plugeth/core/types/tx_blob.go
2024-02-04 13:55:30 +08:00

239 lines
7.1 KiB
Go

// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package types
import (
"bytes"
"crypto/sha256"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto/kzg4844"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"github.com/holiman/uint256"
)
// BlobTx represents an EIP-4844 transaction.
type BlobTx struct {
ChainID *uint256.Int
Nonce uint64
GasTipCap *uint256.Int // a.k.a. maxPriorityFeePerGas
GasFeeCap *uint256.Int // a.k.a. maxFeePerGas
Gas uint64
To common.Address
Value *uint256.Int
Data []byte
AccessList AccessList
BlobFeeCap *uint256.Int // a.k.a. maxFeePerBlobGas
BlobHashes []common.Hash
// A blob transaction can optionally contain blobs. This field must be set when BlobTx
// is used to create a transaction for signing.
Sidecar *BlobTxSidecar `rlp:"-"`
// Signature values
V *uint256.Int `json:"v" gencodec:"required"`
R *uint256.Int `json:"r" gencodec:"required"`
S *uint256.Int `json:"s" gencodec:"required"`
}
// BlobTxSidecar contains the blobs of a blob transaction.
type BlobTxSidecar struct {
Blobs []kzg4844.Blob // Blobs needed by the blob pool
Commitments []kzg4844.Commitment // Commitments needed by the blob pool
Proofs []kzg4844.Proof // Proofs needed by the blob pool
}
// BlobHashes computes the blob hashes of the given blobs.
func (sc *BlobTxSidecar) BlobHashes() []common.Hash {
hasher := sha256.New()
h := make([]common.Hash, len(sc.Commitments))
for i := range sc.Blobs {
h[i] = kzg4844.CalcBlobHashV1(hasher, &sc.Commitments[i])
}
return h
}
// encodedSize computes the RLP size of the sidecar elements. This does NOT return the
// encoded size of the BlobTxSidecar, it's just a helper for tx.Size().
func (sc *BlobTxSidecar) encodedSize() uint64 {
var blobs, commitments, proofs uint64
for i := range sc.Blobs {
blobs += rlp.BytesSize(sc.Blobs[i][:])
}
for i := range sc.Commitments {
commitments += rlp.BytesSize(sc.Commitments[i][:])
}
for i := range sc.Proofs {
proofs += rlp.BytesSize(sc.Proofs[i][:])
}
return rlp.ListSize(blobs) + rlp.ListSize(commitments) + rlp.ListSize(proofs)
}
// blobTxWithBlobs is used for encoding of transactions when blobs are present.
type blobTxWithBlobs struct {
BlobTx *BlobTx
Blobs []kzg4844.Blob
Commitments []kzg4844.Commitment
Proofs []kzg4844.Proof
}
// copy creates a deep copy of the transaction data and initializes all fields.
func (tx *BlobTx) copy() TxData {
cpy := &BlobTx{
Nonce: tx.Nonce,
To: tx.To,
Data: common.CopyBytes(tx.Data),
Gas: tx.Gas,
// These are copied below.
AccessList: make(AccessList, len(tx.AccessList)),
BlobHashes: make([]common.Hash, len(tx.BlobHashes)),
Value: new(uint256.Int),
ChainID: new(uint256.Int),
GasTipCap: new(uint256.Int),
GasFeeCap: new(uint256.Int),
BlobFeeCap: new(uint256.Int),
V: new(uint256.Int),
R: new(uint256.Int),
S: new(uint256.Int),
}
copy(cpy.AccessList, tx.AccessList)
copy(cpy.BlobHashes, tx.BlobHashes)
if tx.Value != nil {
cpy.Value.Set(tx.Value)
}
if tx.ChainID != nil {
cpy.ChainID.Set(tx.ChainID)
}
if tx.GasTipCap != nil {
cpy.GasTipCap.Set(tx.GasTipCap)
}
if tx.GasFeeCap != nil {
cpy.GasFeeCap.Set(tx.GasFeeCap)
}
if tx.BlobFeeCap != nil {
cpy.BlobFeeCap.Set(tx.BlobFeeCap)
}
if tx.V != nil {
cpy.V.Set(tx.V)
}
if tx.R != nil {
cpy.R.Set(tx.R)
}
if tx.S != nil {
cpy.S.Set(tx.S)
}
if tx.Sidecar != nil {
cpy.Sidecar = &BlobTxSidecar{
Blobs: append([]kzg4844.Blob(nil), tx.Sidecar.Blobs...),
Commitments: append([]kzg4844.Commitment(nil), tx.Sidecar.Commitments...),
Proofs: append([]kzg4844.Proof(nil), tx.Sidecar.Proofs...),
}
}
return cpy
}
// accessors for innerTx.
func (tx *BlobTx) txType() byte { return BlobTxType }
func (tx *BlobTx) chainID() *big.Int { return tx.ChainID.ToBig() }
func (tx *BlobTx) accessList() AccessList { return tx.AccessList }
func (tx *BlobTx) data() []byte { return tx.Data }
func (tx *BlobTx) gas() uint64 { return tx.Gas }
func (tx *BlobTx) gasFeeCap() *big.Int { return tx.GasFeeCap.ToBig() }
func (tx *BlobTx) gasTipCap() *big.Int { return tx.GasTipCap.ToBig() }
func (tx *BlobTx) gasPrice() *big.Int { return tx.GasFeeCap.ToBig() }
func (tx *BlobTx) value() *big.Int { return tx.Value.ToBig() }
func (tx *BlobTx) nonce() uint64 { return tx.Nonce }
func (tx *BlobTx) to() *common.Address { tmp := tx.To; return &tmp }
func (tx *BlobTx) blobGas() uint64 { return params.BlobTxBlobGasPerBlob * uint64(len(tx.BlobHashes)) }
func (tx *BlobTx) effectiveGasPrice(dst *big.Int, baseFee *big.Int) *big.Int {
if baseFee == nil {
return dst.Set(tx.GasFeeCap.ToBig())
}
tip := dst.Sub(tx.GasFeeCap.ToBig(), baseFee)
if tip.Cmp(tx.GasTipCap.ToBig()) > 0 {
tip.Set(tx.GasTipCap.ToBig())
}
return tip.Add(tip, baseFee)
}
func (tx *BlobTx) rawSignatureValues() (v, r, s *big.Int) {
return tx.V.ToBig(), tx.R.ToBig(), tx.S.ToBig()
}
func (tx *BlobTx) setSignatureValues(chainID, v, r, s *big.Int) {
tx.ChainID.SetFromBig(chainID)
tx.V.SetFromBig(v)
tx.R.SetFromBig(r)
tx.S.SetFromBig(s)
}
func (tx *BlobTx) withoutSidecar() *BlobTx {
cpy := *tx
cpy.Sidecar = nil
return &cpy
}
func (tx *BlobTx) encode(b *bytes.Buffer) error {
if tx.Sidecar == nil {
return rlp.Encode(b, tx)
}
inner := &blobTxWithBlobs{
BlobTx: tx,
Blobs: tx.Sidecar.Blobs,
Commitments: tx.Sidecar.Commitments,
Proofs: tx.Sidecar.Proofs,
}
return rlp.Encode(b, inner)
}
func (tx *BlobTx) decode(input []byte) error {
// Here we need to support two formats: the network protocol encoding of the tx (with
// blobs) or the canonical encoding without blobs.
//
// The two encodings can be distinguished by checking whether the first element of the
// input list is itself a list.
outerList, _, err := rlp.SplitList(input)
if err != nil {
return err
}
firstElemKind, _, _, err := rlp.Split(outerList)
if err != nil {
return err
}
if firstElemKind != rlp.List {
return rlp.DecodeBytes(input, tx)
}
// It's a tx with blobs.
var inner blobTxWithBlobs
if err := rlp.DecodeBytes(input, &inner); err != nil {
return err
}
*tx = *inner.BlobTx
tx.Sidecar = &BlobTxSidecar{
Blobs: inner.Blobs,
Commitments: inner.Commitments,
Proofs: inner.Proofs,
}
return nil
}