package ethchain import ( "bytes" "container/list" "fmt" "github.com/ethereum/eth-go/ethutil" "github.com/ethereum/eth-go/ethwire" "math/big" "sync" "time" ) type BlockProcessor interface { ProcessBlock(block *Block) } type Peer interface { Inbound() bool LastSend() time.Time LastPong() int64 Host() []byte Port() uint16 Version() string PingTime() string Connected() *int32 } type EthManager interface { StateManager() *StateManager BlockChain() *BlockChain TxPool() *TxPool Broadcast(msgType ethwire.MsgType, data []interface{}) Reactor() *ethutil.ReactorEngine PeerCount() int IsMining() bool IsListening() bool Peers() *list.List } type StateManager struct { // Mutex for locking the block processor. Blocks can only be handled one at a time mutex sync.Mutex // Canonical block chain bc *BlockChain // Stack for processing contracts stack *Stack // non-persistent key/value memory storage mem map[string]*big.Int // Proof of work used for validating Pow PoW // The ethereum manager interface Ethereum EthManager // The managed states // Transiently state. The trans state isn't ever saved, validated and // it could be used for setting account nonces without effecting // the main states. transState *State // Mining state. The mining state is used purely and solely by the mining // operation. miningState *State } func NewStateManager(ethereum EthManager) *StateManager { sm := &StateManager{ stack: NewStack(), mem: make(map[string]*big.Int), Pow: &EasyPow{}, Ethereum: ethereum, bc: ethereum.BlockChain(), } sm.transState = ethereum.BlockChain().CurrentBlock.State().Copy() sm.miningState = ethereum.BlockChain().CurrentBlock.State().Copy() return sm } func (sm *StateManager) CurrentState() *State { return sm.Ethereum.BlockChain().CurrentBlock.State() } func (sm *StateManager) TransState() *State { return sm.transState } func (sm *StateManager) MiningState() *State { return sm.miningState } func (sm *StateManager) NewMiningState() *State { sm.miningState = sm.Ethereum.BlockChain().CurrentBlock.State().Copy() return sm.miningState } func (sm *StateManager) BlockChain() *BlockChain { return sm.bc } func (sm *StateManager) MakeStateObject(state *State, tx *Transaction) *StateObject { contract := MakeContract(tx, state) if contract != nil { state.states[string(tx.CreationAddress())] = contract.state return contract } return nil } func (self *StateManager) ProcessTransaction(tx *Transaction, coinbase *StateObject, state *State, toContract bool) (gas *big.Int, err error) { fmt.Printf("state root before update %x\n", state.Root()) defer func() { if r := recover(); r != nil { ethutil.Config.Log.Infoln(r) err = fmt.Errorf("%v", r) } }() gas = new(big.Int) addGas := func(g *big.Int) { gas.Add(gas, g) } addGas(GasTx) // Get the sender sender := state.GetAccount(tx.Sender()) if sender.Nonce != tx.Nonce { err = NonceError(tx.Nonce, sender.Nonce) return } sender.Nonce += 1 defer func() { //state.UpdateStateObject(sender) // Notify all subscribers self.Ethereum.Reactor().Post("newTx:post", tx) }() txTotalBytes := big.NewInt(int64(len(tx.Data))) txTotalBytes.Div(txTotalBytes, ethutil.Big32) addGas(new(big.Int).Mul(txTotalBytes, GasSStore)) rGas := new(big.Int).Set(gas) rGas.Mul(gas, tx.GasPrice) // Make sure there's enough in the sender's account. Having insufficient // funds won't invalidate this transaction but simple ignores it. totAmount := new(big.Int).Add(tx.Value, rGas) if sender.Amount.Cmp(totAmount) < 0 { state.UpdateStateObject(sender) err = fmt.Errorf("[TXPL] Insufficient amount in sender's (%x) account", tx.Sender()) return } coinbase.BuyGas(gas, tx.GasPrice) state.UpdateStateObject(coinbase) // Get the receiver receiver := state.GetAccount(tx.Recipient) // Send Tx to self if bytes.Compare(tx.Recipient, tx.Sender()) == 0 { // Subtract the fee sender.SubAmount(rGas) } else { // Subtract the amount from the senders account sender.SubAmount(totAmount) // Add the amount to receivers account which should conclude this transaction receiver.AddAmount(tx.Value) state.UpdateStateObject(receiver) } state.UpdateStateObject(sender) ethutil.Config.Log.Infof("[TXPL] Processed Tx %x\n", tx.Hash()) return } // Apply transactions uses the transaction passed to it and applies them onto // the current processing state. func (sm *StateManager) ApplyTransactions(coinbase []byte, state *State, block *Block, txs []*Transaction) ([]*Receipt, []*Transaction) { // Process each transaction/contract var receipts []*Receipt var validTxs []*Transaction var ignoredTxs []*Transaction // Transactions which go over the gasLimit totalUsedGas := big.NewInt(0) for _, tx := range txs { usedGas, err := sm.ApplyTransaction(coinbase, state, block, tx) if err != nil { if IsNonceErr(err) { continue } if IsGasLimitErr(err) { ignoredTxs = append(ignoredTxs, tx) // We need to figure out if we want to do something with thse txes ethutil.Config.Log.Debugln("Gastlimit:", err) continue } ethutil.Config.Log.Infoln(err) } accumelative := new(big.Int).Set(totalUsedGas.Add(totalUsedGas, usedGas)) receipt := &Receipt{tx, ethutil.CopyBytes(state.Root().([]byte)), accumelative} receipts = append(receipts, receipt) validTxs = append(validTxs, tx) } fmt.Println("################# MADE\n", receipts, "\n############################") // Update the total gas used for the block (to be mined) block.GasUsed = totalUsedGas return receipts, validTxs } func (sm *StateManager) ApplyTransaction(coinbase []byte, state *State, block *Block, tx *Transaction) (totalGasUsed *big.Int, err error) { /* Applies transactions to the given state and creates new state objects where needed. If said objects needs to be created run the initialization script provided by the transaction and assume there's a return value. The return value will be set to the script section of the state object. */ var ( addTotalGas = func(gas *big.Int) { totalGasUsed.Add(totalGasUsed, gas) } gas = new(big.Int) script []byte ) totalGasUsed = big.NewInt(0) snapshot := state.Snapshot() ca := state.GetAccount(coinbase) // Apply the transaction to the current state gas, err = sm.ProcessTransaction(tx, ca, state, false) addTotalGas(gas) if tx.CreatesContract() { if err == nil { // Create a new state object and the transaction // as it's data provider. contract := sm.MakeStateObject(state, tx) if contract != nil { fmt.Println(Disassemble(contract.Init())) // Evaluate the initialization script // and use the return value as the // script section for the state object. script, gas, err = sm.EvalScript(state, contract.Init(), contract, tx, block) addTotalGas(gas) if err != nil { err = fmt.Errorf("[STATE] Error during init script run %v", err) return } contract.script = script state.UpdateStateObject(contract) } else { err = fmt.Errorf("[STATE] Unable to create contract") } } else { err = fmt.Errorf("[STATE] contract creation tx: %v for sender %x", err, tx.Sender()) } } else { // Find the state object at the "recipient" address. If // there's an object attempt to run the script. stateObject := state.GetStateObject(tx.Recipient) if err == nil && stateObject != nil && len(stateObject.Script()) > 0 { _, gas, err = sm.EvalScript(state, stateObject.Script(), stateObject, tx, block) addTotalGas(gas) } } parent := sm.bc.GetBlock(block.PrevHash) total := new(big.Int).Add(block.GasUsed, totalGasUsed) limit := block.CalcGasLimit(parent) if total.Cmp(limit) > 0 { state.Revert(snapshot) err = GasLimitError(total, limit) } return } func (sm *StateManager) Process(block *Block, dontReact bool) error { if !sm.bc.HasBlock(block.PrevHash) { return ParentError(block.PrevHash) } parent := sm.bc.GetBlock(block.PrevHash) return sm.ProcessBlock(parent.State(), parent, block, dontReact) } // Block processing and validating with a given (temporarily) state func (sm *StateManager) ProcessBlock(state *State, parent, block *Block, dontReact bool) error { // Processing a blocks may never happen simultaneously sm.mutex.Lock() defer sm.mutex.Unlock() hash := block.Hash() if sm.bc.HasBlock(hash) { //fmt.Println("[STATE] We already have this block, ignoring") return nil } // Defer the Undo on the Trie. If the block processing happened // we don't want to undo but since undo only happens on dirty // nodes this won't happen because Commit would have been called // before that. defer state.Reset() // Check if we have the parent hash, if it isn't known we discard it // Reasons might be catching up or simply an invalid block if !sm.bc.HasBlock(block.PrevHash) && sm.bc.CurrentBlock != nil { return ParentError(block.PrevHash) } fmt.Println(block.Receipts()) // Process the transactions on to current block sm.ApplyTransactions(block.Coinbase, state, parent, block.Transactions()) // Block validation if err := sm.ValidateBlock(block); err != nil { fmt.Println("[SM] Error validating block:", err) return err } // I'm not sure, but I don't know if there should be thrown // any errors at this time. if err := sm.AccumelateRewards(state, block); err != nil { fmt.Println("[SM] Error accumulating reward", err) return err } //if !sm.compState.Cmp(state) { if !block.State().Cmp(state) { return fmt.Errorf("Invalid merkle root.\nrec: %x\nis: %x", block.State().trie.Root, state.trie.Root) } // Calculate the new total difficulty and sync back to the db if sm.CalculateTD(block) { // Sync the current block's state to the database and cancelling out the deferred Undo state.Sync() // Add the block to the chain sm.bc.Add(block) sm.notifyChanges(state) ethutil.Config.Log.Infof("[STATE] Added block #%d (%x)\n", block.Number, block.Hash()) if dontReact == false { sm.Ethereum.Reactor().Post("newBlock", block) state.manifest.Reset() } sm.Ethereum.Broadcast(ethwire.MsgBlockTy, []interface{}{block.Value().Val}) sm.Ethereum.TxPool().RemoveInvalid(state) } else { fmt.Println("total diff failed") } return nil } func (sm *StateManager) CalculateTD(block *Block) bool { uncleDiff := new(big.Int) for _, uncle := range block.Uncles { uncleDiff = uncleDiff.Add(uncleDiff, uncle.Difficulty) } // TD(genesis_block) = 0 and TD(B) = TD(B.parent) + sum(u.difficulty for u in B.uncles) + B.difficulty td := new(big.Int) td = td.Add(sm.bc.TD, uncleDiff) td = td.Add(td, block.Difficulty) // The new TD will only be accepted if the new difficulty is // is greater than the previous. if td.Cmp(sm.bc.TD) > 0 { // Set the new total difficulty back to the block chain sm.bc.SetTotalDifficulty(td) return true } return false } // Validates the current block. Returns an error if the block was invalid, // an uncle or anything that isn't on the current block chain. // Validation validates easy over difficult (dagger takes longer time = difficult) func (sm *StateManager) ValidateBlock(block *Block) error { // TODO // 2. Check if the difficulty is correct // Check each uncle's previous hash. In order for it to be valid // is if it has the same block hash as the current previousBlock := sm.bc.GetBlock(block.PrevHash) for _, uncle := range block.Uncles { if bytes.Compare(uncle.PrevHash, previousBlock.PrevHash) != 0 { return ValidationError("Mismatch uncle's previous hash. Expected %x, got %x", previousBlock.PrevHash, uncle.PrevHash) } } diff := block.Time - sm.bc.CurrentBlock.Time if diff < 0 { return ValidationError("Block timestamp less then prev block %v", diff) } // New blocks must be within the 15 minute range of the last block. if diff > int64(15*time.Minute) { return ValidationError("Block is too far in the future of last block (> 15 minutes)") } // Verify the nonce of the block. Return an error if it's not valid if !sm.Pow.Verify(block.HashNoNonce(), block.Difficulty, block.Nonce) { return ValidationError("Block's nonce is invalid (= %v)", ethutil.Hex(block.Nonce)) } return nil } func CalculateBlockReward(block *Block, uncleLength int) *big.Int { base := new(big.Int) for i := 0; i < uncleLength; i++ { base.Add(base, UncleInclusionReward) } return base.Add(base, BlockReward) } func CalculateUncleReward(block *Block) *big.Int { return UncleReward } func (sm *StateManager) AccumelateRewards(state *State, block *Block) error { // Get the account associated with the coinbase account := state.GetAccount(block.Coinbase) // Reward amount of ether to the coinbase address account.AddAmount(CalculateBlockReward(block, len(block.Uncles))) addr := make([]byte, len(block.Coinbase)) copy(addr, block.Coinbase) state.UpdateStateObject(account) for _, uncle := range block.Uncles { uncleAccount := state.GetAccount(uncle.Coinbase) uncleAccount.AddAmount(CalculateUncleReward(uncle)) state.UpdateStateObject(uncleAccount) } return nil } func (sm *StateManager) Stop() { sm.bc.Stop() } func (sm *StateManager) EvalScript(state *State, script []byte, object *StateObject, tx *Transaction, block *Block) (ret []byte, gas *big.Int, err error) { account := state.GetAccount(tx.Sender()) err = account.ConvertGas(tx.Gas, tx.GasPrice) if err != nil { ethutil.Config.Log.Debugln(err) return } closure := NewClosure(account, object, script, state, tx.Gas, tx.GasPrice) vm := NewVm(state, sm, RuntimeVars{ Origin: account.Address(), BlockNumber: block.BlockInfo().Number, PrevHash: block.PrevHash, Coinbase: block.Coinbase, Time: block.Time, Diff: block.Difficulty, Value: tx.Value, //Price: tx.GasPrice, }) ret, gas, err = closure.Call(vm, tx.Data, nil) // Update the account (refunds) state.UpdateStateObject(account) state.UpdateStateObject(object) return } func (sm *StateManager) notifyChanges(state *State) { for addr, stateObject := range state.manifest.objectChanges { sm.Ethereum.Reactor().Post("object:"+addr, stateObject) } for stateObjectAddr, mappedObjects := range state.manifest.storageChanges { for addr, value := range mappedObjects { sm.Ethereum.Reactor().Post("storage:"+stateObjectAddr+":"+addr, &StorageState{[]byte(stateObjectAddr), []byte(addr), value}) } } }