// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // This file contains some shares testing functionality, common to multiple // different files and modules being tested. package les import ( "crypto/rand" "math/big" "sync" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/eth" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/les/flowcontrol" "github.com/ethereum/go-ethereum/light" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/p2p/discover" "github.com/ethereum/go-ethereum/params" ) var ( testBankKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") testBankAddress = crypto.PubkeyToAddress(testBankKey.PublicKey) testBankFunds = big.NewInt(1000000000000000000) acc1Key, _ = crypto.HexToECDSA("8a1f9a8f95be41cd7ccb6168179afb4504aefe388d1e14474d32c45c72ce7b7a") acc2Key, _ = crypto.HexToECDSA("49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee") acc1Addr = crypto.PubkeyToAddress(acc1Key.PublicKey) acc2Addr = crypto.PubkeyToAddress(acc2Key.PublicKey) testContractCode = common.Hex2Bytes("606060405260cc8060106000396000f360606040526000357c01000000000000000000000000000000000000000000000000000000009004806360cd2685146041578063c16431b914606b57603f565b005b6055600480803590602001909190505060a9565b6040518082815260200191505060405180910390f35b60886004808035906020019091908035906020019091905050608a565b005b80600060005083606481101560025790900160005b50819055505b5050565b6000600060005082606481101560025790900160005b5054905060c7565b91905056") testContractAddr common.Address testContractCodeDeployed = testContractCode[16:] testContractDeployed = uint64(2) testEventEmitterCode = common.Hex2Bytes("60606040523415600e57600080fd5b7f57050ab73f6b9ebdd9f76b8d4997793f48cf956e965ee070551b9ca0bb71584e60405160405180910390a160358060476000396000f3006060604052600080fd00a165627a7a723058203f727efcad8b5811f8cb1fc2620ce5e8c63570d697aef968172de296ea3994140029") testEventEmitterAddr common.Address testBufLimit = uint64(100) ) /* contract test { uint256[100] data; function Put(uint256 addr, uint256 value) { data[addr] = value; } function Get(uint256 addr) constant returns (uint256 value) { return data[addr]; } } */ func testChainGen(i int, block *core.BlockGen) { signer := types.HomesteadSigner{} switch i { case 0: // In block 1, the test bank sends account #1 some ether. tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil), signer, testBankKey) block.AddTx(tx) case 1: // In block 2, the test bank sends some more ether to account #1. // acc1Addr passes it on to account #2. // acc1Addr creates a test contract. // acc1Addr creates a test event. nonce := block.TxNonce(acc1Addr) tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, testBankKey) tx2, _ := types.SignTx(types.NewTransaction(nonce, acc2Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, acc1Key) tx3, _ := types.SignTx(types.NewContractCreation(nonce+1, big.NewInt(0), 200000, big.NewInt(0), testContractCode), signer, acc1Key) testContractAddr = crypto.CreateAddress(acc1Addr, nonce+1) tx4, _ := types.SignTx(types.NewContractCreation(nonce+2, big.NewInt(0), 200000, big.NewInt(0), testEventEmitterCode), signer, acc1Key) testEventEmitterAddr = crypto.CreateAddress(acc1Addr, nonce+2) block.AddTx(tx1) block.AddTx(tx2) block.AddTx(tx3) block.AddTx(tx4) case 2: // Block 3 is empty but was mined by account #2. block.SetCoinbase(acc2Addr) block.SetExtra([]byte("yeehaw")) data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000001") tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), testContractAddr, big.NewInt(0), 100000, nil, data), signer, testBankKey) block.AddTx(tx) case 3: // Block 4 includes blocks 2 and 3 as uncle headers (with modified extra data). b2 := block.PrevBlock(1).Header() b2.Extra = []byte("foo") block.AddUncle(b2) b3 := block.PrevBlock(2).Header() b3.Extra = []byte("foo") block.AddUncle(b3) data := common.Hex2Bytes("C16431B900000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002") tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), testContractAddr, big.NewInt(0), 100000, nil, data), signer, testBankKey) block.AddTx(tx) } } func testRCL() RequestCostList { cl := make(RequestCostList, len(reqList)) for i, code := range reqList { cl[i].MsgCode = code cl[i].BaseCost = 0 cl[i].ReqCost = 0 } return cl } // newTestProtocolManager creates a new protocol manager for testing purposes, // with the given number of blocks already known, and potential notification // channels for different events. func newTestProtocolManager(lightSync bool, blocks int, generator func(int, *core.BlockGen), peers *peerSet, odr *LesOdr, db ethdb.Database) (*ProtocolManager, error) { var ( evmux = new(event.TypeMux) engine = ethash.NewFaker() gspec = core.Genesis{ Config: params.TestChainConfig, Alloc: core.GenesisAlloc{testBankAddress: {Balance: testBankFunds}}, } genesis = gspec.MustCommit(db) chain BlockChain ) if peers == nil { peers = newPeerSet() } if lightSync { chain, _ = light.NewLightChain(odr, gspec.Config, engine) } else { blockchain, _ := core.NewBlockChain(db, nil, gspec.Config, engine, vm.Config{}) chtIndexer := light.NewChtIndexer(db, false, nil) chtIndexer.Start(blockchain) bbtIndexer := light.NewBloomTrieIndexer(db, false, nil) bloomIndexer := eth.NewBloomIndexer(db, params.BloomBitsBlocks, light.HelperTrieProcessConfirmations) bloomIndexer.AddChildIndexer(bbtIndexer) bloomIndexer.Start(blockchain) gchain, _ := core.GenerateChain(gspec.Config, genesis, ethash.NewFaker(), db, blocks, generator) if _, err := blockchain.InsertChain(gchain); err != nil { panic(err) } chain = blockchain } pm, err := NewProtocolManager(gspec.Config, lightSync, NetworkId, evmux, engine, peers, chain, nil, db, odr, nil, nil, make(chan struct{}), new(sync.WaitGroup)) if err != nil { return nil, err } if !lightSync { srv := &LesServer{lesCommons: lesCommons{protocolManager: pm}} pm.server = srv srv.defParams = &flowcontrol.ServerParams{ BufLimit: testBufLimit, MinRecharge: 1, } srv.fcManager = flowcontrol.NewClientManager(50, 10, 1000000000) srv.fcCostStats = newCostStats(nil) } pm.Start(1000) return pm, nil } // newTestProtocolManagerMust creates a new protocol manager for testing purposes, // with the given number of blocks already known, and potential notification // channels for different events. In case of an error, the constructor force- // fails the test. func newTestProtocolManagerMust(t *testing.T, lightSync bool, blocks int, generator func(int, *core.BlockGen), peers *peerSet, odr *LesOdr, db ethdb.Database) *ProtocolManager { pm, err := newTestProtocolManager(lightSync, blocks, generator, peers, odr, db) if err != nil { t.Fatalf("Failed to create protocol manager: %v", err) } return pm } // testPeer is a simulated peer to allow testing direct network calls. type testPeer struct { net p2p.MsgReadWriter // Network layer reader/writer to simulate remote messaging app *p2p.MsgPipeRW // Application layer reader/writer to simulate the local side *peer } // newTestPeer creates a new peer registered at the given protocol manager. func newTestPeer(t *testing.T, name string, version int, pm *ProtocolManager, shake bool) (*testPeer, <-chan error) { // Create a message pipe to communicate through app, net := p2p.MsgPipe() // Generate a random id and create the peer var id discover.NodeID rand.Read(id[:]) peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net) // Start the peer on a new thread errc := make(chan error, 1) go func() { select { case pm.newPeerCh <- peer: errc <- pm.handle(peer) case <-pm.quitSync: errc <- p2p.DiscQuitting } }() tp := &testPeer{ app: app, net: net, peer: peer, } // Execute any implicitly requested handshakes and return if shake { var ( genesis = pm.blockchain.Genesis() head = pm.blockchain.CurrentHeader() td = pm.blockchain.GetTd(head.Hash(), head.Number.Uint64()) ) tp.handshake(t, td, head.Hash(), head.Number.Uint64(), genesis.Hash()) } return tp, errc } func newTestPeerPair(name string, version int, pm, pm2 *ProtocolManager) (*peer, <-chan error, *peer, <-chan error) { // Create a message pipe to communicate through app, net := p2p.MsgPipe() // Generate a random id and create the peer var id discover.NodeID rand.Read(id[:]) peer := pm.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), net) peer2 := pm2.newPeer(version, NetworkId, p2p.NewPeer(id, name, nil), app) // Start the peer on a new thread errc := make(chan error, 1) errc2 := make(chan error, 1) go func() { select { case pm.newPeerCh <- peer: errc <- pm.handle(peer) case <-pm.quitSync: errc <- p2p.DiscQuitting } }() go func() { select { case pm2.newPeerCh <- peer2: errc2 <- pm2.handle(peer2) case <-pm2.quitSync: errc2 <- p2p.DiscQuitting } }() return peer, errc, peer2, errc2 } // handshake simulates a trivial handshake that expects the same state from the // remote side as we are simulating locally. func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNum uint64, genesis common.Hash) { var expList keyValueList expList = expList.add("protocolVersion", uint64(p.version)) expList = expList.add("networkId", uint64(NetworkId)) expList = expList.add("headTd", td) expList = expList.add("headHash", head) expList = expList.add("headNum", headNum) expList = expList.add("genesisHash", genesis) sendList := make(keyValueList, len(expList)) copy(sendList, expList) expList = expList.add("serveHeaders", nil) expList = expList.add("serveChainSince", uint64(0)) expList = expList.add("serveStateSince", uint64(0)) expList = expList.add("txRelay", nil) expList = expList.add("flowControl/BL", testBufLimit) expList = expList.add("flowControl/MRR", uint64(1)) expList = expList.add("flowControl/MRC", testRCL()) if err := p2p.ExpectMsg(p.app, StatusMsg, expList); err != nil { t.Fatalf("status recv: %v", err) } if err := p2p.Send(p.app, StatusMsg, sendList); err != nil { t.Fatalf("status send: %v", err) } p.fcServerParams = &flowcontrol.ServerParams{ BufLimit: testBufLimit, MinRecharge: 1, } } // close terminates the local side of the peer, notifying the remote protocol // manager of termination. func (p *testPeer) close() { p.app.Close() }