// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package core import ( crand "crypto/rand" "errors" "fmt" "math" "math/big" mrand "math/rand" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" lru "github.com/hashicorp/golang-lru" ) const ( headerCacheLimit = 512 tdCacheLimit = 1024 numberCacheLimit = 2048 ) // HeaderChain implements the basic block header chain logic that is shared by // core.BlockChain and light.LightChain. It is not usable in itself, only as // a part of either structure. // // HeaderChain is responsible for maintaining the header chain including the // header query and updating. // // The components maintained by headerchain includes: (1) total difficulty // (2) header (3) block hash -> number mapping (4) canonical number -> hash mapping // and (5) head header flag. // // It is not thread safe either, the encapsulating chain structures should do // the necessary mutex locking/unlocking. type HeaderChain struct { config *params.ChainConfig chainDb ethdb.Database genesisHeader *types.Header currentHeader atomic.Value // Current head of the header chain (may be above the block chain!) currentHeaderHash common.Hash // Hash of the current head of the header chain (prevent recomputing all the time) headerCache *lru.Cache // Cache for the most recent block headers tdCache *lru.Cache // Cache for the most recent block total difficulties numberCache *lru.Cache // Cache for the most recent block numbers procInterrupt func() bool rand *mrand.Rand engine consensus.Engine } // NewHeaderChain creates a new HeaderChain structure. ProcInterrupt points // to the parent's interrupt semaphore. func NewHeaderChain(chainDb ethdb.Database, config *params.ChainConfig, engine consensus.Engine, procInterrupt func() bool) (*HeaderChain, error) { headerCache, _ := lru.New(headerCacheLimit) tdCache, _ := lru.New(tdCacheLimit) numberCache, _ := lru.New(numberCacheLimit) // Seed a fast but crypto originating random generator seed, err := crand.Int(crand.Reader, big.NewInt(math.MaxInt64)) if err != nil { return nil, err } hc := &HeaderChain{ config: config, chainDb: chainDb, headerCache: headerCache, tdCache: tdCache, numberCache: numberCache, procInterrupt: procInterrupt, rand: mrand.New(mrand.NewSource(seed.Int64())), engine: engine, } hc.genesisHeader = hc.GetHeaderByNumber(0) if hc.genesisHeader == nil { return nil, ErrNoGenesis } hc.currentHeader.Store(hc.genesisHeader) if head := rawdb.ReadHeadBlockHash(chainDb); head != (common.Hash{}) { if chead := hc.GetHeaderByHash(head); chead != nil { hc.currentHeader.Store(chead) } } hc.currentHeaderHash = hc.CurrentHeader().Hash() headHeaderGauge.Update(hc.CurrentHeader().Number.Int64()) return hc, nil } // GetBlockNumber retrieves the block number belonging to the given hash // from the cache or database func (hc *HeaderChain) GetBlockNumber(hash common.Hash) *uint64 { if cached, ok := hc.numberCache.Get(hash); ok { number := cached.(uint64) return &number } number := rawdb.ReadHeaderNumber(hc.chainDb, hash) if number != nil { hc.numberCache.Add(hash, *number) } return number } type headerWriteResult struct { status WriteStatus ignored int imported int lastHash common.Hash lastHeader *types.Header } // Reorg reorgs the local canonical chain into the specified chain. The reorg // can be classified into two cases: (a) extend the local chain (b) switch the // head to the given header. func (hc *HeaderChain) Reorg(headers []*types.Header) error { // Short circuit if nothing to reorg. if len(headers) == 0 { return nil } // If the parent of the (first) block is already the canon header, // we don't have to go backwards to delete canon blocks, but simply // pile them onto the existing chain. Otherwise, do the necessary // reorgs. var ( first = headers[0] last = headers[len(headers)-1] batch = hc.chainDb.NewBatch() ) if first.ParentHash != hc.currentHeaderHash { // Delete any canonical number assignments above the new head for i := last.Number.Uint64() + 1; ; i++ { hash := rawdb.ReadCanonicalHash(hc.chainDb, i) if hash == (common.Hash{}) { break } rawdb.DeleteCanonicalHash(batch, i) } // Overwrite any stale canonical number assignments, going // backwards from the first header in this import until the // cross link between two chains. var ( header = first headNumber = header.Number.Uint64() headHash = header.Hash() ) for rawdb.ReadCanonicalHash(hc.chainDb, headNumber) != headHash { rawdb.WriteCanonicalHash(batch, headHash, headNumber) if headNumber == 0 { break // It shouldn't be reached } headHash, headNumber = header.ParentHash, header.Number.Uint64()-1 header = hc.GetHeader(headHash, headNumber) if header == nil { return fmt.Errorf("missing parent %d %x", headNumber, headHash) } } } // Extend the canonical chain with the new headers for i := 0; i < len(headers)-1; i++ { hash := headers[i+1].ParentHash // Save some extra hashing num := headers[i].Number.Uint64() rawdb.WriteCanonicalHash(batch, hash, num) rawdb.WriteHeadHeaderHash(batch, hash) } // Write the last header hash := headers[len(headers)-1].Hash() num := headers[len(headers)-1].Number.Uint64() rawdb.WriteCanonicalHash(batch, hash, num) rawdb.WriteHeadHeaderHash(batch, hash) if err := batch.Write(); err != nil { return err } // Last step update all in-memory head header markers hc.currentHeaderHash = last.Hash() hc.currentHeader.Store(types.CopyHeader(last)) headHeaderGauge.Update(last.Number.Int64()) return nil } // WriteHeaders writes a chain of headers into the local chain, given that the // parents are already known. The chain head header won't be updated in this // function, the additional SetCanonical is expected in order to finish the entire // procedure. func (hc *HeaderChain) WriteHeaders(headers []*types.Header) (int, error) { if len(headers) == 0 { return 0, nil } ptd := hc.GetTd(headers[0].ParentHash, headers[0].Number.Uint64()-1) if ptd == nil { return 0, consensus.ErrUnknownAncestor } var ( newTD = new(big.Int).Set(ptd) // Total difficulty of inserted chain inserted []rawdb.NumberHash // Ephemeral lookup of number/hash for the chain parentKnown = true // Set to true to force hc.HasHeader check the first iteration batch = hc.chainDb.NewBatch() ) for i, header := range headers { var hash common.Hash // The headers have already been validated at this point, so we already // know that it's a contiguous chain, where // headers[i].Hash() == headers[i+1].ParentHash if i < len(headers)-1 { hash = headers[i+1].ParentHash } else { hash = header.Hash() } number := header.Number.Uint64() newTD.Add(newTD, header.Difficulty) // If the parent was not present, store it // If the header is already known, skip it, otherwise store alreadyKnown := parentKnown && hc.HasHeader(hash, number) if !alreadyKnown { // Irrelevant of the canonical status, write the TD and header to the database. rawdb.WriteTd(batch, hash, number, newTD) hc.tdCache.Add(hash, new(big.Int).Set(newTD)) rawdb.WriteHeader(batch, header) inserted = append(inserted, rawdb.NumberHash{Number: number, Hash: hash}) hc.headerCache.Add(hash, header) hc.numberCache.Add(hash, number) } parentKnown = alreadyKnown } // Skip the slow disk write of all headers if interrupted. if hc.procInterrupt() { log.Debug("Premature abort during headers import") return 0, errors.New("aborted") } // Commit to disk! if err := batch.Write(); err != nil { log.Crit("Failed to write headers", "error", err) } return len(inserted), nil } // writeHeadersAndSetHead writes a batch of block headers and applies the last // header as the chain head if the fork choicer says it's ok to update the chain. // Note: This method is not concurrent-safe with inserting blocks simultaneously // into the chain, as side effects caused by reorganisations cannot be emulated // without the real blocks. Hence, writing headers directly should only be done // in two scenarios: pure-header mode of operation (light clients), or properly // separated header/block phases (non-archive clients). func (hc *HeaderChain) writeHeadersAndSetHead(headers []*types.Header, forker *ForkChoice) (*headerWriteResult, error) { inserted, err := hc.WriteHeaders(headers) if err != nil { return nil, err } var ( lastHeader = headers[len(headers)-1] lastHash = headers[len(headers)-1].Hash() result = &headerWriteResult{ status: NonStatTy, ignored: len(headers) - inserted, imported: inserted, lastHash: lastHash, lastHeader: lastHeader, } ) // Ask the fork choicer if the reorg is necessary if reorg, err := forker.ReorgNeeded(hc.CurrentHeader(), lastHeader); err != nil { return nil, err } else if !reorg { if inserted != 0 { result.status = SideStatTy } return result, nil } // Special case, all the inserted headers are already on the canonical // header chain, skip the reorg operation. if hc.GetCanonicalHash(lastHeader.Number.Uint64()) == lastHash && lastHeader.Number.Uint64() <= hc.CurrentHeader().Number.Uint64() { return result, nil } // Apply the reorg operation if err := hc.Reorg(headers); err != nil { return nil, err } result.status = CanonStatTy return result, nil } func (hc *HeaderChain) ValidateHeaderChain(chain []*types.Header, checkFreq int) (int, error) { // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(chain); i++ { if chain[i].Number.Uint64() != chain[i-1].Number.Uint64()+1 { hash := chain[i].Hash() parentHash := chain[i-1].Hash() // Chain broke ancestry, log a message (programming error) and skip insertion log.Error("Non contiguous header insert", "number", chain[i].Number, "hash", hash, "parent", chain[i].ParentHash, "prevnumber", chain[i-1].Number, "prevhash", parentHash) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x..], item %d is #%d [%x..] (parent [%x..])", i-1, chain[i-1].Number, parentHash.Bytes()[:4], i, chain[i].Number, hash.Bytes()[:4], chain[i].ParentHash[:4]) } // If the header is a banned one, straight out abort if BadHashes[chain[i].ParentHash] { return i - 1, ErrBannedHash } // If it's the last header in the cunk, we need to check it too if i == len(chain)-1 && BadHashes[chain[i].Hash()] { return i, ErrBannedHash } } // Generate the list of seal verification requests, and start the parallel verifier seals := make([]bool, len(chain)) if checkFreq != 0 { // In case of checkFreq == 0 all seals are left false. for i := 0; i <= len(seals)/checkFreq; i++ { index := i*checkFreq + hc.rand.Intn(checkFreq) if index >= len(seals) { index = len(seals) - 1 } seals[index] = true } // Last should always be verified to avoid junk. seals[len(seals)-1] = true } abort, results := hc.engine.VerifyHeaders(hc, chain, seals) defer close(abort) // Iterate over the headers and ensure they all check out for i := range chain { // If the chain is terminating, stop processing blocks if hc.procInterrupt() { log.Debug("Premature abort during headers verification") return 0, errors.New("aborted") } // Otherwise wait for headers checks and ensure they pass if err := <-results; err != nil { return i, err } } return 0, nil } // InsertHeaderChain inserts the given headers and does the reorganisations. // // The validity of the headers is NOT CHECKED by this method, i.e. they need to be // validated by ValidateHeaderChain before calling InsertHeaderChain. // // This insert is all-or-nothing. If this returns an error, no headers were written, // otherwise they were all processed successfully. // // The returned 'write status' says if the inserted headers are part of the canonical chain // or a side chain. func (hc *HeaderChain) InsertHeaderChain(chain []*types.Header, start time.Time, forker *ForkChoice) (WriteStatus, error) { if hc.procInterrupt() { return 0, errors.New("aborted") } res, err := hc.writeHeadersAndSetHead(chain, forker) if err != nil { return 0, err } // Report some public statistics so the user has a clue what's going on context := []interface{}{ "count", res.imported, "elapsed", common.PrettyDuration(time.Since(start)), } if last := res.lastHeader; last != nil { context = append(context, "number", last.Number, "hash", res.lastHash) if timestamp := time.Unix(int64(last.Time), 0); time.Since(timestamp) > time.Minute { context = append(context, []interface{}{"age", common.PrettyAge(timestamp)}...) } } if res.ignored > 0 { context = append(context, []interface{}{"ignored", res.ignored}...) } log.Info("Imported new block headers", context...) return res.status, err } // GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or // a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the // number of blocks to be individually checked before we reach the canonical chain. // // Note: ancestor == 0 returns the same block, 1 returns its parent and so on. func (hc *HeaderChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) { if ancestor > number { return common.Hash{}, 0 } if ancestor == 1 { // in this case it is cheaper to just read the header if header := hc.GetHeader(hash, number); header != nil { return header.ParentHash, number - 1 } return common.Hash{}, 0 } for ancestor != 0 { if rawdb.ReadCanonicalHash(hc.chainDb, number) == hash { ancestorHash := rawdb.ReadCanonicalHash(hc.chainDb, number-ancestor) if rawdb.ReadCanonicalHash(hc.chainDb, number) == hash { number -= ancestor return ancestorHash, number } } if *maxNonCanonical == 0 { return common.Hash{}, 0 } *maxNonCanonical-- ancestor-- header := hc.GetHeader(hash, number) if header == nil { return common.Hash{}, 0 } hash = header.ParentHash number-- } return hash, number } // GetTd retrieves a block's total difficulty in the canonical chain from the // database by hash and number, caching it if found. func (hc *HeaderChain) GetTd(hash common.Hash, number uint64) *big.Int { // Short circuit if the td's already in the cache, retrieve otherwise if cached, ok := hc.tdCache.Get(hash); ok { return cached.(*big.Int) } td := rawdb.ReadTd(hc.chainDb, hash, number) if td == nil { return nil } // Cache the found body for next time and return hc.tdCache.Add(hash, td) return td } // GetHeader retrieves a block header from the database by hash and number, // caching it if found. func (hc *HeaderChain) GetHeader(hash common.Hash, number uint64) *types.Header { // Short circuit if the header's already in the cache, retrieve otherwise if header, ok := hc.headerCache.Get(hash); ok { return header.(*types.Header) } header := rawdb.ReadHeader(hc.chainDb, hash, number) if header == nil { return nil } // Cache the found header for next time and return hc.headerCache.Add(hash, header) return header } // GetHeaderByHash retrieves a block header from the database by hash, caching it if // found. func (hc *HeaderChain) GetHeaderByHash(hash common.Hash) *types.Header { number := hc.GetBlockNumber(hash) if number == nil { return nil } return hc.GetHeader(hash, *number) } // HasHeader checks if a block header is present in the database or not. // In theory, if header is present in the database, all relative components // like td and hash->number should be present too. func (hc *HeaderChain) HasHeader(hash common.Hash, number uint64) bool { if hc.numberCache.Contains(hash) || hc.headerCache.Contains(hash) { return true } return rawdb.HasHeader(hc.chainDb, hash, number) } // GetHeaderByNumber retrieves a block header from the database by number, // caching it (associated with its hash) if found. func (hc *HeaderChain) GetHeaderByNumber(number uint64) *types.Header { hash := rawdb.ReadCanonicalHash(hc.chainDb, number) if hash == (common.Hash{}) { return nil } return hc.GetHeader(hash, number) } // GetHeadersFrom returns a contiguous segment of headers, in rlp-form, going // backwards from the given number. // If the 'number' is higher than the highest local header, this method will // return a best-effort response, containing the headers that we do have. func (hc *HeaderChain) GetHeadersFrom(number, count uint64) []rlp.RawValue { // If the request is for future headers, we still return the portion of // headers that we are able to serve if current := hc.CurrentHeader().Number.Uint64(); current < number { if count > number-current { count -= number - current number = current } else { return nil } } var headers []rlp.RawValue // If we have some of the headers in cache already, use that before going to db. hash := rawdb.ReadCanonicalHash(hc.chainDb, number) if hash == (common.Hash{}) { return nil } for count > 0 { header, ok := hc.headerCache.Get(hash) if !ok { break } h := header.(*types.Header) rlpData, _ := rlp.EncodeToBytes(h) headers = append(headers, rlpData) hash = h.ParentHash count-- number-- } // Read remaining from db if count > 0 { headers = append(headers, rawdb.ReadHeaderRange(hc.chainDb, number, count)...) } return headers } func (hc *HeaderChain) GetCanonicalHash(number uint64) common.Hash { return rawdb.ReadCanonicalHash(hc.chainDb, number) } // CurrentHeader retrieves the current head header of the canonical chain. The // header is retrieved from the HeaderChain's internal cache. func (hc *HeaderChain) CurrentHeader() *types.Header { return hc.currentHeader.Load().(*types.Header) } // SetCurrentHeader sets the in-memory head header marker of the canonical chan // as the given header. func (hc *HeaderChain) SetCurrentHeader(head *types.Header) { hc.currentHeader.Store(head) hc.currentHeaderHash = head.Hash() headHeaderGauge.Update(head.Number.Int64()) } type ( // UpdateHeadBlocksCallback is a callback function that is called by SetHead // before head header is updated. The method will return the actual block it // updated the head to (missing state) and a flag if setHead should continue // rewinding till that forcefully (exceeded ancient limits) UpdateHeadBlocksCallback func(ethdb.KeyValueWriter, *types.Header) (uint64, bool) // DeleteBlockContentCallback is a callback function that is called by SetHead // before each header is deleted. DeleteBlockContentCallback func(ethdb.KeyValueWriter, common.Hash, uint64) ) // SetHead rewinds the local chain to a new head. Everything above the new head // will be deleted and the new one set. func (hc *HeaderChain) SetHead(head uint64, updateFn UpdateHeadBlocksCallback, delFn DeleteBlockContentCallback) { var ( parentHash common.Hash batch = hc.chainDb.NewBatch() origin = true ) for hdr := hc.CurrentHeader(); hdr != nil && hdr.Number.Uint64() > head; hdr = hc.CurrentHeader() { num := hdr.Number.Uint64() // Rewind block chain to new head. parent := hc.GetHeader(hdr.ParentHash, num-1) if parent == nil { parent = hc.genesisHeader } parentHash = parent.Hash() // Notably, since geth has the possibility for setting the head to a low // height which is even lower than ancient head. // In order to ensure that the head is always no higher than the data in // the database (ancient store or active store), we need to update head // first then remove the relative data from the database. // // Update head first(head fast block, head full block) before deleting the data. markerBatch := hc.chainDb.NewBatch() if updateFn != nil { newHead, force := updateFn(markerBatch, parent) if force && newHead < head { log.Warn("Force rewinding till ancient limit", "head", newHead) head = newHead } } // Update head header then. rawdb.WriteHeadHeaderHash(markerBatch, parentHash) if err := markerBatch.Write(); err != nil { log.Crit("Failed to update chain markers", "error", err) } hc.currentHeader.Store(parent) hc.currentHeaderHash = parentHash headHeaderGauge.Update(parent.Number.Int64()) // If this is the first iteration, wipe any leftover data upwards too so // we don't end up with dangling daps in the database var nums []uint64 if origin { for n := num + 1; len(rawdb.ReadAllHashes(hc.chainDb, n)) > 0; n++ { nums = append([]uint64{n}, nums...) // suboptimal, but we don't really expect this path } origin = false } nums = append(nums, num) // Remove the related data from the database on all sidechains for _, num := range nums { // Gather all the side fork hashes hashes := rawdb.ReadAllHashes(hc.chainDb, num) if len(hashes) == 0 { // No hashes in the database whatsoever, probably frozen already hashes = append(hashes, hdr.Hash()) } for _, hash := range hashes { if delFn != nil { delFn(batch, hash, num) } rawdb.DeleteHeader(batch, hash, num) rawdb.DeleteTd(batch, hash, num) } rawdb.DeleteCanonicalHash(batch, num) } } // Flush all accumulated deletions. if err := batch.Write(); err != nil { log.Crit("Failed to rewind block", "error", err) } // Clear out any stale content from the caches hc.headerCache.Purge() hc.tdCache.Purge() hc.numberCache.Purge() } // SetGenesis sets a new genesis block header for the chain func (hc *HeaderChain) SetGenesis(head *types.Header) { hc.genesisHeader = head } // Config retrieves the header chain's chain configuration. func (hc *HeaderChain) Config() *params.ChainConfig { return hc.config } // Engine retrieves the header chain's consensus engine. func (hc *HeaderChain) Engine() consensus.Engine { return hc.engine } // GetBlock implements consensus.ChainReader, and returns nil for every input as // a header chain does not have blocks available for retrieval. func (hc *HeaderChain) GetBlock(hash common.Hash, number uint64) *types.Block { return nil }