// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "errors" "fmt" "math/big" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/logger" "github.com/ethereum/go-ethereum/logger/glog" ) var ( // Transaction Pool Errors ErrInvalidSender = errors.New("Invalid sender") ErrNonce = errors.New("Nonce too low") ErrCheap = errors.New("Gas price too low for acceptance") ErrBalance = errors.New("Insufficient balance") ErrNonExistentAccount = errors.New("Account does not exist or account balance too low") ErrInsufficientFunds = errors.New("Insufficient funds for gas * price + value") ErrIntrinsicGas = errors.New("Intrinsic gas too low") ErrGasLimit = errors.New("Exceeds block gas limit") ErrNegativeValue = errors.New("Negative value") ) const ( maxQueued = 64 // max limit of queued txs per address ) type stateFn func() (*state.StateDB, error) // TxPool contains all currently known transactions. Transactions // enter the pool when they are received from the network or submitted // locally. They exit the pool when they are included in the blockchain. // // The pool separates processable transactions (which can be applied to the // current state) and future transactions. Transactions move between those // two states over time as they are received and processed. type TxPool struct { config *ChainConfig currentState stateFn // The state function which will allow us to do some pre checks pendingState *state.ManagedState gasLimit func() *big.Int // The current gas limit function callback minGasPrice *big.Int eventMux *event.TypeMux events event.Subscription localTx *txSet mu sync.RWMutex pending map[common.Address]*txList // All currently processable transactions queue map[common.Address]*txList // Queued but non-processable transactions all map[common.Hash]*types.Transaction // All transactions to allow lookups wg sync.WaitGroup // for shutdown sync homestead bool } func NewTxPool(config *ChainConfig, eventMux *event.TypeMux, currentStateFn stateFn, gasLimitFn func() *big.Int) *TxPool { pool := &TxPool{ config: config, pending: make(map[common.Address]*txList), queue: make(map[common.Address]*txList), all: make(map[common.Hash]*types.Transaction), eventMux: eventMux, currentState: currentStateFn, gasLimit: gasLimitFn, minGasPrice: new(big.Int), pendingState: nil, localTx: newTxSet(), events: eventMux.Subscribe(ChainHeadEvent{}, GasPriceChanged{}, RemovedTransactionEvent{}), } pool.wg.Add(1) go pool.eventLoop() return pool } func (pool *TxPool) eventLoop() { defer pool.wg.Done() // Track chain events. When a chain events occurs (new chain canon block) // we need to know the new state. The new state will help us determine // the nonces in the managed state for ev := range pool.events.Chan() { switch ev := ev.Data.(type) { case ChainHeadEvent: pool.mu.Lock() if ev.Block != nil && pool.config.IsHomestead(ev.Block.Number()) { pool.homestead = true } pool.resetState() pool.mu.Unlock() case GasPriceChanged: pool.mu.Lock() pool.minGasPrice = ev.Price pool.mu.Unlock() case RemovedTransactionEvent: pool.AddBatch(ev.Txs) } } } func (pool *TxPool) resetState() { currentState, err := pool.currentState() if err != nil { glog.V(logger.Error).Infof("Failed to get current state: %v", err) return } managedState := state.ManageState(currentState) if err != nil { glog.V(logger.Error).Infof("Failed to get managed state: %v", err) return } pool.pendingState = managedState // validate the pool of pending transactions, this will remove // any transactions that have been included in the block or // have been invalidated because of another transaction (e.g. // higher gas price) pool.demoteUnexecutables() // Update all accounts to the latest known pending nonce for addr, list := range pool.pending { pool.pendingState.SetNonce(addr, list.last+1) } // Check the queue and move transactions over to the pending if possible // or remove those that have become invalid pool.promoteExecutables() } func (pool *TxPool) Stop() { pool.events.Unsubscribe() pool.wg.Wait() glog.V(logger.Info).Infoln("Transaction pool stopped") } func (pool *TxPool) State() *state.ManagedState { pool.mu.RLock() defer pool.mu.RUnlock() return pool.pendingState } // Stats retrieves the current pool stats, namely the number of pending and the // number of queued (non-executable) transactions. func (pool *TxPool) Stats() (pending int, queued int) { pool.mu.RLock() defer pool.mu.RUnlock() for _, list := range pool.pending { pending += list.Len() } for _, list := range pool.queue { queued += list.Len() } return } // Content retrieves the data content of the transaction pool, returning all the // pending as well as queued transactions, grouped by account and sorted by nonce. func (pool *TxPool) Content() (map[common.Address]types.Transactions, map[common.Address]types.Transactions) { pool.mu.RLock() defer pool.mu.RUnlock() pending := make(map[common.Address]types.Transactions) for addr, list := range pool.pending { pending[addr] = list.Flatten() } queued := make(map[common.Address]types.Transactions) for addr, list := range pool.queue { queued[addr] = list.Flatten() } return pending, queued } // Pending retrieves all currently processable transactions, groupped by origin // account and sorted by nonce. The returned transaction set is a copy and can be // freely modified by calling code. func (pool *TxPool) Pending() map[common.Address]types.Transactions { pool.mu.Lock() defer pool.mu.Unlock() // check queue first pool.promoteExecutables() // invalidate any txs pool.demoteUnexecutables() pending := make(map[common.Address]types.Transactions) for addr, list := range pool.pending { pending[addr] = list.Flatten() } return pending } // SetLocal marks a transaction as local, skipping gas price // check against local miner minimum in the future func (pool *TxPool) SetLocal(tx *types.Transaction) { pool.mu.Lock() defer pool.mu.Unlock() pool.localTx.add(tx.Hash()) } // validateTx checks whether a transaction is valid according // to the consensus rules. func (pool *TxPool) validateTx(tx *types.Transaction) error { local := pool.localTx.contains(tx.Hash()) // Drop transactions under our own minimal accepted gas price if !local && pool.minGasPrice.Cmp(tx.GasPrice()) > 0 { return ErrCheap } currentState, err := pool.currentState() if err != nil { return err } from, err := tx.From() if err != nil { return ErrInvalidSender } // Make sure the account exist. Non existent accounts // haven't got funds and well therefor never pass. if !currentState.HasAccount(from) { return ErrNonExistentAccount } // Last but not least check for nonce errors if currentState.GetNonce(from) > tx.Nonce() { return ErrNonce } // Check the transaction doesn't exceed the current // block limit gas. if pool.gasLimit().Cmp(tx.Gas()) < 0 { return ErrGasLimit } // Transactions can't be negative. This may never happen // using RLP decoded transactions but may occur if you create // a transaction using the RPC for example. if tx.Value().Cmp(common.Big0) < 0 { return ErrNegativeValue } // Transactor should have enough funds to cover the costs // cost == V + GP * GL if currentState.GetBalance(from).Cmp(tx.Cost()) < 0 { return ErrInsufficientFunds } intrGas := IntrinsicGas(tx.Data(), MessageCreatesContract(tx), pool.homestead) if tx.Gas().Cmp(intrGas) < 0 { return ErrIntrinsicGas } return nil } // add validates a transaction and inserts it into the non-executable queue for // later pending promotion and execution. func (pool *TxPool) add(tx *types.Transaction) error { // If the transaction is alreayd known, discard it hash := tx.Hash() if pool.all[hash] != nil { return fmt.Errorf("Known transaction: %x", hash[:4]) } // Otherwise ensure basic validation passes nd queue it up if err := pool.validateTx(tx); err != nil { return err } pool.enqueueTx(hash, tx) // Print a log message if low enough level is set if glog.V(logger.Debug) { rcpt := "[NEW_CONTRACT]" if to := tx.To(); to != nil { rcpt = common.Bytes2Hex(to[:4]) } from, _ := tx.From() // from already verified during tx validation glog.Infof("(t) 0x%x => %s (%v) %x\n", from[:4], rcpt, tx.Value, hash) } return nil } // enqueueTx inserts a new transction into the non-executable transaction queue. // // Note, this method assumes the pool lock is held! func (pool *TxPool) enqueueTx(hash common.Hash, tx *types.Transaction) { // Try to insert the transaction into the future queue from, _ := tx.From() // already validated if pool.queue[from] == nil { pool.queue[from] = newTxList(false) } inserted, old := pool.queue[from].Add(tx) if !inserted { return // An older transaction was better, discard this } // Discard any previous transaction and mark this if old != nil { delete(pool.all, old.Hash()) } pool.all[hash] = tx } // promoteTx adds a transaction to the pending (processable) list of transactions. // // Note, this method assumes the pool lock is held! func (pool *TxPool) promoteTx(addr common.Address, hash common.Hash, tx *types.Transaction) { // Init delayed since tx pool could have been started before any state sync if pool.pendingState == nil { pool.resetState() } // Try to insert the transaction into the pending queue if pool.pending[addr] == nil { pool.pending[addr] = newTxList(true) } list := pool.pending[addr] inserted, old := list.Add(tx) if !inserted { // An older transaction was better, discard this delete(pool.all, hash) return } // Otherwise discard any previous transaction and mark this if old != nil { delete(pool.all, old.Hash()) } pool.all[hash] = tx // Failsafe to work around direct pending inserts (tests) // Set the potentially new pending nonce and notify any subsystems of the new tx pool.pendingState.SetNonce(addr, list.last+1) go pool.eventMux.Post(TxPreEvent{tx}) } // Add queues a single transaction in the pool if it is valid. func (pool *TxPool) Add(tx *types.Transaction) error { pool.mu.Lock() defer pool.mu.Unlock() if err := pool.add(tx); err != nil { return err } pool.promoteExecutables() return nil } // AddBatch attempts to queue a batch of transactions. func (pool *TxPool) AddBatch(txs []*types.Transaction) { pool.mu.Lock() defer pool.mu.Unlock() for _, tx := range txs { if err := pool.add(tx); err != nil { glog.V(logger.Debug).Infoln("tx error:", err) } } pool.promoteExecutables() } // Get returns a transaction if it is contained in the pool // and nil otherwise. func (pool *TxPool) Get(hash common.Hash) *types.Transaction { pool.mu.RLock() defer pool.mu.RUnlock() return pool.all[hash] } // Remove removes the transaction with the given hash from the pool. func (pool *TxPool) Remove(hash common.Hash) { pool.mu.Lock() defer pool.mu.Unlock() pool.removeTx(hash) } // RemoveBatch removes all given transactions from the pool. func (pool *TxPool) RemoveBatch(txs types.Transactions) { pool.mu.Lock() defer pool.mu.Unlock() for _, tx := range txs { pool.removeTx(tx.Hash()) } } // removeTx iterates removes a single transaction from the queue, moving all // subsequent transactions back to the future queue. func (pool *TxPool) removeTx(hash common.Hash) { // Fetch the transaction we wish to delete tx, ok := pool.all[hash] if !ok { return } addr, _ := tx.From() // already validated during insertion // Remove it from the list of known transactions delete(pool.all, hash) // Remove the transaction from the pending lists and reset the account nonce if pending := pool.pending[addr]; pending != nil { if removed, invalids := pending.Remove(tx); removed { // If no more transactions are left, remove the list and reset the nonce if pending.Empty() { delete(pool.pending, addr) pool.pendingState.SetNonce(addr, tx.Nonce()) } else { // Otherwise update the nonce and postpone any invalidated transactions pool.pendingState.SetNonce(addr, pending.last) for _, tx := range invalids { pool.enqueueTx(tx.Hash(), tx) } } } } // Transaction is in the future queue if future := pool.queue[addr]; future != nil { future.Remove(tx) if future.Empty() { delete(pool.queue, addr) } } } // promoteExecutables moves transactions that have become processable from the // future queue to the set of pending transactions. During this process, all // invalidated transactions (low nonce, low balance) are deleted. func (pool *TxPool) promoteExecutables() { // Init delayed since tx pool could have been started before any state sync if pool.pendingState == nil { pool.resetState() } // Retrieve the current state to allow nonce and balance checking state, err := pool.currentState() if err != nil { glog.Errorf("Could not get current state: %v", err) return } // Iterate over all accounts and promote any executable transactions for addr, list := range pool.queue { // Drop all transactions that are deemed too old (low nonce) for _, tx := range list.Forward(state.GetNonce(addr)) { if glog.V(logger.Core) { glog.Infof("Removed old queued transaction: %v", tx) } delete(pool.all, tx.Hash()) } // Drop all transactions that are too costly (low balance) drops, _ := list.Filter(state.GetBalance(addr)) for _, tx := range drops { if glog.V(logger.Core) { glog.Infof("Removed unpayable queued transaction: %v", tx) } delete(pool.all, tx.Hash()) } // Gather all executable transactions and promote them for _, tx := range list.Ready(pool.pendingState.GetNonce(addr)) { if glog.V(logger.Core) { glog.Infof("Promoting queued transaction: %v", tx) } pool.promoteTx(addr, tx.Hash(), tx) } // Drop all transactions over the allowed limit for _, tx := range list.Cap(maxQueued) { if glog.V(logger.Core) { glog.Infof("Removed cap-exceeding queued transaction: %v", tx) } delete(pool.all, tx.Hash()) } // Delete the entire queue entry if it became empty. if list.Empty() { delete(pool.queue, addr) } } } // demoteUnexecutables removes invalid and processed transactions from the pools // executable/pending queue and any subsequent transactions that become unexecutable // are moved back into the future queue. func (pool *TxPool) demoteUnexecutables() { // Retrieve the current state to allow nonce and balance checking state, err := pool.currentState() if err != nil { glog.V(logger.Info).Infoln("failed to get current state: %v", err) return } // Iterate over all accounts and demote any non-executable transactions for addr, list := range pool.pending { nonce := state.GetNonce(addr) // Drop all transactions that are deemed too old (low nonce) for _, tx := range list.Forward(nonce) { if glog.V(logger.Core) { glog.Infof("Removed old pending transaction: %v", tx) } delete(pool.all, tx.Hash()) } // Drop all transactions that are too costly (low balance), and queue any invalids back for later drops, invalids := list.Filter(state.GetBalance(addr)) for _, tx := range drops { if glog.V(logger.Core) { glog.Infof("Removed unpayable pending transaction: %v", tx) } delete(pool.all, tx.Hash()) } for _, tx := range invalids { if glog.V(logger.Core) { glog.Infof("Demoting pending transaction: %v", tx) } pool.enqueueTx(tx.Hash(), tx) } // Delete the entire queue entry if it became empty. if list.Empty() { delete(pool.pending, addr) } } } // txSet represents a set of transaction hashes in which entries // are automatically dropped after txSetDuration time type txSet struct { txMap map[common.Hash]struct{} txOrd map[uint64]txOrdType addPtr, delPtr uint64 } const txSetDuration = time.Hour * 2 // txOrdType represents an entry in the time-ordered list of transaction hashes type txOrdType struct { hash common.Hash time time.Time } // newTxSet creates a new transaction set func newTxSet() *txSet { return &txSet{ txMap: make(map[common.Hash]struct{}), txOrd: make(map[uint64]txOrdType), } } // contains returns true if the set contains the given transaction hash // (not thread safe, should be called from a locked environment) func (self *txSet) contains(hash common.Hash) bool { _, ok := self.txMap[hash] return ok } // add adds a transaction hash to the set, then removes entries older than txSetDuration // (not thread safe, should be called from a locked environment) func (self *txSet) add(hash common.Hash) { self.txMap[hash] = struct{}{} now := time.Now() self.txOrd[self.addPtr] = txOrdType{hash: hash, time: now} self.addPtr++ delBefore := now.Add(-txSetDuration) for self.delPtr < self.addPtr && self.txOrd[self.delPtr].time.Before(delBefore) { delete(self.txMap, self.txOrd[self.delPtr].hash) delete(self.txOrd, self.delPtr) self.delPtr++ } }