plugeth/miner/worker.go

1282 lines
42 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package miner
import (
"errors"
"fmt"
"math/big"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc/eip1559"
"github.com/ethereum/go-ethereum/consensus/misc/eip4844"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/txpool"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
"github.com/holiman/uint256"
)
const (
// resultQueueSize is the size of channel listening to sealing result.
resultQueueSize = 10
// txChanSize is the size of channel listening to NewTxsEvent.
// The number is referenced from the size of tx pool.
txChanSize = 4096
// chainHeadChanSize is the size of channel listening to ChainHeadEvent.
chainHeadChanSize = 10
// resubmitAdjustChanSize is the size of resubmitting interval adjustment channel.
resubmitAdjustChanSize = 10
// minRecommitInterval is the minimal time interval to recreate the sealing block with
// any newly arrived transactions.
minRecommitInterval = 1 * time.Second
// maxRecommitInterval is the maximum time interval to recreate the sealing block with
// any newly arrived transactions.
maxRecommitInterval = 15 * time.Second
// intervalAdjustRatio is the impact a single interval adjustment has on sealing work
// resubmitting interval.
intervalAdjustRatio = 0.1
// intervalAdjustBias is applied during the new resubmit interval calculation in favor of
// increasing upper limit or decreasing lower limit so that the limit can be reachable.
intervalAdjustBias = 200 * 1000.0 * 1000.0
// staleThreshold is the maximum depth of the acceptable stale block.
staleThreshold = 7
)
var (
errBlockInterruptedByNewHead = errors.New("new head arrived while building block")
errBlockInterruptedByRecommit = errors.New("recommit interrupt while building block")
errBlockInterruptedByTimeout = errors.New("timeout while building block")
)
// environment is the worker's current environment and holds all
// information of the sealing block generation.
type environment struct {
signer types.Signer
state *state.StateDB // apply state changes here
tcount int // tx count in cycle
gasPool *core.GasPool // available gas used to pack transactions
coinbase common.Address
header *types.Header
txs []*types.Transaction
receipts []*types.Receipt
sidecars []*types.BlobTxSidecar
blobs int
}
// copy creates a deep copy of environment.
func (env *environment) copy() *environment {
cpy := &environment{
signer: env.signer,
state: env.state.Copy(),
tcount: env.tcount,
coinbase: env.coinbase,
header: types.CopyHeader(env.header),
receipts: copyReceipts(env.receipts),
}
if env.gasPool != nil {
gasPool := *env.gasPool
cpy.gasPool = &gasPool
}
cpy.txs = make([]*types.Transaction, len(env.txs))
copy(cpy.txs, env.txs)
cpy.sidecars = make([]*types.BlobTxSidecar, len(env.sidecars))
copy(cpy.sidecars, env.sidecars)
return cpy
}
// discard terminates the background prefetcher go-routine. It should
// always be called for all created environment instances otherwise
// the go-routine leak can happen.
func (env *environment) discard() {
if env.state == nil {
return
}
env.state.StopPrefetcher()
}
// task contains all information for consensus engine sealing and result submitting.
type task struct {
receipts []*types.Receipt
state *state.StateDB
block *types.Block
createdAt time.Time
}
const (
commitInterruptNone int32 = iota
commitInterruptNewHead
commitInterruptResubmit
commitInterruptTimeout
)
// newWorkReq represents a request for new sealing work submitting with relative interrupt notifier.
type newWorkReq struct {
interrupt *atomic.Int32
timestamp int64
}
// newPayloadResult is the result of payload generation.
type newPayloadResult struct {
err error
block *types.Block
fees *big.Int // total block fees
sidecars []*types.BlobTxSidecar // collected blobs of blob transactions
}
// getWorkReq represents a request for getting a new sealing work with provided parameters.
type getWorkReq struct {
params *generateParams
result chan *newPayloadResult // non-blocking channel
}
// intervalAdjust represents a resubmitting interval adjustment.
type intervalAdjust struct {
ratio float64
inc bool
}
// worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
type worker struct {
config *Config
chainConfig *params.ChainConfig
engine consensus.Engine
eth Backend
chain *core.BlockChain
// Feeds
pendingLogsFeed event.Feed
// Subscriptions
mux *event.TypeMux
txsCh chan core.NewTxsEvent
txsSub event.Subscription
chainHeadCh chan core.ChainHeadEvent
chainHeadSub event.Subscription
// Channels
newWorkCh chan *newWorkReq
getWorkCh chan *getWorkReq
taskCh chan *task
resultCh chan *types.Block
startCh chan struct{}
exitCh chan struct{}
resubmitIntervalCh chan time.Duration
resubmitAdjustCh chan *intervalAdjust
wg sync.WaitGroup
current *environment // An environment for current running cycle.
mu sync.RWMutex // The lock used to protect the coinbase and extra fields
coinbase common.Address
extra []byte
tip *uint256.Int // Minimum tip needed for non-local transaction to include them
pendingMu sync.RWMutex
pendingTasks map[common.Hash]*task
snapshotMu sync.RWMutex // The lock used to protect the snapshots below
snapshotBlock *types.Block
snapshotReceipts types.Receipts
snapshotState *state.StateDB
// atomic status counters
running atomic.Bool // The indicator whether the consensus engine is running or not.
newTxs atomic.Int32 // New arrival transaction count since last sealing work submitting.
syncing atomic.Bool // The indicator whether the node is still syncing.
// newpayloadTimeout is the maximum timeout allowance for creating payload.
// The default value is 2 seconds but node operator can set it to arbitrary
// large value. A large timeout allowance may cause Geth to fail creating
// a non-empty payload within the specified time and eventually miss the slot
// in case there are some computation expensive transactions in txpool.
newpayloadTimeout time.Duration
// recommit is the time interval to re-create sealing work or to re-build
// payload in proof-of-stake stage.
recommit time.Duration
// External functions
isLocalBlock func(header *types.Header) bool // Function used to determine whether the specified block is mined by local miner.
// Test hooks
newTaskHook func(*task) // Method to call upon receiving a new sealing task.
skipSealHook func(*task) bool // Method to decide whether skipping the sealing.
fullTaskHook func() // Method to call before pushing the full sealing task.
resubmitHook func(time.Duration, time.Duration) // Method to call upon updating resubmitting interval.
}
func newWorker(config *Config, chainConfig *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, isLocalBlock func(header *types.Header) bool, init bool) *worker {
worker := &worker{
config: config,
chainConfig: chainConfig,
engine: engine,
eth: eth,
chain: eth.BlockChain(),
mux: mux,
isLocalBlock: isLocalBlock,
coinbase: config.Etherbase,
extra: config.ExtraData,
tip: uint256.MustFromBig(config.GasPrice),
pendingTasks: make(map[common.Hash]*task),
txsCh: make(chan core.NewTxsEvent, txChanSize),
chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize),
newWorkCh: make(chan *newWorkReq),
getWorkCh: make(chan *getWorkReq),
taskCh: make(chan *task),
resultCh: make(chan *types.Block, resultQueueSize),
startCh: make(chan struct{}, 1),
exitCh: make(chan struct{}),
resubmitIntervalCh: make(chan time.Duration),
resubmitAdjustCh: make(chan *intervalAdjust, resubmitAdjustChanSize),
}
// Subscribe for transaction insertion events (whether from network or resurrects)
worker.txsSub = eth.TxPool().SubscribeTransactions(worker.txsCh, true)
// Subscribe events for blockchain
worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
// Sanitize recommit interval if the user-specified one is too short.
recommit := worker.config.Recommit
if recommit < minRecommitInterval {
log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval)
recommit = minRecommitInterval
}
worker.recommit = recommit
// Sanitize the timeout config for creating payload.
newpayloadTimeout := worker.config.NewPayloadTimeout
if newpayloadTimeout == 0 {
log.Warn("Sanitizing new payload timeout to default", "provided", newpayloadTimeout, "updated", DefaultConfig.NewPayloadTimeout)
newpayloadTimeout = DefaultConfig.NewPayloadTimeout
}
if newpayloadTimeout < time.Millisecond*100 {
log.Warn("Low payload timeout may cause high amount of non-full blocks", "provided", newpayloadTimeout, "default", DefaultConfig.NewPayloadTimeout)
}
worker.newpayloadTimeout = newpayloadTimeout
worker.wg.Add(4)
go worker.mainLoop()
go worker.newWorkLoop(recommit)
go worker.resultLoop()
go worker.taskLoop()
// Submit first work to initialize pending state.
if init {
worker.startCh <- struct{}{}
}
return worker
}
// setEtherbase sets the etherbase used to initialize the block coinbase field.
func (w *worker) setEtherbase(addr common.Address) {
w.mu.Lock()
defer w.mu.Unlock()
w.coinbase = addr
}
// etherbase retrieves the configured etherbase address.
func (w *worker) etherbase() common.Address {
w.mu.RLock()
defer w.mu.RUnlock()
return w.coinbase
}
func (w *worker) setGasCeil(ceil uint64) {
w.mu.Lock()
defer w.mu.Unlock()
w.config.GasCeil = ceil
}
// setExtra sets the content used to initialize the block extra field.
func (w *worker) setExtra(extra []byte) {
w.mu.Lock()
defer w.mu.Unlock()
w.extra = extra
}
// setGasTip sets the minimum miner tip needed to include a non-local transaction.
func (w *worker) setGasTip(tip *big.Int) {
w.mu.Lock()
defer w.mu.Unlock()
w.tip = uint256.MustFromBig(tip)
}
// setRecommitInterval updates the interval for miner sealing work recommitting.
func (w *worker) setRecommitInterval(interval time.Duration) {
select {
case w.resubmitIntervalCh <- interval:
case <-w.exitCh:
}
}
// pending returns the pending state and corresponding block. The returned
// values can be nil in case the pending block is not initialized.
func (w *worker) pending() (*types.Block, *state.StateDB) {
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
if w.snapshotState == nil {
return nil, nil
}
return w.snapshotBlock, w.snapshotState.Copy()
}
// pendingBlock returns pending block. The returned block can be nil in case the
// pending block is not initialized.
func (w *worker) pendingBlock() *types.Block {
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
return w.snapshotBlock
}
// pendingBlockAndReceipts returns pending block and corresponding receipts.
// The returned values can be nil in case the pending block is not initialized.
func (w *worker) pendingBlockAndReceipts() (*types.Block, types.Receipts) {
w.snapshotMu.RLock()
defer w.snapshotMu.RUnlock()
return w.snapshotBlock, w.snapshotReceipts
}
// start sets the running status as 1 and triggers new work submitting.
func (w *worker) start() {
w.running.Store(true)
w.startCh <- struct{}{}
}
// stop sets the running status as 0.
func (w *worker) stop() {
w.running.Store(false)
}
// isRunning returns an indicator whether worker is running or not.
func (w *worker) isRunning() bool {
return w.running.Load()
}
// close terminates all background threads maintained by the worker.
// Note the worker does not support being closed multiple times.
func (w *worker) close() {
w.running.Store(false)
close(w.exitCh)
w.wg.Wait()
}
// recalcRecommit recalculates the resubmitting interval upon feedback.
func recalcRecommit(minRecommit, prev time.Duration, target float64, inc bool) time.Duration {
var (
prevF = float64(prev.Nanoseconds())
next float64
)
if inc {
next = prevF*(1-intervalAdjustRatio) + intervalAdjustRatio*(target+intervalAdjustBias)
max := float64(maxRecommitInterval.Nanoseconds())
if next > max {
next = max
}
} else {
next = prevF*(1-intervalAdjustRatio) + intervalAdjustRatio*(target-intervalAdjustBias)
min := float64(minRecommit.Nanoseconds())
if next < min {
next = min
}
}
return time.Duration(int64(next))
}
// newWorkLoop is a standalone goroutine to submit new sealing work upon received events.
func (w *worker) newWorkLoop(recommit time.Duration) {
defer w.wg.Done()
var (
interrupt *atomic.Int32
minRecommit = recommit // minimal resubmit interval specified by user.
timestamp int64 // timestamp for each round of sealing.
)
timer := time.NewTimer(0)
defer timer.Stop()
<-timer.C // discard the initial tick
// commit aborts in-flight transaction execution with given signal and resubmits a new one.
commit := func(s int32) {
if interrupt != nil {
interrupt.Store(s)
}
interrupt = new(atomic.Int32)
select {
case w.newWorkCh <- &newWorkReq{interrupt: interrupt, timestamp: timestamp}:
case <-w.exitCh:
return
}
timer.Reset(recommit)
w.newTxs.Store(0)
}
// clearPending cleans the stale pending tasks.
clearPending := func(number uint64) {
w.pendingMu.Lock()
for h, t := range w.pendingTasks {
if t.block.NumberU64()+staleThreshold <= number {
delete(w.pendingTasks, h)
}
}
w.pendingMu.Unlock()
}
for {
select {
case <-w.startCh:
clearPending(w.chain.CurrentBlock().Number.Uint64())
timestamp = time.Now().Unix()
commit(commitInterruptNewHead)
case head := <-w.chainHeadCh:
clearPending(head.Block.NumberU64())
timestamp = time.Now().Unix()
commit(commitInterruptNewHead)
case <-timer.C:
// If sealing is running resubmit a new work cycle periodically to pull in
// higher priced transactions. Disable this overhead for pending blocks.
if w.isRunning() && (w.chainConfig.Clique == nil || w.chainConfig.Clique.Period > 0) {
// Short circuit if no new transaction arrives.
if w.newTxs.Load() == 0 {
timer.Reset(recommit)
continue
}
commit(commitInterruptResubmit)
}
case interval := <-w.resubmitIntervalCh:
// Adjust resubmit interval explicitly by user.
if interval < minRecommitInterval {
log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval)
interval = minRecommitInterval
}
log.Info("Miner recommit interval update", "from", minRecommit, "to", interval)
minRecommit, recommit = interval, interval
if w.resubmitHook != nil {
w.resubmitHook(minRecommit, recommit)
}
case adjust := <-w.resubmitAdjustCh:
// Adjust resubmit interval by feedback.
if adjust.inc {
before := recommit
target := float64(recommit.Nanoseconds()) / adjust.ratio
recommit = recalcRecommit(minRecommit, recommit, target, true)
log.Trace("Increase miner recommit interval", "from", before, "to", recommit)
} else {
before := recommit
recommit = recalcRecommit(minRecommit, recommit, float64(minRecommit.Nanoseconds()), false)
log.Trace("Decrease miner recommit interval", "from", before, "to", recommit)
}
if w.resubmitHook != nil {
w.resubmitHook(minRecommit, recommit)
}
case <-w.exitCh:
return
}
}
}
// mainLoop is responsible for generating and submitting sealing work based on
// the received event. It can support two modes: automatically generate task and
// submit it or return task according to given parameters for various proposes.
func (w *worker) mainLoop() {
defer w.wg.Done()
defer w.txsSub.Unsubscribe()
defer w.chainHeadSub.Unsubscribe()
defer func() {
if w.current != nil {
w.current.discard()
}
}()
for {
select {
case req := <-w.newWorkCh:
w.commitWork(req.interrupt, req.timestamp)
case req := <-w.getWorkCh:
req.result <- w.generateWork(req.params)
case ev := <-w.txsCh:
// Apply transactions to the pending state if we're not sealing
//
// Note all transactions received may not be continuous with transactions
// already included in the current sealing block. These transactions will
// be automatically eliminated.
if !w.isRunning() && w.current != nil {
// If block is already full, abort
if gp := w.current.gasPool; gp != nil && gp.Gas() < params.TxGas {
continue
}
txs := make(map[common.Address][]*txpool.LazyTransaction, len(ev.Txs))
for _, tx := range ev.Txs {
acc, _ := types.Sender(w.current.signer, tx)
txs[acc] = append(txs[acc], &txpool.LazyTransaction{
Pool: w.eth.TxPool(), // We don't know where this came from, yolo resolve from everywhere
Hash: tx.Hash(),
Tx: nil, // Do *not* set this! We need to resolve it later to pull blobs in
Time: tx.Time(),
GasFeeCap: uint256.MustFromBig(tx.GasFeeCap()),
GasTipCap: uint256.MustFromBig(tx.GasTipCap()),
Gas: tx.Gas(),
BlobGas: tx.BlobGas(),
})
}
plainTxs := newTransactionsByPriceAndNonce(w.current.signer, txs, w.current.header.BaseFee) // Mixed bag of everrything, yolo
blobTxs := newTransactionsByPriceAndNonce(w.current.signer, nil, w.current.header.BaseFee) // Empty bag, don't bother optimising
tcount := w.current.tcount
w.commitTransactions(w.current, plainTxs, blobTxs, nil)
// Only update the snapshot if any new transactions were added
// to the pending block
if tcount != w.current.tcount {
w.updateSnapshot(w.current)
}
} else {
// Special case, if the consensus engine is 0 period clique(dev mode),
// submit sealing work here since all empty submission will be rejected
// by clique. Of course the advance sealing(empty submission) is disabled.
if w.chainConfig.Clique != nil && w.chainConfig.Clique.Period == 0 {
w.commitWork(nil, time.Now().Unix())
}
}
w.newTxs.Add(int32(len(ev.Txs)))
// System stopped
case <-w.exitCh:
return
case <-w.txsSub.Err():
return
case <-w.chainHeadSub.Err():
return
}
}
}
// taskLoop is a standalone goroutine to fetch sealing task from the generator and
// push them to consensus engine.
func (w *worker) taskLoop() {
defer w.wg.Done()
var (
stopCh chan struct{}
prev common.Hash
)
// interrupt aborts the in-flight sealing task.
interrupt := func() {
if stopCh != nil {
close(stopCh)
stopCh = nil
}
}
for {
select {
case task := <-w.taskCh:
if w.newTaskHook != nil {
w.newTaskHook(task)
}
// Reject duplicate sealing work due to resubmitting.
sealHash := w.engine.SealHash(task.block.Header())
if sealHash == prev {
continue
}
// Interrupt previous sealing operation
interrupt()
stopCh, prev = make(chan struct{}), sealHash
if w.skipSealHook != nil && w.skipSealHook(task) {
continue
}
w.pendingMu.Lock()
w.pendingTasks[sealHash] = task
w.pendingMu.Unlock()
if err := w.engine.Seal(w.chain, task.block, w.resultCh, stopCh); err != nil {
log.Warn("Block sealing failed", "err", err)
w.pendingMu.Lock()
delete(w.pendingTasks, sealHash)
w.pendingMu.Unlock()
}
case <-w.exitCh:
interrupt()
return
}
}
}
// resultLoop is a standalone goroutine to handle sealing result submitting
// and flush relative data to the database.
func (w *worker) resultLoop() {
defer w.wg.Done()
for {
select {
case block := <-w.resultCh:
// Short circuit when receiving empty result.
if block == nil {
continue
}
// Short circuit when receiving duplicate result caused by resubmitting.
if w.chain.HasBlock(block.Hash(), block.NumberU64()) {
continue
}
var (
sealhash = w.engine.SealHash(block.Header())
hash = block.Hash()
)
w.pendingMu.RLock()
task, exist := w.pendingTasks[sealhash]
w.pendingMu.RUnlock()
if !exist {
log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash)
continue
}
// Different block could share same sealhash, deep copy here to prevent write-write conflict.
var (
receipts = make([]*types.Receipt, len(task.receipts))
logs []*types.Log
)
for i, taskReceipt := range task.receipts {
receipt := new(types.Receipt)
receipts[i] = receipt
*receipt = *taskReceipt
// add block location fields
receipt.BlockHash = hash
receipt.BlockNumber = block.Number()
receipt.TransactionIndex = uint(i)
// Update the block hash in all logs since it is now available and not when the
// receipt/log of individual transactions were created.
receipt.Logs = make([]*types.Log, len(taskReceipt.Logs))
for i, taskLog := range taskReceipt.Logs {
log := new(types.Log)
receipt.Logs[i] = log
*log = *taskLog
log.BlockHash = hash
}
logs = append(logs, receipt.Logs...)
}
// Commit block and state to database.
_, err := w.chain.WriteBlockAndSetHead(block, receipts, logs, task.state, true)
if err != nil {
log.Error("Failed writing block to chain", "err", err)
continue
}
log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash,
"elapsed", common.PrettyDuration(time.Since(task.createdAt)))
// Broadcast the block and announce chain insertion event
w.mux.Post(core.NewMinedBlockEvent{Block: block})
case <-w.exitCh:
return
}
}
}
// makeEnv creates a new environment for the sealing block.
func (w *worker) makeEnv(parent *types.Header, header *types.Header, coinbase common.Address) (*environment, error) {
// Retrieve the parent state to execute on top and start a prefetcher for
// the miner to speed block sealing up a bit.
state, err := w.chain.StateAt(parent.Root)
if err != nil {
return nil, err
}
state.StartPrefetcher("miner")
// Note the passed coinbase may be different with header.Coinbase.
env := &environment{
signer: types.MakeSigner(w.chainConfig, header.Number, header.Time),
state: state,
coinbase: coinbase,
header: header,
}
// Keep track of transactions which return errors so they can be removed
env.tcount = 0
return env, nil
}
// updateSnapshot updates pending snapshot block, receipts and state.
func (w *worker) updateSnapshot(env *environment) {
w.snapshotMu.Lock()
defer w.snapshotMu.Unlock()
w.snapshotBlock = types.NewBlock(
env.header,
env.txs,
nil,
env.receipts,
trie.NewStackTrie(nil),
)
w.snapshotReceipts = copyReceipts(env.receipts)
w.snapshotState = env.state.Copy()
}
func (w *worker) commitTransaction(env *environment, tx *types.Transaction) ([]*types.Log, error) {
if tx.Type() == types.BlobTxType {
return w.commitBlobTransaction(env, tx)
}
receipt, err := w.applyTransaction(env, tx)
if err != nil {
return nil, err
}
env.txs = append(env.txs, tx)
env.receipts = append(env.receipts, receipt)
return receipt.Logs, nil
}
func (w *worker) commitBlobTransaction(env *environment, tx *types.Transaction) ([]*types.Log, error) {
sc := tx.BlobTxSidecar()
if sc == nil {
panic("blob transaction without blobs in miner")
}
// Checking against blob gas limit: It's kind of ugly to perform this check here, but there
// isn't really a better place right now. The blob gas limit is checked at block validation time
// and not during execution. This means core.ApplyTransaction will not return an error if the
// tx has too many blobs. So we have to explicitly check it here.
if (env.blobs+len(sc.Blobs))*params.BlobTxBlobGasPerBlob > params.MaxBlobGasPerBlock {
return nil, errors.New("max data blobs reached")
}
receipt, err := w.applyTransaction(env, tx)
if err != nil {
return nil, err
}
env.txs = append(env.txs, tx.WithoutBlobTxSidecar())
env.receipts = append(env.receipts, receipt)
env.sidecars = append(env.sidecars, sc)
env.blobs += len(sc.Blobs)
*env.header.BlobGasUsed += receipt.BlobGasUsed
return receipt.Logs, nil
}
// applyTransaction runs the transaction. If execution fails, state and gas pool are reverted.
func (w *worker) applyTransaction(env *environment, tx *types.Transaction) (*types.Receipt, error) {
var (
snap = env.state.Snapshot()
gp = env.gasPool.Gas()
)
receipt, err := core.ApplyTransaction(w.chainConfig, w.chain, &env.coinbase, env.gasPool, env.state, env.header, tx, &env.header.GasUsed, *w.chain.GetVMConfig())
if err != nil {
env.state.RevertToSnapshot(snap)
env.gasPool.SetGas(gp)
}
return receipt, err
}
func (w *worker) commitTransactions(env *environment, plainTxs, blobTxs *transactionsByPriceAndNonce, interrupt *atomic.Int32) error {
gasLimit := env.header.GasLimit
if env.gasPool == nil {
env.gasPool = new(core.GasPool).AddGas(gasLimit)
}
var coalescedLogs []*types.Log
for {
// Check interruption signal and abort building if it's fired.
if interrupt != nil {
if signal := interrupt.Load(); signal != commitInterruptNone {
return signalToErr(signal)
}
}
// If we don't have enough gas for any further transactions then we're done.
if env.gasPool.Gas() < params.TxGas {
log.Trace("Not enough gas for further transactions", "have", env.gasPool, "want", params.TxGas)
break
}
// If we don't have enough blob space for any further blob transactions,
// skip that list altogether
if !blobTxs.Empty() && env.blobs*params.BlobTxBlobGasPerBlob >= params.MaxBlobGasPerBlock {
log.Trace("Not enough blob space for further blob transactions")
blobTxs.Clear()
// Fall though to pick up any plain txs
}
// Retrieve the next transaction and abort if all done.
var (
ltx *txpool.LazyTransaction
txs *transactionsByPriceAndNonce
)
pltx, ptip := plainTxs.Peek()
bltx, btip := blobTxs.Peek()
switch {
case pltx == nil:
txs, ltx = blobTxs, bltx
case bltx == nil:
txs, ltx = plainTxs, pltx
default:
if ptip.Lt(btip) {
txs, ltx = blobTxs, bltx
} else {
txs, ltx = plainTxs, pltx
}
}
if ltx == nil {
break
}
// If we don't have enough space for the next transaction, skip the account.
if env.gasPool.Gas() < ltx.Gas {
log.Trace("Not enough gas left for transaction", "hash", ltx.Hash, "left", env.gasPool.Gas(), "needed", ltx.Gas)
txs.Pop()
continue
}
if left := uint64(params.MaxBlobGasPerBlock - env.blobs*params.BlobTxBlobGasPerBlob); left < ltx.BlobGas {
log.Trace("Not enough blob gas left for transaction", "hash", ltx.Hash, "left", left, "needed", ltx.BlobGas)
txs.Pop()
continue
}
// Transaction seems to fit, pull it up from the pool
tx := ltx.Resolve()
if tx == nil {
log.Trace("Ignoring evicted transaction", "hash", ltx.Hash)
txs.Pop()
continue
}
// Error may be ignored here. The error has already been checked
// during transaction acceptance is the transaction pool.
from, _ := types.Sender(env.signer, tx)
// Check whether the tx is replay protected. If we're not in the EIP155 hf
// phase, start ignoring the sender until we do.
if tx.Protected() && !w.chainConfig.IsEIP155(env.header.Number) {
log.Trace("Ignoring replay protected transaction", "hash", ltx.Hash, "eip155", w.chainConfig.EIP155Block)
txs.Pop()
continue
}
// Start executing the transaction
env.state.SetTxContext(tx.Hash(), env.tcount)
logs, err := w.commitTransaction(env, tx)
switch {
case errors.Is(err, core.ErrNonceTooLow):
// New head notification data race between the transaction pool and miner, shift
log.Trace("Skipping transaction with low nonce", "hash", ltx.Hash, "sender", from, "nonce", tx.Nonce())
txs.Shift()
case errors.Is(err, nil):
// Everything ok, collect the logs and shift in the next transaction from the same account
coalescedLogs = append(coalescedLogs, logs...)
env.tcount++
txs.Shift()
default:
// Transaction is regarded as invalid, drop all consecutive transactions from
// the same sender because of `nonce-too-high` clause.
log.Debug("Transaction failed, account skipped", "hash", ltx.Hash, "err", err)
txs.Pop()
}
}
if !w.isRunning() && len(coalescedLogs) > 0 {
// We don't push the pendingLogsEvent while we are sealing. The reason is that
// when we are sealing, the worker will regenerate a sealing block every 3 seconds.
// In order to avoid pushing the repeated pendingLog, we disable the pending log pushing.
// make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
// logs by filling in the block hash when the block was mined by the local miner. This can
// cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
cpy := make([]*types.Log, len(coalescedLogs))
for i, l := range coalescedLogs {
cpy[i] = new(types.Log)
*cpy[i] = *l
}
w.pendingLogsFeed.Send(cpy)
}
return nil
}
// generateParams wraps various of settings for generating sealing task.
type generateParams struct {
timestamp uint64 // The timestamp for sealing task
forceTime bool // Flag whether the given timestamp is immutable or not
parentHash common.Hash // Parent block hash, empty means the latest chain head
coinbase common.Address // The fee recipient address for including transaction
random common.Hash // The randomness generated by beacon chain, empty before the merge
withdrawals types.Withdrawals // List of withdrawals to include in block.
beaconRoot *common.Hash // The beacon root (cancun field).
noTxs bool // Flag whether an empty block without any transaction is expected
}
// prepareWork constructs the sealing task according to the given parameters,
// either based on the last chain head or specified parent. In this function
// the pending transactions are not filled yet, only the empty task returned.
func (w *worker) prepareWork(genParams *generateParams) (*environment, error) {
w.mu.RLock()
defer w.mu.RUnlock()
// Find the parent block for sealing task
parent := w.chain.CurrentBlock()
if genParams.parentHash != (common.Hash{}) {
block := w.chain.GetBlockByHash(genParams.parentHash)
if block == nil {
return nil, fmt.Errorf("missing parent")
}
parent = block.Header()
}
// Sanity check the timestamp correctness, recap the timestamp
// to parent+1 if the mutation is allowed.
timestamp := genParams.timestamp
if parent.Time >= timestamp {
if genParams.forceTime {
return nil, fmt.Errorf("invalid timestamp, parent %d given %d", parent.Time, timestamp)
}
timestamp = parent.Time + 1
}
// Construct the sealing block header.
header := &types.Header{
ParentHash: parent.Hash(),
Number: new(big.Int).Add(parent.Number, common.Big1),
GasLimit: core.CalcGasLimit(parent.GasLimit, w.config.GasCeil),
Time: timestamp,
Coinbase: genParams.coinbase,
}
// Set the extra field.
if len(w.extra) != 0 {
header.Extra = w.extra
}
// Set the randomness field from the beacon chain if it's available.
if genParams.random != (common.Hash{}) {
header.MixDigest = genParams.random
}
// Set baseFee and GasLimit if we are on an EIP-1559 chain
// begin PluGeth injection
if w.chainConfig.Is1559(header.Number) {
header.BaseFee = eip1559.CalcBaseFee(w.chainConfig, parent)
if !w.chainConfig.Is1559(parent.Number) {
// end PluGeth injection
parentGasLimit := parent.GasLimit * w.chainConfig.ElasticityMultiplier()
header.GasLimit = core.CalcGasLimit(parentGasLimit, w.config.GasCeil)
}
}
// Apply EIP-4844, EIP-4788.
if w.chainConfig.IsCancun(header.Number, header.Time) {
var excessBlobGas uint64
if w.chainConfig.IsCancun(parent.Number, parent.Time) {
excessBlobGas = eip4844.CalcExcessBlobGas(*parent.ExcessBlobGas, *parent.BlobGasUsed)
} else {
// For the first post-fork block, both parent.data_gas_used and parent.excess_data_gas are evaluated as 0
excessBlobGas = eip4844.CalcExcessBlobGas(0, 0)
}
header.BlobGasUsed = new(uint64)
header.ExcessBlobGas = &excessBlobGas
header.ParentBeaconRoot = genParams.beaconRoot
}
// Run the consensus preparation with the default or customized consensus engine.
if err := w.engine.Prepare(w.chain, header); err != nil {
log.Error("Failed to prepare header for sealing", "err", err)
return nil, err
}
// Could potentially happen if starting to mine in an odd state.
// Note genParams.coinbase can be different with header.Coinbase
// since clique algorithm can modify the coinbase field in header.
env, err := w.makeEnv(parent, header, genParams.coinbase)
if err != nil {
log.Error("Failed to create sealing context", "err", err)
return nil, err
}
if header.ParentBeaconRoot != nil {
context := core.NewEVMBlockContext(header, w.chain, nil)
vmenv := vm.NewEVM(context, vm.TxContext{}, env.state, w.chainConfig, vm.Config{})
core.ProcessBeaconBlockRoot(*header.ParentBeaconRoot, vmenv, env.state)
}
return env, nil
}
// fillTransactions retrieves the pending transactions from the txpool and fills them
// into the given sealing block. The transaction selection and ordering strategy can
// be customized with the plugin in the future.
func (w *worker) fillTransactions(interrupt *atomic.Int32, env *environment) error {
w.mu.RLock()
tip := w.tip
w.mu.RUnlock()
// Retrieve the pending transactions pre-filtered by the 1559/4844 dynamic fees
filter := txpool.PendingFilter{
MinTip: tip,
}
if env.header.BaseFee != nil {
filter.BaseFee = uint256.MustFromBig(env.header.BaseFee)
}
if env.header.ExcessBlobGas != nil {
filter.BlobFee = uint256.MustFromBig(eip4844.CalcBlobFee(*env.header.ExcessBlobGas))
}
filter.OnlyPlainTxs, filter.OnlyBlobTxs = true, false
pendingPlainTxs := w.eth.TxPool().Pending(filter)
filter.OnlyPlainTxs, filter.OnlyBlobTxs = false, true
pendingBlobTxs := w.eth.TxPool().Pending(filter)
// Split the pending transactions into locals and remotes.
localPlainTxs, remotePlainTxs := make(map[common.Address][]*txpool.LazyTransaction), pendingPlainTxs
localBlobTxs, remoteBlobTxs := make(map[common.Address][]*txpool.LazyTransaction), pendingBlobTxs
for _, account := range w.eth.TxPool().Locals() {
if txs := remotePlainTxs[account]; len(txs) > 0 {
delete(remotePlainTxs, account)
localPlainTxs[account] = txs
}
if txs := remoteBlobTxs[account]; len(txs) > 0 {
delete(remoteBlobTxs, account)
localBlobTxs[account] = txs
}
}
// Fill the block with all available pending transactions.
if len(localPlainTxs) > 0 || len(localBlobTxs) > 0 {
plainTxs := newTransactionsByPriceAndNonce(env.signer, localPlainTxs, env.header.BaseFee)
blobTxs := newTransactionsByPriceAndNonce(env.signer, localBlobTxs, env.header.BaseFee)
if err := w.commitTransactions(env, plainTxs, blobTxs, interrupt); err != nil {
return err
}
}
if len(remotePlainTxs) > 0 || len(remoteBlobTxs) > 0 {
plainTxs := newTransactionsByPriceAndNonce(env.signer, remotePlainTxs, env.header.BaseFee)
blobTxs := newTransactionsByPriceAndNonce(env.signer, remoteBlobTxs, env.header.BaseFee)
if err := w.commitTransactions(env, plainTxs, blobTxs, interrupt); err != nil {
return err
}
}
return nil
}
// generateWork generates a sealing block based on the given parameters.
func (w *worker) generateWork(params *generateParams) *newPayloadResult {
work, err := w.prepareWork(params)
if err != nil {
return &newPayloadResult{err: err}
}
defer work.discard()
if !params.noTxs {
interrupt := new(atomic.Int32)
timer := time.AfterFunc(w.newpayloadTimeout, func() {
interrupt.Store(commitInterruptTimeout)
})
defer timer.Stop()
err := w.fillTransactions(interrupt, work)
if errors.Is(err, errBlockInterruptedByTimeout) {
log.Warn("Block building is interrupted", "allowance", common.PrettyDuration(w.newpayloadTimeout))
}
}
block, err := w.engine.FinalizeAndAssemble(w.chain, work.header, work.state, work.txs, nil, work.receipts, params.withdrawals)
if err != nil {
return &newPayloadResult{err: err}
}
return &newPayloadResult{
block: block,
fees: totalFees(block, work.receipts),
sidecars: work.sidecars,
}
}
// commitWork generates several new sealing tasks based on the parent block
// and submit them to the sealer.
func (w *worker) commitWork(interrupt *atomic.Int32, timestamp int64) {
// Abort committing if node is still syncing
if w.syncing.Load() {
return
}
start := time.Now()
// Set the coinbase if the worker is running or it's required
var coinbase common.Address
if w.isRunning() {
coinbase = w.etherbase()
if coinbase == (common.Address{}) {
log.Error("Refusing to mine without etherbase")
return
}
}
work, err := w.prepareWork(&generateParams{
timestamp: uint64(timestamp),
coinbase: coinbase,
})
if err != nil {
return
}
// Fill pending transactions from the txpool into the block.
err = w.fillTransactions(interrupt, work)
switch {
case err == nil:
// The entire block is filled, decrease resubmit interval in case
// of current interval is larger than the user-specified one.
w.adjustResubmitInterval(&intervalAdjust{inc: false})
case errors.Is(err, errBlockInterruptedByRecommit):
// Notify resubmit loop to increase resubmitting interval if the
// interruption is due to frequent commits.
gaslimit := work.header.GasLimit
ratio := float64(gaslimit-work.gasPool.Gas()) / float64(gaslimit)
if ratio < 0.1 {
ratio = 0.1
}
w.adjustResubmitInterval(&intervalAdjust{
ratio: ratio,
inc: true,
})
case errors.Is(err, errBlockInterruptedByNewHead):
// If the block building is interrupted by newhead event, discard it
// totally. Committing the interrupted block introduces unnecessary
// delay, and possibly causes miner to mine on the previous head,
// which could result in higher uncle rate.
work.discard()
return
}
// Submit the generated block for consensus sealing.
w.commit(work.copy(), w.fullTaskHook, true, start)
// Swap out the old work with the new one, terminating any leftover
// prefetcher processes in the mean time and starting a new one.
if w.current != nil {
w.current.discard()
}
w.current = work
}
// commit runs any post-transaction state modifications, assembles the final block
// and commits new work if consensus engine is running.
// Note the assumption is held that the mutation is allowed to the passed env, do
// the deep copy first.
func (w *worker) commit(env *environment, interval func(), update bool, start time.Time) error {
if w.isRunning() {
if interval != nil {
interval()
}
// Create a local environment copy, avoid the data race with snapshot state.
// https://github.com/ethereum/go-ethereum/issues/24299
env := env.copy()
// Withdrawals are set to nil here, because this is only called in PoW.
block, err := w.engine.FinalizeAndAssemble(w.chain, env.header, env.state, env.txs, nil, env.receipts, nil)
if err != nil {
return err
}
// If we're post merge, just ignore
if !w.isTTDReached(block.Header()) {
select {
case w.taskCh <- &task{receipts: env.receipts, state: env.state, block: block, createdAt: time.Now()}:
fees := totalFees(block, env.receipts)
feesInEther := new(big.Float).Quo(new(big.Float).SetInt(fees), big.NewFloat(params.Ether))
log.Info("Commit new sealing work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()),
"txs", env.tcount, "gas", block.GasUsed(), "fees", feesInEther,
"elapsed", common.PrettyDuration(time.Since(start)))
case <-w.exitCh:
log.Info("Worker has exited")
}
}
}
if update {
w.updateSnapshot(env)
}
return nil
}
// getSealingBlock generates the sealing block based on the given parameters.
// The generation result will be passed back via the given channel no matter
// the generation itself succeeds or not.
func (w *worker) getSealingBlock(params *generateParams) *newPayloadResult {
req := &getWorkReq{
params: params,
result: make(chan *newPayloadResult, 1),
}
select {
case w.getWorkCh <- req:
return <-req.result
case <-w.exitCh:
return &newPayloadResult{err: errors.New("miner closed")}
}
}
// isTTDReached returns the indicator if the given block has reached the total
// terminal difficulty for The Merge transition.
func (w *worker) isTTDReached(header *types.Header) bool {
td, ttd := w.chain.GetTd(header.ParentHash, header.Number.Uint64()-1), w.chain.Config().TerminalTotalDifficulty
return td != nil && ttd != nil && td.Cmp(ttd) >= 0
}
// adjustResubmitInterval adjusts the resubmit interval.
func (w *worker) adjustResubmitInterval(message *intervalAdjust) {
select {
case w.resubmitAdjustCh <- message:
default:
log.Warn("the resubmitAdjustCh is full, discard the message")
}
}
// copyReceipts makes a deep copy of the given receipts.
func copyReceipts(receipts []*types.Receipt) []*types.Receipt {
result := make([]*types.Receipt, len(receipts))
for i, l := range receipts {
cpy := *l
result[i] = &cpy
}
return result
}
// totalFees computes total consumed miner fees in Wei. Block transactions and receipts have to have the same order.
func totalFees(block *types.Block, receipts []*types.Receipt) *big.Int {
feesWei := new(big.Int)
for i, tx := range block.Transactions() {
minerFee, _ := tx.EffectiveGasTip(block.BaseFee())
feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), minerFee))
}
return feesWei
}
// signalToErr converts the interruption signal to a concrete error type for return.
// The given signal must be a valid interruption signal.
func signalToErr(signal int32) error {
switch signal {
case commitInterruptNewHead:
return errBlockInterruptedByNewHead
case commitInterruptResubmit:
return errBlockInterruptedByRecommit
case commitInterruptTimeout:
return errBlockInterruptedByTimeout
default:
panic(fmt.Errorf("undefined signal %d", signal))
}
}