// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package discover import ( "bytes" "context" "crypto/ecdsa" crand "crypto/rand" "errors" "fmt" "io" "math" "net" "sync" "time" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/p2p/enr" "github.com/ethereum/go-ethereum/p2p/netutil" ) const ( lookupRequestLimit = 3 // max requests against a single node during lookup findnodeResultLimit = 15 // applies in FINDNODE handler totalNodesResponseLimit = 5 // applies in waitForNodes nodesResponseItemLimit = 3 // applies in sendNodes respTimeoutV5 = 700 * time.Millisecond ) // codecV5 is implemented by wireCodec (and testCodec). // // The UDPv5 transport is split into two objects: the codec object deals with // encoding/decoding and with the handshake; the UDPv5 object handles higher-level concerns. type codecV5 interface { // encode encodes a packet. The 'challenge' parameter is non-nil for calls which got a // WHOAREYOU response. encode(fromID enode.ID, fromAddr string, p packetV5, challenge *whoareyouV5) (enc []byte, authTag []byte, err error) // decode decodes a packet. It returns an *unknownV5 packet if decryption fails. // The fromNode return value is non-nil when the input contains a handshake response. decode(input []byte, fromAddr string) (fromID enode.ID, fromNode *enode.Node, p packetV5, err error) } // packetV5 is implemented by all discv5 packet type structs. type packetV5 interface { // These methods provide information and set the request ID. name() string kind() byte setreqid([]byte) // handle should perform the appropriate action to handle the packet, i.e. this is the // place to send the response. handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) } // UDPv5 is the implementation of protocol version 5. type UDPv5 struct { // static fields conn UDPConn tab *Table netrestrict *netutil.Netlist priv *ecdsa.PrivateKey localNode *enode.LocalNode db *enode.DB log log.Logger clock mclock.Clock validSchemes enr.IdentityScheme // channels into dispatch packetInCh chan ReadPacket readNextCh chan struct{} callCh chan *callV5 callDoneCh chan *callV5 respTimeoutCh chan *callTimeout // state of dispatch codec codecV5 activeCallByNode map[enode.ID]*callV5 activeCallByAuth map[string]*callV5 callQueue map[enode.ID][]*callV5 // shutdown stuff closeOnce sync.Once closeCtx context.Context cancelCloseCtx context.CancelFunc wg sync.WaitGroup } // callV5 represents a remote procedure call against another node. type callV5 struct { node *enode.Node packet packetV5 responseType byte // expected packet type of response reqid []byte ch chan packetV5 // responses sent here err chan error // errors sent here // Valid for active calls only: authTag []byte // authTag of request packet handshakeCount int // # times we attempted handshake for this call challenge *whoareyouV5 // last sent handshake challenge timeout mclock.Timer } // callTimeout is the response timeout event of a call. type callTimeout struct { c *callV5 timer mclock.Timer } // ListenV5 listens on the given connection. func ListenV5(conn UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv5, error) { t, err := newUDPv5(conn, ln, cfg) if err != nil { return nil, err } go t.tab.loop() t.wg.Add(2) go t.readLoop() go t.dispatch() return t, nil } // newUDPv5 creates a UDPv5 transport, but doesn't start any goroutines. func newUDPv5(conn UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv5, error) { closeCtx, cancelCloseCtx := context.WithCancel(context.Background()) cfg = cfg.withDefaults() t := &UDPv5{ // static fields conn: conn, localNode: ln, db: ln.Database(), netrestrict: cfg.NetRestrict, priv: cfg.PrivateKey, log: cfg.Log, validSchemes: cfg.ValidSchemes, clock: cfg.Clock, // channels into dispatch packetInCh: make(chan ReadPacket, 1), readNextCh: make(chan struct{}, 1), callCh: make(chan *callV5), callDoneCh: make(chan *callV5), respTimeoutCh: make(chan *callTimeout), // state of dispatch codec: newWireCodec(ln, cfg.PrivateKey, cfg.Clock), activeCallByNode: make(map[enode.ID]*callV5), activeCallByAuth: make(map[string]*callV5), callQueue: make(map[enode.ID][]*callV5), // shutdown closeCtx: closeCtx, cancelCloseCtx: cancelCloseCtx, } tab, err := newTable(t, t.db, cfg.Bootnodes, cfg.Log) if err != nil { return nil, err } t.tab = tab return t, nil } // Self returns the local node record. func (t *UDPv5) Self() *enode.Node { return t.localNode.Node() } // Close shuts down packet processing. func (t *UDPv5) Close() { t.closeOnce.Do(func() { t.cancelCloseCtx() t.conn.Close() t.wg.Wait() t.tab.close() }) } // Ping sends a ping message to the given node. func (t *UDPv5) Ping(n *enode.Node) error { _, err := t.ping(n) return err } // Resolve searches for a specific node with the given ID and tries to get the most recent // version of the node record for it. It returns n if the node could not be resolved. func (t *UDPv5) Resolve(n *enode.Node) *enode.Node { if intable := t.tab.getNode(n.ID()); intable != nil && intable.Seq() > n.Seq() { n = intable } // Try asking directly. This works if the node is still responding on the endpoint we have. if resp, err := t.RequestENR(n); err == nil { return resp } // Otherwise do a network lookup. result := t.Lookup(n.ID()) for _, rn := range result { if rn.ID() == n.ID() && rn.Seq() > n.Seq() { return rn } } return n } // AllNodes returns all the nodes stored in the local table. func (t *UDPv5) AllNodes() []*enode.Node { t.tab.mutex.Lock() defer t.tab.mutex.Unlock() nodes := make([]*enode.Node, 0) for _, b := range &t.tab.buckets { for _, n := range b.entries { nodes = append(nodes, unwrapNode(n)) } } return nodes } // LocalNode returns the current local node running the // protocol. func (t *UDPv5) LocalNode() *enode.LocalNode { return t.localNode } func (t *UDPv5) RandomNodes() enode.Iterator { if t.tab.len() == 0 { // All nodes were dropped, refresh. The very first query will hit this // case and run the bootstrapping logic. <-t.tab.refresh() } return newLookupIterator(t.closeCtx, t.newRandomLookup) } // Lookup performs a recursive lookup for the given target. // It returns the closest nodes to target. func (t *UDPv5) Lookup(target enode.ID) []*enode.Node { return t.newLookup(t.closeCtx, target).run() } // lookupRandom looks up a random target. // This is needed to satisfy the transport interface. func (t *UDPv5) lookupRandom() []*enode.Node { return t.newRandomLookup(t.closeCtx).run() } // lookupSelf looks up our own node ID. // This is needed to satisfy the transport interface. func (t *UDPv5) lookupSelf() []*enode.Node { return t.newLookup(t.closeCtx, t.Self().ID()).run() } func (t *UDPv5) newRandomLookup(ctx context.Context) *lookup { var target enode.ID crand.Read(target[:]) return t.newLookup(ctx, target) } func (t *UDPv5) newLookup(ctx context.Context, target enode.ID) *lookup { return newLookup(ctx, t.tab, target, func(n *node) ([]*node, error) { return t.lookupWorker(n, target) }) } // lookupWorker performs FINDNODE calls against a single node during lookup. func (t *UDPv5) lookupWorker(destNode *node, target enode.ID) ([]*node, error) { var ( dists = lookupDistances(target, destNode.ID()) nodes = nodesByDistance{target: target} err error ) for i := 0; i < lookupRequestLimit && len(nodes.entries) < findnodeResultLimit; i++ { var r []*enode.Node r, err = t.findnode(unwrapNode(destNode), dists[i]) if err == errClosed { return nil, err } for _, n := range r { if n.ID() != t.Self().ID() { nodes.push(wrapNode(n), findnodeResultLimit) } } } return nodes.entries, err } // lookupDistances computes the distance parameter for FINDNODE calls to dest. // It chooses distances adjacent to logdist(target, dest), e.g. for a target // with logdist(target, dest) = 255 the result is [255, 256, 254]. func lookupDistances(target, dest enode.ID) (dists []int) { td := enode.LogDist(target, dest) dists = append(dists, td) for i := 1; len(dists) < lookupRequestLimit; i++ { if td+i < 256 { dists = append(dists, td+i) } if td-i > 0 { dists = append(dists, td-i) } } return dists } // ping calls PING on a node and waits for a PONG response. func (t *UDPv5) ping(n *enode.Node) (uint64, error) { resp := t.call(n, p_pongV5, &pingV5{ENRSeq: t.localNode.Node().Seq()}) defer t.callDone(resp) select { case pong := <-resp.ch: return pong.(*pongV5).ENRSeq, nil case err := <-resp.err: return 0, err } } // requestENR requests n's record. func (t *UDPv5) RequestENR(n *enode.Node) (*enode.Node, error) { nodes, err := t.findnode(n, 0) if err != nil { return nil, err } if len(nodes) != 1 { return nil, fmt.Errorf("%d nodes in response for distance zero", len(nodes)) } return nodes[0], nil } // requestTicket calls REQUESTTICKET on a node and waits for a TICKET response. func (t *UDPv5) requestTicket(n *enode.Node) ([]byte, error) { resp := t.call(n, p_ticketV5, &pingV5{}) defer t.callDone(resp) select { case response := <-resp.ch: return response.(*ticketV5).Ticket, nil case err := <-resp.err: return nil, err } } // findnode calls FINDNODE on a node and waits for responses. func (t *UDPv5) findnode(n *enode.Node, distance int) ([]*enode.Node, error) { resp := t.call(n, p_nodesV5, &findnodeV5{Distance: uint(distance)}) return t.waitForNodes(resp, distance) } // waitForNodes waits for NODES responses to the given call. func (t *UDPv5) waitForNodes(c *callV5, distance int) ([]*enode.Node, error) { defer t.callDone(c) var ( nodes []*enode.Node seen = make(map[enode.ID]struct{}) received, total = 0, -1 ) for { select { case responseP := <-c.ch: response := responseP.(*nodesV5) for _, record := range response.Nodes { node, err := t.verifyResponseNode(c, record, distance, seen) if err != nil { t.log.Debug("Invalid record in "+response.name(), "id", c.node.ID(), "err", err) continue } nodes = append(nodes, node) } if total == -1 { total = min(int(response.Total), totalNodesResponseLimit) } if received++; received == total { return nodes, nil } case err := <-c.err: return nodes, err } } } // verifyResponseNode checks validity of a record in a NODES response. func (t *UDPv5) verifyResponseNode(c *callV5, r *enr.Record, distance int, seen map[enode.ID]struct{}) (*enode.Node, error) { node, err := enode.New(t.validSchemes, r) if err != nil { return nil, err } if err := netutil.CheckRelayIP(c.node.IP(), node.IP()); err != nil { return nil, err } if c.node.UDP() <= 1024 { return nil, errLowPort } if distance != -1 { if d := enode.LogDist(c.node.ID(), node.ID()); d != distance { return nil, fmt.Errorf("wrong distance %d", d) } } if _, ok := seen[node.ID()]; ok { return nil, fmt.Errorf("duplicate record") } seen[node.ID()] = struct{}{} return node, nil } // call sends the given call and sets up a handler for response packets (of type c.responseType). // Responses are dispatched to the call's response channel. func (t *UDPv5) call(node *enode.Node, responseType byte, packet packetV5) *callV5 { c := &callV5{ node: node, packet: packet, responseType: responseType, reqid: make([]byte, 8), ch: make(chan packetV5, 1), err: make(chan error, 1), } // Assign request ID. crand.Read(c.reqid) packet.setreqid(c.reqid) // Send call to dispatch. select { case t.callCh <- c: case <-t.closeCtx.Done(): c.err <- errClosed } return c } // callDone tells dispatch that the active call is done. func (t *UDPv5) callDone(c *callV5) { select { case t.callDoneCh <- c: case <-t.closeCtx.Done(): } } // dispatch runs in its own goroutine, handles incoming packets and deals with calls. // // For any destination node there is at most one 'active call', stored in the t.activeCall* // maps. A call is made active when it is sent. The active call can be answered by a // matching response, in which case c.ch receives the response; or by timing out, in which case // c.err receives the error. When the function that created the call signals the active // call is done through callDone, the next call from the call queue is started. // // Calls may also be answered by a WHOAREYOU packet referencing the call packet's authTag. // When that happens the call is simply re-sent to complete the handshake. We allow one // handshake attempt per call. func (t *UDPv5) dispatch() { defer t.wg.Done() // Arm first read. t.readNextCh <- struct{}{} for { select { case c := <-t.callCh: id := c.node.ID() t.callQueue[id] = append(t.callQueue[id], c) t.sendNextCall(id) case ct := <-t.respTimeoutCh: active := t.activeCallByNode[ct.c.node.ID()] if ct.c == active && ct.timer == active.timeout { ct.c.err <- errTimeout } case c := <-t.callDoneCh: id := c.node.ID() active := t.activeCallByNode[id] if active != c { panic("BUG: callDone for inactive call") } c.timeout.Stop() delete(t.activeCallByAuth, string(c.authTag)) delete(t.activeCallByNode, id) t.sendNextCall(id) case p := <-t.packetInCh: t.handlePacket(p.Data, p.Addr) // Arm next read. t.readNextCh <- struct{}{} case <-t.closeCtx.Done(): close(t.readNextCh) for id, queue := range t.callQueue { for _, c := range queue { c.err <- errClosed } delete(t.callQueue, id) } for id, c := range t.activeCallByNode { c.err <- errClosed delete(t.activeCallByNode, id) delete(t.activeCallByAuth, string(c.authTag)) } return } } } // startResponseTimeout sets the response timer for a call. func (t *UDPv5) startResponseTimeout(c *callV5) { if c.timeout != nil { c.timeout.Stop() } var ( timer mclock.Timer done = make(chan struct{}) ) timer = t.clock.AfterFunc(respTimeoutV5, func() { <-done select { case t.respTimeoutCh <- &callTimeout{c, timer}: case <-t.closeCtx.Done(): } }) c.timeout = timer close(done) } // sendNextCall sends the next call in the call queue if there is no active call. func (t *UDPv5) sendNextCall(id enode.ID) { queue := t.callQueue[id] if len(queue) == 0 || t.activeCallByNode[id] != nil { return } t.activeCallByNode[id] = queue[0] t.sendCall(t.activeCallByNode[id]) if len(queue) == 1 { delete(t.callQueue, id) } else { copy(queue, queue[1:]) t.callQueue[id] = queue[:len(queue)-1] } } // sendCall encodes and sends a request packet to the call's recipient node. // This performs a handshake if needed. func (t *UDPv5) sendCall(c *callV5) { if len(c.authTag) > 0 { // The call already has an authTag from a previous handshake attempt. Remove the // entry for the authTag because we're about to generate a new authTag for this // call. delete(t.activeCallByAuth, string(c.authTag)) } addr := &net.UDPAddr{IP: c.node.IP(), Port: c.node.UDP()} newTag, _ := t.send(c.node.ID(), addr, c.packet, c.challenge) c.authTag = newTag t.activeCallByAuth[string(c.authTag)] = c t.startResponseTimeout(c) } // sendResponse sends a response packet to the given node. // This doesn't trigger a handshake even if no keys are available. func (t *UDPv5) sendResponse(toID enode.ID, toAddr *net.UDPAddr, packet packetV5) error { _, err := t.send(toID, toAddr, packet, nil) return err } // send sends a packet to the given node. func (t *UDPv5) send(toID enode.ID, toAddr *net.UDPAddr, packet packetV5, c *whoareyouV5) ([]byte, error) { addr := toAddr.String() enc, authTag, err := t.codec.encode(toID, addr, packet, c) if err != nil { t.log.Warn(">> "+packet.name(), "id", toID, "addr", addr, "err", err) return authTag, err } _, err = t.conn.WriteToUDP(enc, toAddr) t.log.Trace(">> "+packet.name(), "id", toID, "addr", addr) return authTag, err } // readLoop runs in its own goroutine and reads packets from the network. func (t *UDPv5) readLoop() { defer t.wg.Done() buf := make([]byte, maxPacketSize) for range t.readNextCh { nbytes, from, err := t.conn.ReadFromUDP(buf) if netutil.IsTemporaryError(err) { // Ignore temporary read errors. t.log.Debug("Temporary UDP read error", "err", err) continue } else if err != nil { // Shut down the loop for permament errors. if err != io.EOF { t.log.Debug("UDP read error", "err", err) } return } t.dispatchReadPacket(from, buf[:nbytes]) } } // dispatchReadPacket sends a packet into the dispatch loop. func (t *UDPv5) dispatchReadPacket(from *net.UDPAddr, content []byte) bool { select { case t.packetInCh <- ReadPacket{content, from}: return true case <-t.closeCtx.Done(): return false } } // handlePacket decodes and processes an incoming packet from the network. func (t *UDPv5) handlePacket(rawpacket []byte, fromAddr *net.UDPAddr) error { addr := fromAddr.String() fromID, fromNode, packet, err := t.codec.decode(rawpacket, addr) if err != nil { t.log.Debug("Bad discv5 packet", "id", fromID, "addr", addr, "err", err) return err } if fromNode != nil { // Handshake succeeded, add to table. t.tab.addSeenNode(wrapNode(fromNode)) } if packet.kind() != p_whoareyouV5 { // WHOAREYOU logged separately to report the sender ID. t.log.Trace("<< "+packet.name(), "id", fromID, "addr", addr) } packet.handle(t, fromID, fromAddr) return nil } // handleCallResponse dispatches a response packet to the call waiting for it. func (t *UDPv5) handleCallResponse(fromID enode.ID, fromAddr *net.UDPAddr, reqid []byte, p packetV5) { ac := t.activeCallByNode[fromID] if ac == nil || !bytes.Equal(reqid, ac.reqid) { t.log.Debug(fmt.Sprintf("Unsolicited/late %s response", p.name()), "id", fromID, "addr", fromAddr) return } if !fromAddr.IP.Equal(ac.node.IP()) || fromAddr.Port != ac.node.UDP() { t.log.Debug(fmt.Sprintf("%s from wrong endpoint", p.name()), "id", fromID, "addr", fromAddr) return } if p.kind() != ac.responseType { t.log.Debug(fmt.Sprintf("Wrong disv5 response type %s", p.name()), "id", fromID, "addr", fromAddr) return } t.startResponseTimeout(ac) ac.ch <- p } // getNode looks for a node record in table and database. func (t *UDPv5) getNode(id enode.ID) *enode.Node { if n := t.tab.getNode(id); n != nil { return n } if n := t.localNode.Database().Node(id); n != nil { return n } return nil } // UNKNOWN func (p *unknownV5) name() string { return "UNKNOWN/v5" } func (p *unknownV5) kind() byte { return p_unknownV5 } func (p *unknownV5) setreqid(id []byte) {} func (p *unknownV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { challenge := &whoareyouV5{AuthTag: p.AuthTag} crand.Read(challenge.IDNonce[:]) if n := t.getNode(fromID); n != nil { challenge.node = n challenge.RecordSeq = n.Seq() } t.sendResponse(fromID, fromAddr, challenge) } // WHOAREYOU func (p *whoareyouV5) name() string { return "WHOAREYOU/v5" } func (p *whoareyouV5) kind() byte { return p_whoareyouV5 } func (p *whoareyouV5) setreqid(id []byte) {} func (p *whoareyouV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { c, err := p.matchWithCall(t, p.AuthTag) if err != nil { t.log.Debug("Invalid WHOAREYOU/v5", "addr", fromAddr, "err", err) return } // Resend the call that was answered by WHOAREYOU. t.log.Trace("<< "+p.name(), "id", c.node.ID(), "addr", fromAddr) c.handshakeCount++ c.challenge = p p.node = c.node t.sendCall(c) } var ( errChallengeNoCall = errors.New("no matching call") errChallengeTwice = errors.New("second handshake") ) // matchWithCall checks whether the handshake attempt matches the active call. func (p *whoareyouV5) matchWithCall(t *UDPv5, authTag []byte) (*callV5, error) { c := t.activeCallByAuth[string(authTag)] if c == nil { return nil, errChallengeNoCall } if c.handshakeCount > 0 { return nil, errChallengeTwice } return c, nil } // PING func (p *pingV5) name() string { return "PING/v5" } func (p *pingV5) kind() byte { return p_pingV5 } func (p *pingV5) setreqid(id []byte) { p.ReqID = id } func (p *pingV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { t.sendResponse(fromID, fromAddr, &pongV5{ ReqID: p.ReqID, ToIP: fromAddr.IP, ToPort: uint16(fromAddr.Port), ENRSeq: t.localNode.Node().Seq(), }) } // PONG func (p *pongV5) name() string { return "PONG/v5" } func (p *pongV5) kind() byte { return p_pongV5 } func (p *pongV5) setreqid(id []byte) { p.ReqID = id } func (p *pongV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { t.localNode.UDPEndpointStatement(fromAddr, &net.UDPAddr{IP: p.ToIP, Port: int(p.ToPort)}) t.handleCallResponse(fromID, fromAddr, p.ReqID, p) } // FINDNODE func (p *findnodeV5) name() string { return "FINDNODE/v5" } func (p *findnodeV5) kind() byte { return p_findnodeV5 } func (p *findnodeV5) setreqid(id []byte) { p.ReqID = id } func (p *findnodeV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { if p.Distance == 0 { t.sendNodes(fromID, fromAddr, p.ReqID, []*enode.Node{t.Self()}) return } if p.Distance > 256 { p.Distance = 256 } // Get bucket entries. t.tab.mutex.Lock() nodes := unwrapNodes(t.tab.bucketAtDistance(int(p.Distance)).entries) t.tab.mutex.Unlock() if len(nodes) > findnodeResultLimit { nodes = nodes[:findnodeResultLimit] } t.sendNodes(fromID, fromAddr, p.ReqID, nodes) } // sendNodes sends the given records in one or more NODES packets. func (t *UDPv5) sendNodes(toID enode.ID, toAddr *net.UDPAddr, reqid []byte, nodes []*enode.Node) { // TODO livenessChecks > 1 // TODO CheckRelayIP total := uint8(math.Ceil(float64(len(nodes)) / 3)) resp := &nodesV5{ReqID: reqid, Total: total, Nodes: make([]*enr.Record, 3)} sent := false for len(nodes) > 0 { items := min(nodesResponseItemLimit, len(nodes)) resp.Nodes = resp.Nodes[:items] for i := 0; i < items; i++ { resp.Nodes[i] = nodes[i].Record() } t.sendResponse(toID, toAddr, resp) nodes = nodes[items:] sent = true } // Ensure at least one response is sent. if !sent { resp.Total = 1 resp.Nodes = nil t.sendResponse(toID, toAddr, resp) } } // NODES func (p *nodesV5) name() string { return "NODES/v5" } func (p *nodesV5) kind() byte { return p_nodesV5 } func (p *nodesV5) setreqid(id []byte) { p.ReqID = id } func (p *nodesV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { t.handleCallResponse(fromID, fromAddr, p.ReqID, p) } // REQUESTTICKET func (p *requestTicketV5) name() string { return "REQUESTTICKET/v5" } func (p *requestTicketV5) kind() byte { return p_requestTicketV5 } func (p *requestTicketV5) setreqid(id []byte) { p.ReqID = id } func (p *requestTicketV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { t.sendResponse(fromID, fromAddr, &ticketV5{ReqID: p.ReqID}) } // TICKET func (p *ticketV5) name() string { return "TICKET/v5" } func (p *ticketV5) kind() byte { return p_ticketV5 } func (p *ticketV5) setreqid(id []byte) { p.ReqID = id } func (p *ticketV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { t.handleCallResponse(fromID, fromAddr, p.ReqID, p) } // REGTOPIC func (p *regtopicV5) name() string { return "REGTOPIC/v5" } func (p *regtopicV5) kind() byte { return p_regtopicV5 } func (p *regtopicV5) setreqid(id []byte) { p.ReqID = id } func (p *regtopicV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { t.sendResponse(fromID, fromAddr, ®confirmationV5{ReqID: p.ReqID, Registered: false}) } // REGCONFIRMATION func (p *regconfirmationV5) name() string { return "REGCONFIRMATION/v5" } func (p *regconfirmationV5) kind() byte { return p_regconfirmationV5 } func (p *regconfirmationV5) setreqid(id []byte) { p.ReqID = id } func (p *regconfirmationV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { t.handleCallResponse(fromID, fromAddr, p.ReqID, p) } // TOPICQUERY func (p *topicqueryV5) name() string { return "TOPICQUERY/v5" } func (p *topicqueryV5) kind() byte { return p_topicqueryV5 } func (p *topicqueryV5) setreqid(id []byte) { p.ReqID = id } func (p *topicqueryV5) handle(t *UDPv5, fromID enode.ID, fromAddr *net.UDPAddr) { }