// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // This file contains some shares testing functionality, common to multiple // different files and modules being tested. package les import ( "context" "crypto/rand" "math/big" "sync" "testing" "time" "github.com/ethereum/go-ethereum/accounts/abi/bind" "github.com/ethereum/go-ethereum/accounts/abi/bind/backends" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/contracts/checkpointoracle/contract" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/eth" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/les/flowcontrol" "github.com/ethereum/go-ethereum/light" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/params" ) var ( bankKey, _ = crypto.GenerateKey() bankAddr = crypto.PubkeyToAddress(bankKey.PublicKey) bankFunds = big.NewInt(1000000000000000000) userKey1, _ = crypto.GenerateKey() userKey2, _ = crypto.GenerateKey() userAddr1 = crypto.PubkeyToAddress(userKey1.PublicKey) userAddr2 = crypto.PubkeyToAddress(userKey2.PublicKey) testContractCode = common.Hex2Bytes("606060405260cc8060106000396000f360606040526000357c01000000000000000000000000000000000000000000000000000000009004806360cd2685146041578063c16431b914606b57603f565b005b6055600480803590602001909190505060a9565b6040518082815260200191505060405180910390f35b60886004808035906020019091908035906020019091905050608a565b005b80600060005083606481101560025790900160005b50819055505b5050565b6000600060005082606481101560025790900160005b5054905060c7565b91905056") testContractAddr common.Address testContractCodeDeployed = testContractCode[16:] testContractDeployed = uint64(2) testEventEmitterCode = common.Hex2Bytes("60606040523415600e57600080fd5b7f57050ab73f6b9ebdd9f76b8d4997793f48cf956e965ee070551b9ca0bb71584e60405160405180910390a160358060476000396000f3006060604052600080fd00a165627a7a723058203f727efcad8b5811f8cb1fc2620ce5e8c63570d697aef968172de296ea3994140029") // Checkpoint registrar relative registrarAddr common.Address signerKey, _ = crypto.GenerateKey() signerAddr = crypto.PubkeyToAddress(signerKey.PublicKey) ) var ( // The block frequency for creating checkpoint(only used in test) sectionSize = big.NewInt(512) // The number of confirmations needed to generate a checkpoint(only used in test). processConfirms = big.NewInt(4) // testBufLimit = uint64(1000000) testBufRecharge = uint64(1000) ) /* contract test { uint256[100] data; function Put(uint256 addr, uint256 value) { data[addr] = value; } function Get(uint256 addr) constant returns (uint256 value) { return data[addr]; } } */ // prepareTestchain pre-commits specified number customized blocks into chain. func prepareTestchain(n int, backend *backends.SimulatedBackend) { var ( ctx = context.Background() signer = types.HomesteadSigner{} ) for i := 0; i < n; i++ { switch i { case 0: // deploy checkpoint contract registrarAddr, _, _, _ = contract.DeployCheckpointOracle(bind.NewKeyedTransactor(bankKey), backend, []common.Address{signerAddr}, sectionSize, processConfirms, big.NewInt(1)) // bankUser transfers some ether to user1 nonce, _ := backend.PendingNonceAt(ctx, bankAddr) tx, _ := types.SignTx(types.NewTransaction(nonce, userAddr1, big.NewInt(10000), params.TxGas, nil, nil), signer, bankKey) backend.SendTransaction(ctx, tx) case 1: bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr) userNonce1, _ := backend.PendingNonceAt(ctx, userAddr1) // bankUser transfers more ether to user1 tx1, _ := types.SignTx(types.NewTransaction(bankNonce, userAddr1, big.NewInt(1000), params.TxGas, nil, nil), signer, bankKey) backend.SendTransaction(ctx, tx1) // user1 relays ether to user2 tx2, _ := types.SignTx(types.NewTransaction(userNonce1, userAddr2, big.NewInt(1000), params.TxGas, nil, nil), signer, userKey1) backend.SendTransaction(ctx, tx2) // user1 deploys a test contract tx3, _ := types.SignTx(types.NewContractCreation(userNonce1+1, big.NewInt(0), 200000, big.NewInt(0), testContractCode), signer, userKey1) backend.SendTransaction(ctx, tx3) testContractAddr = crypto.CreateAddress(userAddr1, userNonce1+1) // user1 deploys a event contract tx4, _ := types.SignTx(types.NewContractCreation(userNonce1+2, big.NewInt(0), 200000, big.NewInt(0), testEventEmitterCode), signer, userKey1) backend.SendTransaction(ctx, tx4) case 2: // bankUser transfer some ether to signer bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr) tx1, _ := types.SignTx(types.NewTransaction(bankNonce, signerAddr, big.NewInt(1000000000), params.TxGas, nil, nil), signer, bankKey) backend.SendTransaction(ctx, tx1) // invoke test contract data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001") tx2, _ := types.SignTx(types.NewTransaction(bankNonce+1, testContractAddr, big.NewInt(0), 100000, nil, data), signer, bankKey) backend.SendTransaction(ctx, tx2) case 3: // invoke test contract bankNonce, _ := backend.PendingNonceAt(ctx, bankAddr) data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002") tx, _ := types.SignTx(types.NewTransaction(bankNonce, testContractAddr, big.NewInt(0), 100000, nil, data), signer, bankKey) backend.SendTransaction(ctx, tx) } backend.Commit() } } // testIndexers creates a set of indexers with specified params for testing purpose. func testIndexers(db ethdb.Database, odr light.OdrBackend, config *light.IndexerConfig) []*core.ChainIndexer { var indexers [3]*core.ChainIndexer indexers[0] = light.NewChtIndexer(db, odr, config.ChtSize, config.ChtConfirms) indexers[1] = eth.NewBloomIndexer(db, config.BloomSize, config.BloomConfirms) indexers[2] = light.NewBloomTrieIndexer(db, odr, config.BloomSize, config.BloomTrieSize) // make bloomTrieIndexer as a child indexer of bloom indexer. indexers[1].AddChildIndexer(indexers[2]) return indexers[:] } // newTestProtocolManager creates a new protocol manager for testing purposes, // with the given number of blocks already known, potential notification // channels for different events and relative chain indexers array. func newTestProtocolManager(lightSync bool, blocks int, odr *LesOdr, indexers []*core.ChainIndexer, peers *peerSet, db ethdb.Database, ulcConfig *eth.ULCConfig, testCost uint64, clock mclock.Clock) (*ProtocolManager, *backends.SimulatedBackend, error) { var ( evmux = new(event.TypeMux) engine = ethash.NewFaker() gspec = core.Genesis{ Config: params.AllEthashProtocolChanges, Alloc: core.GenesisAlloc{bankAddr: {Balance: bankFunds}}, } pool txPool chain BlockChain exitCh = make(chan struct{}) ) gspec.MustCommit(db) if peers == nil { peers = newPeerSet() } // create a simulation backend and pre-commit several customized block to the database. simulation := backends.NewSimulatedBackendWithDatabase(db, gspec.Alloc, 100000000) prepareTestchain(blocks, simulation) // initialize empty chain for light client or pre-committed chain for server. if lightSync { chain, _ = light.NewLightChain(odr, gspec.Config, engine, nil) } else { chain = simulation.Blockchain() pool = core.NewTxPool(core.DefaultTxPoolConfig, gspec.Config, simulation.Blockchain()) } // Create contract registrar indexConfig := light.TestServerIndexerConfig if lightSync { indexConfig = light.TestClientIndexerConfig } config := ¶ms.CheckpointOracleConfig{ Address: crypto.CreateAddress(bankAddr, 0), Signers: []common.Address{signerAddr}, Threshold: 1, } var reg *checkpointOracle if indexers != nil { getLocal := func(index uint64) params.TrustedCheckpoint { chtIndexer := indexers[0] sectionHead := chtIndexer.SectionHead(index) return params.TrustedCheckpoint{ SectionIndex: index, SectionHead: sectionHead, CHTRoot: light.GetChtRoot(db, index, sectionHead), BloomRoot: light.GetBloomTrieRoot(db, index, sectionHead), } } reg = newCheckpointOracle(config, getLocal) } pm, err := NewProtocolManager(gspec.Config, nil, indexConfig, ulcConfig, lightSync, NetworkId, evmux, peers, chain, pool, db, odr, nil, reg, exitCh, new(sync.WaitGroup), func() bool { return true }) if err != nil { return nil, nil, err } // Registrar initialization could failed if checkpoint contract is not specified. if pm.reg != nil { pm.reg.start(simulation) } // Set up les server stuff. if !lightSync { srv := &LesServer{lesCommons: lesCommons{protocolManager: pm, chainDb: db}} pm.server = srv pm.servingQueue = newServingQueue(int64(time.Millisecond*10), 1) pm.servingQueue.setThreads(4) srv.defParams = flowcontrol.ServerParams{ BufLimit: testBufLimit, MinRecharge: testBufRecharge, } srv.testCost = testCost srv.fcManager = flowcontrol.NewClientManager(nil, clock) } pm.Start(1000) return pm, simulation, nil } // newTestProtocolManagerMust creates a new protocol manager for testing purposes, // with the given number of blocks already known, potential notification channels // for different events and relative chain indexers array. In case of an error, the // constructor force-fails the test. func newTestProtocolManagerMust(t *testing.T, lightSync bool, blocks int, odr *LesOdr, indexers []*core.ChainIndexer, peers *peerSet, db ethdb.Database, ulcConfig *eth.ULCConfig) (*ProtocolManager, *backends.SimulatedBackend) { pm, backend, err := newTestProtocolManager(lightSync, blocks, odr, indexers, peers, db, ulcConfig, 0, &mclock.System{}) if err != nil { t.Fatalf("Failed to create protocol manager: %v", err) } return pm, backend } // testPeer is a simulated peer to allow testing direct network calls. type testPeer struct { net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side *peer } // newTestPeer creates a new peer registered at the given protocol manager. func newTestPeer(t *testing.T, name string, version int, pm *ProtocolManager, shake bool, testCost uint64) (*testPeer, <-chan error) { // Create a message pipe to communicate through app, net := p2p.MsgPipe() // Generate a random id and create the peer var id enode.ID rand.Read(id[:]) peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net) // Start the peer on a new thread errc := make(chan error, 1) go func() { select { case pm.newPeerCh <- peer: errc <- pm.handle(peer) case <-pm.quitSync: errc <- p2p.DiscQuitting } }() tp := &testPeer{ app: app, net: net, peer: peer, } // Execute any implicitly requested handshakes and return if shake { var ( genesis = pm.blockchain.Genesis() head = pm.blockchain.CurrentHeader() td = pm.blockchain.GetTd(head.Hash(), head.Number.Uint64()) ) tp.handshake(t, td, head.Hash(), head.Number.Uint64(), genesis.Hash(), testCost) } return tp, errc } func newTestPeerPair(name string, version int, pm, pm2 *ProtocolManager) (*peer, <-chan error, *peer, <-chan error) { // Create a message pipe to communicate through app, net := p2p.MsgPipe() // Generate a random id and create the peer var id enode.ID rand.Read(id[:]) peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net) peer2 := pm2.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), app) // Start the peer on a new thread errc := make(chan error, 1) errc2 := make(chan error, 1) go func() { select { case pm.newPeerCh <- peer: errc <- pm.handle(peer) case <-pm.quitSync: errc <- p2p.DiscQuitting } }() go func() { select { case pm2.newPeerCh <- peer2: errc2 <- pm2.handle(peer2) case <-pm2.quitSync: errc2 <- p2p.DiscQuitting } }() return peer, errc, peer2, errc2 } // handshake simulates a trivial handshake that expects the same state from the // remote side as we are simulating locally. func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, testCost uint64) { var expList keyValueList expList = expList.add("protocolVersion", uint64(p.version)) expList = expList.add("networkId", uint64(NetworkId)) expList = expList.add("headTd", td) expList = expList.add("headHash", head) expList = expList.add("headNum", headNum) expList = expList.add("genesisHash", genesis) sendList := make(keyValueList, len(expList)) copy(sendList, expList) expList = expList.add("serveHeaders", nil) expList = expList.add("serveChainSince", uint64(0)) expList = expList.add("serveStateSince", uint64(0)) expList = expList.add("serveRecentState", uint64(core.TriesInMemory-4)) expList = expList.add("txRelay", nil) expList = expList.add("flowControl/BL", testBufLimit) expList = expList.add("flowControl/MRR", testBufRecharge) expList = expList.add("flowControl/MRC", testCostList(testCost)) if err := p2p.ExpectMsg(p.app, StatusMsg, expList); err != nil { t.Fatalf("status recv: %v", err) } if err := p2p.Send(p.app, StatusMsg, sendList); err != nil { t.Fatalf("status send: %v", err) } p.fcParams = flowcontrol.ServerParams{ BufLimit: testBufLimit, MinRecharge: testBufRecharge, } } // close terminates the local side of the peer, notifying the remote protocol // manager of termination. func (p *testPeer) close() { p.app.Close() } // TestEntity represents a network entity for testing with necessary auxiliary fields. type TestEntity struct { db ethdb.Database rPeer *peer tPeer *testPeer peers *peerSet pm *ProtocolManager backend *backends.SimulatedBackend // Indexers chtIndexer *core.ChainIndexer bloomIndexer *core.ChainIndexer bloomTrieIndexer *core.ChainIndexer } // newServerEnv creates a server testing environment with a connected test peer for testing purpose. func newServerEnv(t *testing.T, blocks int, protocol int, waitIndexers func(*core.ChainIndexer, *core.ChainIndexer, *core.ChainIndexer)) (*TestEntity, func()) { db := rawdb.NewMemoryDatabase() indexers := testIndexers(db, nil, light.TestServerIndexerConfig) pm, b := newTestProtocolManagerMust(t, false, blocks, nil, indexers, nil, db, nil) peer, _ := newTestPeer(t, "peer", protocol, pm, true, 0) cIndexer, bIndexer, btIndexer := indexers[0], indexers[1], indexers[2] cIndexer.Start(pm.blockchain.(*core.BlockChain)) bIndexer.Start(pm.blockchain.(*core.BlockChain)) // Wait until indexers generate enough index data. if waitIndexers != nil { waitIndexers(cIndexer, bIndexer, btIndexer) } return &TestEntity{ db: db, tPeer: peer, pm: pm, backend: b, chtIndexer: cIndexer, bloomIndexer: bIndexer, bloomTrieIndexer: btIndexer, }, func() { peer.close() // Note bloom trie indexer will be closed by it parent recursively. cIndexer.Close() bIndexer.Close() } } // newClientServerEnv creates a client/server arch environment with a connected les server and light client pair // for testing purpose. func newClientServerEnv(t *testing.T, blocks int, protocol int, waitIndexers func(*core.ChainIndexer, *core.ChainIndexer, *core.ChainIndexer), newPeer bool) (*TestEntity, *TestEntity, func()) { db, ldb := rawdb.NewMemoryDatabase(), rawdb.NewMemoryDatabase() peers, lPeers := newPeerSet(), newPeerSet() dist := newRequestDistributor(lPeers, make(chan struct{}), &mclock.System{}) rm := newRetrieveManager(lPeers, dist, nil) odr := NewLesOdr(ldb, light.TestClientIndexerConfig, rm) indexers := testIndexers(db, nil, light.TestServerIndexerConfig) lIndexers := testIndexers(ldb, odr, light.TestClientIndexerConfig) cIndexer, bIndexer, btIndexer := indexers[0], indexers[1], indexers[2] lcIndexer, lbIndexer, lbtIndexer := lIndexers[0], lIndexers[1], lIndexers[2] odr.SetIndexers(lcIndexer, lbtIndexer, lbIndexer) pm, b := newTestProtocolManagerMust(t, false, blocks, nil, indexers, peers, db, nil) lpm, lb := newTestProtocolManagerMust(t, true, 0, odr, lIndexers, lPeers, ldb, nil) startIndexers := func(clientMode bool, pm *ProtocolManager) { if clientMode { lcIndexer.Start(pm.blockchain.(*light.LightChain)) lbIndexer.Start(pm.blockchain.(*light.LightChain)) } else { cIndexer.Start(pm.blockchain.(*core.BlockChain)) bIndexer.Start(pm.blockchain.(*core.BlockChain)) } } startIndexers(false, pm) startIndexers(true, lpm) // Execute wait until function if it is specified. if waitIndexers != nil { waitIndexers(cIndexer, bIndexer, btIndexer) } var ( peer, lPeer *peer err1, err2 <-chan error ) if newPeer { peer, err1, lPeer, err2 = newTestPeerPair("peer", protocol, pm, lpm) select { case <-time.After(time.Millisecond * 100): case err := <-err1: t.Fatalf("peer 1 handshake error: %v", err) case err := <-err2: t.Fatalf("peer 2 handshake error: %v", err) } } return &TestEntity{ db: db, pm: pm, rPeer: peer, peers: peers, backend: b, chtIndexer: cIndexer, bloomIndexer: bIndexer, bloomTrieIndexer: btIndexer, }, &TestEntity{ db: ldb, pm: lpm, rPeer: lPeer, peers: lPeers, backend: lb, chtIndexer: lcIndexer, bloomIndexer: lbIndexer, bloomTrieIndexer: lbtIndexer, }, func() { // Note bloom trie indexers will be closed by their parents recursively. cIndexer.Close() bIndexer.Close() lcIndexer.Close() lbIndexer.Close() } }