodes, _ := trie.Commit(false)
// Flush memdb -> disk (sponge)
db.Update(root, types.EmptyRootHash, trienode.NewWithNodeSet(nodes))
db.Commit(root)
// And flush stacktrie -> disk
stRoot := stTrie.Commit()
if stRoot != root {
t.Fatalf("root wrong, got %x exp %x", stRoot, root)
}
t.Logf("root: %x\n", stRoot)
s.Flush()
stackTrieSponge.Flush()
if got, exp := stackTrieSponge.sponge.Sum(nil), s.sponge.Sum(nil); !bytes.Equal(got, exp) {
t.Fatalf("test, disk write sequence wrong:\ngot %x exp %x\n", got, exp)
}
}
// BenchmarkCommitAfterHashFixedSize benchmarks the Commit (after Hash) of a fixed number of updates to a trie.
// This benchmark is meant to capture the difference on efficiency of small versus large changes. Typically,
// storage tries are small (a couple of entries), whereas the full post-block account trie update is large (a couple
// of thousand entries)
func BenchmarkHashFixedSize(b *testing.B) {
b.Run("10", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(20)
for i := 0; i < b.N; i++ {
benchmarkHashFixedSize(b, acc, add)
}
})
b.Run("100", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(100)
for i := 0; i < b.N; i++ {
benchmarkHashFixedSize(b, acc, add)
}
})
b.Run("1K", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(1000)
for i := 0; i < b.N; i++ {
benchmarkHashFixedSize(b, acc, add)
}
})
b.Run("10K", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(10000)
for i := 0; i < b.N; i++ {
benchmarkHashFixedSize(b, acc, add)
}
})
b.Run("100K", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(100000)
for i := 0; i < b.N; i++ {
benchmarkHashFixedSize(b, acc, add)
}
})
}
func benchmarkHashFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) {
b.ReportAllocs()
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
for i := 0; i < len(addresses); i++ {
trie.MustUpdate(crypto.Keccak256(addresses[i][:]), accounts[i])
}
// Insert the accounts into the trie and hash it
b.StartTimer()
trie.Hash()
b.StopTimer()
}
func BenchmarkCommitAfterHashFixedSize(b *testing.B) {
b.Run("10", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(20)
for i := 0; i < b.N; i++ {
benchmarkCommitAfterHashFixedSize(b, acc, add)
}
})
b.Run("100", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(100)
for i := 0; i < b.N; i++ {
benchmarkCommitAfterHashFixedSize(b, acc, add)
}
})
b.Run("1K", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(1000)
for i := 0; i < b.N; i++ {
benchmarkCommitAfterHashFixedSize(b, acc, add)
}
})
b.Run("10K", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(10000)
for i := 0; i < b.N; i++ {
benchmarkCommitAfterHashFixedSize(b, acc, add)
}
})
b.Run("100K", func(b *testing.B) {
b.StopTimer()
acc, add := makeAccounts(100000)
for i := 0; i < b.N; i++ {
benchmarkCommitAfterHashFixedSize(b, acc, add)
}
})
}
func benchmarkCommitAfterHashFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) {
b.ReportAllocs()
trie := NewEmpty(newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.HashScheme))
for i := 0; i < len(addresses); i++ {
trie.MustUpdate(crypto.Keccak256(addresses[i][:]), accounts[i])
}
// Insert the accounts into the trie and hash it
trie.Hash()
b.StartTimer()
trie.Commit(false)
b.StopTimer()
}
func getString(trie *Trie, k string) []byte {
return trie.MustGet([]byte(k))
}
func updateString(trie *Trie, k, v string) {
trie.MustUpdate([]byte(k), []byte(v))
}
func deleteString(trie *Trie, k string) {
trie.MustDelete([]byte(k))
}
func TestDecodeNode(t *testing.T) {
t.Parallel()
var (
hash = make([]byte, 20)
elems = make([]byte, 20)
)
for i := 0; i < 5000000; i++ {
prng.Read(hash)
prng.Read(elems)
decodeNode(hash, elems)
}
}
func FuzzTrie(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
var steps = 500
var input = bytes.NewReader(data)
var finishedFn = func() bool {
steps--
return steps < 0 || input.Len() == 0
}
if err := runRandTest(generateSteps(finishedFn, input)); err != nil {
t.Fatal(err)
}
})
}