// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Contains the active peer-set of the downloader, maintaining both failures // as well as reputation metrics to prioritize the block retrievals. package downloader import ( "errors" "fmt" "math" "math/big" "sort" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" ) const ( maxLackingHashes = 4096 // Maximum number of entries allowed on the list or lacking items measurementImpact = 0.1 // The impact a single measurement has on a peer's final throughput value. ) var ( errAlreadyFetching = errors.New("already fetching blocks from peer") errAlreadyRegistered = errors.New("peer is already registered") errNotRegistered = errors.New("peer is not registered") ) // peer represents an active peer from which hashes and blocks are retrieved. type peerConnection struct { id string // Unique identifier of the peer headerIdle int32 // Current header activity state of the peer (idle = 0, active = 1) blockIdle int32 // Current block activity state of the peer (idle = 0, active = 1) receiptIdle int32 // Current receipt activity state of the peer (idle = 0, active = 1) stateIdle int32 // Current node data activity state of the peer (idle = 0, active = 1) headerThroughput float64 // Number of headers measured to be retrievable per second blockThroughput float64 // Number of blocks (bodies) measured to be retrievable per second receiptThroughput float64 // Number of receipts measured to be retrievable per second stateThroughput float64 // Number of node data pieces measured to be retrievable per second rtt time.Duration // Request round trip time to track responsiveness (QoS) headerStarted time.Time // Time instance when the last header fetch was started blockStarted time.Time // Time instance when the last block (body) fetch was started receiptStarted time.Time // Time instance when the last receipt fetch was started stateStarted time.Time // Time instance when the last node data fetch was started lacking map[common.Hash]struct{} // Set of hashes not to request (didn't have previously) peer Peer version int // Eth protocol version number to switch strategies log log.Logger // Contextual logger to add extra infos to peer logs lock sync.RWMutex } type Peer interface { Head() (common.Hash, *big.Int) RequestHeadersByHash(common.Hash, int, int, bool) error RequestHeadersByNumber(uint64, int, int, bool) error RequestBodies([]common.Hash) error RequestReceipts([]common.Hash) error RequestNodeData([]common.Hash) error } // newPeer create a new downloader peer, with specific hash and block retrieval // mechanisms. func newPeerConnection(id string, version int, peer Peer, logger log.Logger) *peerConnection { return &peerConnection{ id: id, lacking: make(map[common.Hash]struct{}), peer: peer, version: version, log: logger, } } // Reset clears the internal state of a peer entity. func (p *peerConnection) Reset() { p.lock.Lock() defer p.lock.Unlock() atomic.StoreInt32(&p.headerIdle, 0) atomic.StoreInt32(&p.blockIdle, 0) atomic.StoreInt32(&p.receiptIdle, 0) atomic.StoreInt32(&p.stateIdle, 0) p.headerThroughput = 0 p.blockThroughput = 0 p.receiptThroughput = 0 p.stateThroughput = 0 p.lacking = make(map[common.Hash]struct{}) } // FetchHeaders sends a header retrieval request to the remote peer. func (p *peerConnection) FetchHeaders(from uint64, count int) error { // Sanity check the protocol version if p.version < 62 { panic(fmt.Sprintf("header fetch [eth/62+] requested on eth/%d", p.version)) } // Short circuit if the peer is already fetching if !atomic.CompareAndSwapInt32(&p.headerIdle, 0, 1) { return errAlreadyFetching } p.headerStarted = time.Now() // Issue the header retrieval request (absolut upwards without gaps) go p.peer.RequestHeadersByNumber(from, count, 0, false) return nil } // FetchBodies sends a block body retrieval request to the remote peer. func (p *peerConnection) FetchBodies(request *fetchRequest) error { // Sanity check the protocol version if p.version < 62 { panic(fmt.Sprintf("body fetch [eth/62+] requested on eth/%d", p.version)) } // Short circuit if the peer is already fetching if !atomic.CompareAndSwapInt32(&p.blockIdle, 0, 1) { return errAlreadyFetching } p.blockStarted = time.Now() // Convert the header set to a retrievable slice hashes := make([]common.Hash, 0, len(request.Headers)) for _, header := range request.Headers { hashes = append(hashes, header.Hash()) } go p.peer.RequestBodies(hashes) return nil } // FetchReceipts sends a receipt retrieval request to the remote peer. func (p *peerConnection) FetchReceipts(request *fetchRequest) error { // Sanity check the protocol version if p.version < 63 { panic(fmt.Sprintf("body fetch [eth/63+] requested on eth/%d", p.version)) } // Short circuit if the peer is already fetching if !atomic.CompareAndSwapInt32(&p.receiptIdle, 0, 1) { return errAlreadyFetching } p.receiptStarted = time.Now() // Convert the header set to a retrievable slice hashes := make([]common.Hash, 0, len(request.Headers)) for _, header := range request.Headers { hashes = append(hashes, header.Hash()) } go p.peer.RequestReceipts(hashes) return nil } // FetchNodeData sends a node state data retrieval request to the remote peer. func (p *peerConnection) FetchNodeData(hashes []common.Hash) error { // Sanity check the protocol version if p.version < 63 { panic(fmt.Sprintf("node data fetch [eth/63+] requested on eth/%d", p.version)) } // Short circuit if the peer is already fetching if !atomic.CompareAndSwapInt32(&p.stateIdle, 0, 1) { return errAlreadyFetching } p.stateStarted = time.Now() go p.peer.RequestNodeData(hashes) return nil } // SetHeadersIdle sets the peer to idle, allowing it to execute new header retrieval // requests. Its estimated header retrieval throughput is updated with that measured // just now. func (p *peerConnection) SetHeadersIdle(delivered int) { p.setIdle(p.headerStarted, delivered, &p.headerThroughput, &p.headerIdle) } // SetBlocksIdle sets the peer to idle, allowing it to execute new block retrieval // requests. Its estimated block retrieval throughput is updated with that measured // just now. func (p *peerConnection) SetBlocksIdle(delivered int) { p.setIdle(p.blockStarted, delivered, &p.blockThroughput, &p.blockIdle) } // SetBodiesIdle sets the peer to idle, allowing it to execute block body retrieval // requests. Its estimated body retrieval throughput is updated with that measured // just now. func (p *peerConnection) SetBodiesIdle(delivered int) { p.setIdle(p.blockStarted, delivered, &p.blockThroughput, &p.blockIdle) } // SetReceiptsIdle sets the peer to idle, allowing it to execute new receipt // retrieval requests. Its estimated receipt retrieval throughput is updated // with that measured just now. func (p *peerConnection) SetReceiptsIdle(delivered int) { p.setIdle(p.receiptStarted, delivered, &p.receiptThroughput, &p.receiptIdle) } // SetNodeDataIdle sets the peer to idle, allowing it to execute new state trie // data retrieval requests. Its estimated state retrieval throughput is updated // with that measured just now. func (p *peerConnection) SetNodeDataIdle(delivered int) { p.setIdle(p.stateStarted, delivered, &p.stateThroughput, &p.stateIdle) } // setIdle sets the peer to idle, allowing it to execute new retrieval requests. // Its estimated retrieval throughput is updated with that measured just now. func (p *peerConnection) setIdle(started time.Time, delivered int, throughput *float64, idle *int32) { // Irrelevant of the scaling, make sure the peer ends up idle defer atomic.StoreInt32(idle, 0) p.lock.Lock() defer p.lock.Unlock() // If nothing was delivered (hard timeout / unavailable data), reduce throughput to minimum if delivered == 0 { *throughput = 0 return } // Otherwise update the throughput with a new measurement elapsed := time.Since(started) + 1 // +1 (ns) to ensure non-zero divisor measured := float64(delivered) / (float64(elapsed) / float64(time.Second)) *throughput = (1-measurementImpact)*(*throughput) + measurementImpact*measured p.rtt = time.Duration((1-measurementImpact)*float64(p.rtt) + measurementImpact*float64(elapsed)) p.log.Trace("Peer throughput measurements updated", "hps", p.headerThroughput, "bps", p.blockThroughput, "rps", p.receiptThroughput, "sps", p.stateThroughput, "miss", len(p.lacking), "rtt", p.rtt) } // HeaderCapacity retrieves the peers header download allowance based on its // previously discovered throughput. func (p *peerConnection) HeaderCapacity(targetRTT time.Duration) int { p.lock.RLock() defer p.lock.RUnlock() return int(math.Min(1+math.Max(1, p.headerThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxHeaderFetch))) } // BlockCapacity retrieves the peers block download allowance based on its // previously discovered throughput. func (p *peerConnection) BlockCapacity(targetRTT time.Duration) int { p.lock.RLock() defer p.lock.RUnlock() return int(math.Min(1+math.Max(1, p.blockThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxBlockFetch))) } // ReceiptCapacity retrieves the peers receipt download allowance based on its // previously discovered throughput. func (p *peerConnection) ReceiptCapacity(targetRTT time.Duration) int { p.lock.RLock() defer p.lock.RUnlock() return int(math.Min(1+math.Max(1, p.receiptThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxReceiptFetch))) } // NodeDataCapacity retrieves the peers state download allowance based on its // previously discovered throughput. func (p *peerConnection) NodeDataCapacity(targetRTT time.Duration) int { p.lock.RLock() defer p.lock.RUnlock() return int(math.Min(1+math.Max(1, p.stateThroughput*float64(targetRTT)/float64(time.Second)), float64(MaxStateFetch))) } // MarkLacking appends a new entity to the set of items (blocks, receipts, states) // that a peer is known not to have (i.e. have been requested before). If the // set reaches its maximum allowed capacity, items are randomly dropped off. func (p *peerConnection) MarkLacking(hash common.Hash) { p.lock.Lock() defer p.lock.Unlock() for len(p.lacking) >= maxLackingHashes { for drop := range p.lacking { delete(p.lacking, drop) break } } p.lacking[hash] = struct{}{} } // Lacks retrieves whether the hash of a blockchain item is on the peers lacking // list (i.e. whether we know that the peer does not have it). func (p *peerConnection) Lacks(hash common.Hash) bool { p.lock.RLock() defer p.lock.RUnlock() _, ok := p.lacking[hash] return ok } // peerSet represents the collection of active peer participating in the chain // download procedure. type peerSet struct { peers map[string]*peerConnection newPeerFeed event.Feed lock sync.RWMutex } // newPeerSet creates a new peer set top track the active download sources. func newPeerSet() *peerSet { return &peerSet{ peers: make(map[string]*peerConnection), } } func (ps *peerSet) SubscribeNewPeers(ch chan<- *peerConnection) event.Subscription { return ps.newPeerFeed.Subscribe(ch) } // Reset iterates over the current peer set, and resets each of the known peers // to prepare for a next batch of block retrieval. func (ps *peerSet) Reset() { ps.lock.RLock() defer ps.lock.RUnlock() for _, peer := range ps.peers { peer.Reset() } } // Register injects a new peer into the working set, or returns an error if the // peer is already known. // // The method also sets the starting throughput values of the new peer to the // average of all existing peers, to give it a realistic chance of being used // for data retrievals. func (ps *peerSet) Register(p *peerConnection) error { // Retrieve the current median RTT as a sane default p.rtt = ps.medianRTT() // Register the new peer with some meaningful defaults ps.lock.Lock() if _, ok := ps.peers[p.id]; ok { ps.lock.Unlock() return errAlreadyRegistered } if len(ps.peers) > 0 { p.headerThroughput, p.blockThroughput, p.receiptThroughput, p.stateThroughput = 0, 0, 0, 0 for _, peer := range ps.peers { peer.lock.RLock() p.headerThroughput += peer.headerThroughput p.blockThroughput += peer.blockThroughput p.receiptThroughput += peer.receiptThroughput p.stateThroughput += peer.stateThroughput peer.lock.RUnlock() } p.headerThroughput /= float64(len(ps.peers)) p.blockThroughput /= float64(len(ps.peers)) p.receiptThroughput /= float64(len(ps.peers)) p.stateThroughput /= float64(len(ps.peers)) } ps.peers[p.id] = p ps.lock.Unlock() ps.newPeerFeed.Send(p) return nil } // Unregister removes a remote peer from the active set, disabling any further // actions to/from that particular entity. func (ps *peerSet) Unregister(id string) error { ps.lock.Lock() defer ps.lock.Unlock() if _, ok := ps.peers[id]; !ok { return errNotRegistered } delete(ps.peers, id) return nil } // Peer retrieves the registered peer with the given id. func (ps *peerSet) Peer(id string) *peerConnection { ps.lock.RLock() defer ps.lock.RUnlock() return ps.peers[id] } // Len returns if the current number of peers in the set. func (ps *peerSet) Len() int { ps.lock.RLock() defer ps.lock.RUnlock() return len(ps.peers) } // AllPeers retrieves a flat list of all the peers within the set. func (ps *peerSet) AllPeers() []*peerConnection { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peerConnection, 0, len(ps.peers)) for _, p := range ps.peers { list = append(list, p) } return list } // HeaderIdlePeers retrieves a flat list of all the currently header-idle peers // within the active peer set, ordered by their reputation. func (ps *peerSet) HeaderIdlePeers() ([]*peerConnection, int) { idle := func(p *peerConnection) bool { return atomic.LoadInt32(&p.headerIdle) == 0 } throughput := func(p *peerConnection) float64 { p.lock.RLock() defer p.lock.RUnlock() return p.headerThroughput } return ps.idlePeers(62, 64, idle, throughput) } // BodyIdlePeers retrieves a flat list of all the currently body-idle peers within // the active peer set, ordered by their reputation. func (ps *peerSet) BodyIdlePeers() ([]*peerConnection, int) { idle := func(p *peerConnection) bool { return atomic.LoadInt32(&p.blockIdle) == 0 } throughput := func(p *peerConnection) float64 { p.lock.RLock() defer p.lock.RUnlock() return p.blockThroughput } return ps.idlePeers(62, 64, idle, throughput) } // ReceiptIdlePeers retrieves a flat list of all the currently receipt-idle peers // within the active peer set, ordered by their reputation. func (ps *peerSet) ReceiptIdlePeers() ([]*peerConnection, int) { idle := func(p *peerConnection) bool { return atomic.LoadInt32(&p.receiptIdle) == 0 } throughput := func(p *peerConnection) float64 { p.lock.RLock() defer p.lock.RUnlock() return p.receiptThroughput } return ps.idlePeers(63, 64, idle, throughput) } // NodeDataIdlePeers retrieves a flat list of all the currently node-data-idle // peers within the active peer set, ordered by their reputation. func (ps *peerSet) NodeDataIdlePeers() ([]*peerConnection, int) { idle := func(p *peerConnection) bool { return atomic.LoadInt32(&p.stateIdle) == 0 } throughput := func(p *peerConnection) float64 { p.lock.RLock() defer p.lock.RUnlock() return p.stateThroughput } return ps.idlePeers(63, 64, idle, throughput) } // idlePeers retrieves a flat list of all currently idle peers satisfying the // protocol version constraints, using the provided function to check idleness. // The resulting set of peers are sorted by their measure throughput. func (ps *peerSet) idlePeers(minProtocol, maxProtocol int, idleCheck func(*peerConnection) bool, throughput func(*peerConnection) float64) ([]*peerConnection, int) { ps.lock.RLock() defer ps.lock.RUnlock() idle, total := make([]*peerConnection, 0, len(ps.peers)), 0 for _, p := range ps.peers { if p.version >= minProtocol && p.version <= maxProtocol { if idleCheck(p) { idle = append(idle, p) } total++ } } for i := 0; i < len(idle); i++ { for j := i + 1; j < len(idle); j++ { if throughput(idle[i]) < throughput(idle[j]) { idle[i], idle[j] = idle[j], idle[i] } } } return idle, total } // medianRTT returns the median RTT of te peerset, considering only the tuning // peers if there are more peers available. func (ps *peerSet) medianRTT() time.Duration { // Gather all the currnetly measured round trip times ps.lock.RLock() defer ps.lock.RUnlock() rtts := make([]float64, 0, len(ps.peers)) for _, p := range ps.peers { p.lock.RLock() rtts = append(rtts, float64(p.rtt)) p.lock.RUnlock() } sort.Float64s(rtts) median := rttMaxEstimate if qosTuningPeers <= len(rtts) { median = time.Duration(rtts[qosTuningPeers/2]) // Median of our tuning peers } else if len(rtts) > 0 { median = time.Duration(rtts[len(rtts)/2]) // Median of our connected peers (maintain even like this some baseline qos) } // Restrict the RTT into some QoS defaults, irrelevant of true RTT if median < rttMinEstimate { median = rttMinEstimate } if median > rttMaxEstimate { median = rttMaxEstimate } return median }