// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package light import ( "context" "fmt" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" ) const ( // chainHeadChanSize is the size of channel listening to ChainHeadEvent. chainHeadChanSize = 10 ) // txPermanent is the number of mined blocks after a mined transaction is // considered permanent and no rollback is expected var txPermanent = uint64(500) // TxPool implements the transaction pool for light clients, which keeps track // of the status of locally created transactions, detecting if they are included // in a block (mined) or rolled back. There are no queued transactions since we // always receive all locally signed transactions in the same order as they are // created. type TxPool struct { config *params.ChainConfig signer types.Signer quit chan bool txFeed event.Feed scope event.SubscriptionScope chainHeadCh chan core.ChainHeadEvent chainHeadSub event.Subscription mu sync.RWMutex chain *LightChain odr OdrBackend chainDb ethdb.Database relay TxRelayBackend head common.Hash nonce map[common.Address]uint64 // "pending" nonce pending map[common.Hash]*types.Transaction // pending transactions by tx hash mined map[common.Hash][]*types.Transaction // mined transactions by block hash clearIdx uint64 // earliest block nr that can contain mined tx info homestead bool } // TxRelayBackend provides an interface to the mechanism that forwards transacions // to the ETH network. The implementations of the functions should be non-blocking. // // Send instructs backend to forward new transactions // NewHead notifies backend about a new head after processed by the tx pool, // including mined and rolled back transactions since the last event // Discard notifies backend about transactions that should be discarded either // because they have been replaced by a re-send or because they have been mined // long ago and no rollback is expected type TxRelayBackend interface { Send(txs types.Transactions) NewHead(head common.Hash, mined []common.Hash, rollback []common.Hash) Discard(hashes []common.Hash) } // NewTxPool creates a new light transaction pool func NewTxPool(config *params.ChainConfig, chain *LightChain, relay TxRelayBackend) *TxPool { pool := &TxPool{ config: config, signer: types.NewEIP155Signer(config.ChainID), nonce: make(map[common.Address]uint64), pending: make(map[common.Hash]*types.Transaction), mined: make(map[common.Hash][]*types.Transaction), quit: make(chan bool), chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize), chain: chain, relay: relay, odr: chain.Odr(), chainDb: chain.Odr().Database(), head: chain.CurrentHeader().Hash(), clearIdx: chain.CurrentHeader().Number.Uint64(), } // Subscribe events from blockchain pool.chainHeadSub = pool.chain.SubscribeChainHeadEvent(pool.chainHeadCh) go pool.eventLoop() return pool } // currentState returns the light state of the current head header func (pool *TxPool) currentState(ctx context.Context) *state.StateDB { return NewState(ctx, pool.chain.CurrentHeader(), pool.odr) } // GetNonce returns the "pending" nonce of a given address. It always queries // the nonce belonging to the latest header too in order to detect if another // client using the same key sent a transaction. func (pool *TxPool) GetNonce(ctx context.Context, addr common.Address) (uint64, error) { state := pool.currentState(ctx) nonce := state.GetNonce(addr) if state.Error() != nil { return 0, state.Error() } sn, ok := pool.nonce[addr] if ok && sn > nonce { nonce = sn } if !ok || sn < nonce { pool.nonce[addr] = nonce } return nonce, nil } // txStateChanges stores the recent changes between pending/mined states of // transactions. True means mined, false means rolled back, no entry means no change type txStateChanges map[common.Hash]bool // setState sets the status of a tx to either recently mined or recently rolled back func (txc txStateChanges) setState(txHash common.Hash, mined bool) { val, ent := txc[txHash] if ent && (val != mined) { delete(txc, txHash) } else { txc[txHash] = mined } } // getLists creates lists of mined and rolled back tx hashes func (txc txStateChanges) getLists() (mined []common.Hash, rollback []common.Hash) { for hash, val := range txc { if val { mined = append(mined, hash) } else { rollback = append(rollback, hash) } } return } // checkMinedTxs checks newly added blocks for the currently pending transactions // and marks them as mined if necessary. It also stores block position in the db // and adds them to the received txStateChanges map. func (pool *TxPool) checkMinedTxs(ctx context.Context, hash common.Hash, number uint64, txc txStateChanges) error { // If no transactions are pending, we don't care about anything if len(pool.pending) == 0 { return nil } block, err := GetBlock(ctx, pool.odr, hash, number) if err != nil { return err } // Gather all the local transaction mined in this block list := pool.mined[hash] for _, tx := range block.Transactions() { if _, ok := pool.pending[tx.Hash()]; ok { list = append(list, tx) } } // If some transactions have been mined, write the needed data to disk and update if list != nil { // Retrieve all the receipts belonging to this block and write the loopup table if _, err := GetBlockReceipts(ctx, pool.odr, hash, number); err != nil { // ODR caches, ignore results return err } rawdb.WriteTxLookupEntries(pool.chainDb, block) // Update the transaction pool's state for _, tx := range list { delete(pool.pending, tx.Hash()) txc.setState(tx.Hash(), true) } pool.mined[hash] = list } return nil } // rollbackTxs marks the transactions contained in recently rolled back blocks // as rolled back. It also removes any positional lookup entries. func (pool *TxPool) rollbackTxs(hash common.Hash, txc txStateChanges) { batch := pool.chainDb.NewBatch() if list, ok := pool.mined[hash]; ok { for _, tx := range list { txHash := tx.Hash() rawdb.DeleteTxLookupEntry(batch, txHash) pool.pending[txHash] = tx txc.setState(txHash, false) } delete(pool.mined, hash) } batch.Write() } // reorgOnNewHead sets a new head header, processing (and rolling back if necessary) // the blocks since the last known head and returns a txStateChanges map containing // the recently mined and rolled back transaction hashes. If an error (context // timeout) occurs during checking new blocks, it leaves the locally known head // at the latest checked block and still returns a valid txStateChanges, making it // possible to continue checking the missing blocks at the next chain head event func (pool *TxPool) reorgOnNewHead(ctx context.Context, newHeader *types.Header) (txStateChanges, error) { txc := make(txStateChanges) oldh := pool.chain.GetHeaderByHash(pool.head) newh := newHeader // find common ancestor, create list of rolled back and new block hashes var oldHashes, newHashes []common.Hash for oldh.Hash() != newh.Hash() { if oldh.Number.Uint64() >= newh.Number.Uint64() { oldHashes = append(oldHashes, oldh.Hash()) oldh = pool.chain.GetHeader(oldh.ParentHash, oldh.Number.Uint64()-1) } if oldh.Number.Uint64() < newh.Number.Uint64() { newHashes = append(newHashes, newh.Hash()) newh = pool.chain.GetHeader(newh.ParentHash, newh.Number.Uint64()-1) if newh == nil { // happens when CHT syncing, nothing to do newh = oldh } } } if oldh.Number.Uint64() < pool.clearIdx { pool.clearIdx = oldh.Number.Uint64() } // roll back old blocks for _, hash := range oldHashes { pool.rollbackTxs(hash, txc) } pool.head = oldh.Hash() // check mined txs of new blocks (array is in reversed order) for i := len(newHashes) - 1; i >= 0; i-- { hash := newHashes[i] if err := pool.checkMinedTxs(ctx, hash, newHeader.Number.Uint64()-uint64(i), txc); err != nil { return txc, err } pool.head = hash } // clear old mined tx entries of old blocks if idx := newHeader.Number.Uint64(); idx > pool.clearIdx+txPermanent { idx2 := idx - txPermanent if len(pool.mined) > 0 { for i := pool.clearIdx; i < idx2; i++ { hash := rawdb.ReadCanonicalHash(pool.chainDb, i) if list, ok := pool.mined[hash]; ok { hashes := make([]common.Hash, len(list)) for i, tx := range list { hashes[i] = tx.Hash() } pool.relay.Discard(hashes) delete(pool.mined, hash) } } } pool.clearIdx = idx2 } return txc, nil } // blockCheckTimeout is the time limit for checking new blocks for mined // transactions. Checking resumes at the next chain head event if timed out. const blockCheckTimeout = time.Second * 3 // eventLoop processes chain head events and also notifies the tx relay backend // about the new head hash and tx state changes func (pool *TxPool) eventLoop() { for { select { case ev := <-pool.chainHeadCh: pool.setNewHead(ev.Block.Header()) // hack in order to avoid hogging the lock; this part will // be replaced by a subsequent PR. time.Sleep(time.Millisecond) // System stopped case <-pool.chainHeadSub.Err(): return } } } func (pool *TxPool) setNewHead(head *types.Header) { pool.mu.Lock() defer pool.mu.Unlock() ctx, cancel := context.WithTimeout(context.Background(), blockCheckTimeout) defer cancel() txc, _ := pool.reorgOnNewHead(ctx, head) m, r := txc.getLists() pool.relay.NewHead(pool.head, m, r) pool.homestead = pool.config.IsHomestead(head.Number) pool.signer = types.MakeSigner(pool.config, head.Number) } // Stop stops the light transaction pool func (pool *TxPool) Stop() { // Unsubscribe all subscriptions registered from txpool pool.scope.Close() // Unsubscribe subscriptions registered from blockchain pool.chainHeadSub.Unsubscribe() close(pool.quit) log.Info("Transaction pool stopped") } // SubscribeNewTxsEvent registers a subscription of core.NewTxsEvent and // starts sending event to the given channel. func (pool *TxPool) SubscribeNewTxsEvent(ch chan<- core.NewTxsEvent) event.Subscription { return pool.scope.Track(pool.txFeed.Subscribe(ch)) } // Stats returns the number of currently pending (locally created) transactions func (pool *TxPool) Stats() (pending int) { pool.mu.RLock() defer pool.mu.RUnlock() pending = len(pool.pending) return } // validateTx checks whether a transaction is valid according to the consensus rules. func (pool *TxPool) validateTx(ctx context.Context, tx *types.Transaction) error { // Validate sender var ( from common.Address err error ) // Validate the transaction sender and it's sig. Throw // if the from fields is invalid. if from, err = types.Sender(pool.signer, tx); err != nil { return core.ErrInvalidSender } // Last but not least check for nonce errors currentState := pool.currentState(ctx) if n := currentState.GetNonce(from); n > tx.Nonce() { return core.ErrNonceTooLow } // Check the transaction doesn't exceed the current // block limit gas. header := pool.chain.GetHeaderByHash(pool.head) if header.GasLimit < tx.Gas() { return core.ErrGasLimit } // Transactions can't be negative. This may never happen // using RLP decoded transactions but may occur if you create // a transaction using the RPC for example. if tx.Value().Sign() < 0 { return core.ErrNegativeValue } // Transactor should have enough funds to cover the costs // cost == V + GP * GL if b := currentState.GetBalance(from); b.Cmp(tx.Cost()) < 0 { return core.ErrInsufficientFunds } // Should supply enough intrinsic gas gas, err := core.IntrinsicGas(tx.Data(), tx.To() == nil, pool.homestead) if err != nil { return err } if tx.Gas() < gas { return core.ErrIntrinsicGas } return currentState.Error() } // add validates a new transaction and sets its state pending if processable. // It also updates the locally stored nonce if necessary. func (pool *TxPool) add(ctx context.Context, tx *types.Transaction) error { hash := tx.Hash() if pool.pending[hash] != nil { return fmt.Errorf("Known transaction (%x)", hash[:4]) } err := pool.validateTx(ctx, tx) if err != nil { return err } if _, ok := pool.pending[hash]; !ok { pool.pending[hash] = tx nonce := tx.Nonce() + 1 addr, _ := types.Sender(pool.signer, tx) if nonce > pool.nonce[addr] { pool.nonce[addr] = nonce } // Notify the subscribers. This event is posted in a goroutine // because it's possible that somewhere during the post "Remove transaction" // gets called which will then wait for the global tx pool lock and deadlock. go pool.txFeed.Send(core.NewTxsEvent{Txs: types.Transactions{tx}}) } // Print a log message if low enough level is set log.Debug("Pooled new transaction", "hash", hash, "from", log.Lazy{Fn: func() common.Address { from, _ := types.Sender(pool.signer, tx); return from }}, "to", tx.To()) return nil } // Add adds a transaction to the pool if valid and passes it to the tx relay // backend func (pool *TxPool) Add(ctx context.Context, tx *types.Transaction) error { pool.mu.Lock() defer pool.mu.Unlock() data, err := rlp.EncodeToBytes(tx) if err != nil { return err } if err := pool.add(ctx, tx); err != nil { return err } //fmt.Println("Send", tx.Hash()) pool.relay.Send(types.Transactions{tx}) pool.chainDb.Put(tx.Hash().Bytes(), data) return nil } // AddTransactions adds all valid transactions to the pool and passes them to // the tx relay backend func (pool *TxPool) AddBatch(ctx context.Context, txs []*types.Transaction) { pool.mu.Lock() defer pool.mu.Unlock() var sendTx types.Transactions for _, tx := range txs { if err := pool.add(ctx, tx); err == nil { sendTx = append(sendTx, tx) } } if len(sendTx) > 0 { pool.relay.Send(sendTx) } } // GetTransaction returns a transaction if it is contained in the pool // and nil otherwise. func (pool *TxPool) GetTransaction(hash common.Hash) *types.Transaction { // check the txs first if tx, ok := pool.pending[hash]; ok { return tx } return nil } // GetTransactions returns all currently processable transactions. // The returned slice may be modified by the caller. func (pool *TxPool) GetTransactions() (txs types.Transactions, err error) { pool.mu.RLock() defer pool.mu.RUnlock() txs = make(types.Transactions, len(pool.pending)) i := 0 for _, tx := range pool.pending { txs[i] = tx i++ } return txs, nil } // Content retrieves the data content of the transaction pool, returning all the // pending as well as queued transactions, grouped by account and nonce. func (pool *TxPool) Content() (map[common.Address]types.Transactions, map[common.Address]types.Transactions) { pool.mu.RLock() defer pool.mu.RUnlock() // Retrieve all the pending transactions and sort by account and by nonce pending := make(map[common.Address]types.Transactions) for _, tx := range pool.pending { account, _ := types.Sender(pool.signer, tx) pending[account] = append(pending[account], tx) } // There are no queued transactions in a light pool, just return an empty map queued := make(map[common.Address]types.Transactions) return pending, queued } // RemoveTransactions removes all given transactions from the pool. func (pool *TxPool) RemoveTransactions(txs types.Transactions) { pool.mu.Lock() defer pool.mu.Unlock() var hashes []common.Hash batch := pool.chainDb.NewBatch() for _, tx := range txs { hash := tx.Hash() delete(pool.pending, hash) batch.Delete(hash.Bytes()) hashes = append(hashes, hash) } batch.Write() pool.relay.Discard(hashes) } // RemoveTx removes the transaction with the given hash from the pool. func (pool *TxPool) RemoveTx(hash common.Hash) { pool.mu.Lock() defer pool.mu.Unlock() // delete from pending pool delete(pool.pending, hash) pool.chainDb.Delete(hash[:]) pool.relay.Discard([]common.Hash{hash}) }