// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package stacktrie import ( "bytes" "encoding/binary" "errors" "fmt" "hash" "io" "sort" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/trie" "golang.org/x/crypto/sha3" ) type fuzzer struct { input io.Reader exhausted bool debugging bool } func (f *fuzzer) read(size int) []byte { out := make([]byte, size) if _, err := f.input.Read(out); err != nil { f.exhausted = true } return out } func (f *fuzzer) readSlice(min, max int) []byte { var a uint16 binary.Read(f.input, binary.LittleEndian, &a) size := min + int(a)%(max-min) out := make([]byte, size) if _, err := f.input.Read(out); err != nil { f.exhausted = true } return out } // spongeDb is a dummy db backend which accumulates writes in a sponge type spongeDb struct { sponge hash.Hash debug bool } func (s *spongeDb) Has(key []byte) (bool, error) { panic("implement me") } func (s *spongeDb) Get(key []byte) ([]byte, error) { return nil, errors.New("no such elem") } func (s *spongeDb) Delete(key []byte) error { panic("implement me") } func (s *spongeDb) NewBatch() ethdb.Batch { return &spongeBatch{s} } func (s *spongeDb) Stat(property string) (string, error) { panic("implement me") } func (s *spongeDb) Compact(start []byte, limit []byte) error { panic("implement me") } func (s *spongeDb) Close() error { return nil } func (s *spongeDb) Put(key []byte, value []byte) error { if s.debug { fmt.Printf("db.Put %x : %x\n", key, value) } s.sponge.Write(key) s.sponge.Write(value) return nil } func (s *spongeDb) NewIterator(prefix []byte, start []byte) ethdb.Iterator { panic("implement me") } // spongeBatch is a dummy batch which immediately writes to the underlying spongedb type spongeBatch struct { db *spongeDb } func (b *spongeBatch) Put(key, value []byte) error { b.db.Put(key, value) return nil } func (b *spongeBatch) Delete(key []byte) error { panic("implement me") } func (b *spongeBatch) KeyCount() int { panic("not implemented") } func (b *spongeBatch) ValueSize() int { return 100 } func (b *spongeBatch) Write() error { return nil } func (b *spongeBatch) Reset() {} func (b *spongeBatch) Replay(w ethdb.KeyValueWriter) error { return nil } type kv struct { k, v []byte } type kvs []kv func (k kvs) Len() int { return len(k) } func (k kvs) Less(i, j int) bool { return bytes.Compare(k[i].k, k[j].k) < 0 } func (k kvs) Swap(i, j int) { k[j], k[i] = k[i], k[j] } // The function must return // 1 if the fuzzer should increase priority of the // given input during subsequent fuzzing (for example, the input is lexically // correct and was parsed successfully); // -1 if the input must not be added to corpus even if gives new coverage; and // 0 otherwise // other values are reserved for future use. func Fuzz(data []byte) int { f := fuzzer{ input: bytes.NewReader(data), exhausted: false, } return f.fuzz() } func Debug(data []byte) int { f := fuzzer{ input: bytes.NewReader(data), exhausted: false, debugging: true, } return f.fuzz() } func (f *fuzzer) fuzz() int { // This spongeDb is used to check the sequence of disk-db-writes var ( spongeA = &spongeDb{sponge: sha3.NewLegacyKeccak256()} dbA = trie.NewDatabase(spongeA) trieA, _ = trie.New(common.Hash{}, dbA) spongeB = &spongeDb{sponge: sha3.NewLegacyKeccak256()} trieB = trie.NewStackTrie(spongeB) vals kvs useful bool maxElements = 10000 // operate on unique keys only keys = make(map[string]struct{}) ) // Fill the trie with elements for i := 0; !f.exhausted && i < maxElements; i++ { k := f.read(32) v := f.readSlice(1, 500) if f.exhausted { // If it was exhausted while reading, the value may be all zeroes, // thus 'deletion' which is not supported on stacktrie break } if _, present := keys[string(k)]; present { // This key is a duplicate, ignore it continue } keys[string(k)] = struct{}{} vals = append(vals, kv{k: k, v: v}) trieA.Update(k, v) useful = true } if !useful { return 0 } // Flush trie -> database rootA, err := trieA.Commit(nil) if err != nil { panic(err) } // Flush memdb -> disk (sponge) dbA.Commit(rootA, false, nil) // Stacktrie requires sorted insertion sort.Sort(vals) for _, kv := range vals { if f.debugging { fmt.Printf("{\"0x%x\" , \"0x%x\"} // stacktrie.Update\n", kv.k, kv.v) } trieB.Update(kv.k, kv.v) } rootB := trieB.Hash() if _, err := trieB.Commit(); err != nil { panic(err) } if rootA != rootB { panic(fmt.Sprintf("roots differ: (trie) %x != %x (stacktrie)", rootA, rootB)) } sumA := spongeA.sponge.Sum(nil) sumB := spongeB.sponge.Sum(nil) if !bytes.Equal(sumA, sumB) { panic(fmt.Sprintf("sequence differ: (trie) %x != %x (stacktrie)", sumA, sumB)) } return 1 }