// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" crand "crypto/rand" "encoding/binary" mrand "math/rand" "sort" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb/memorydb" ) func init() { mrand.Seed(time.Now().Unix()) } // makeProvers creates Merkle trie provers based on different implementations to // test all variations. func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database { var provers []func(key []byte) *memorydb.Database // Create a direct trie based Merkle prover provers = append(provers, func(key []byte) *memorydb.Database { proof := memorydb.New() trie.Prove(key, 0, proof) return proof }) // Create a leaf iterator based Merkle prover provers = append(provers, func(key []byte) *memorydb.Database { proof := memorydb.New() if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) { for _, p := range it.Prove() { proof.Put(crypto.Keccak256(p), p) } } return proof }) return provers } func TestProof(t *testing.T) { trie, vals := randomTrie(500) root := trie.Hash() for i, prover := range makeProvers(trie) { for _, kv := range vals { proof := prover(kv.k) if proof == nil { t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k) } val, err := VerifyProof(root, kv.k, proof) if err != nil { t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof) } if !bytes.Equal(val, kv.v) { t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v) } } } } func TestOneElementProof(t *testing.T) { trie := new(Trie) updateString(trie, "k", "v") for i, prover := range makeProvers(trie) { proof := prover([]byte("k")) if proof == nil { t.Fatalf("prover %d: nil proof", i) } if proof.Len() != 1 { t.Errorf("prover %d: proof should have one element", i) } val, err := VerifyProof(trie.Hash(), []byte("k"), proof) if err != nil { t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof) } if !bytes.Equal(val, []byte("v")) { t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val) } } } func TestBadProof(t *testing.T) { trie, vals := randomTrie(800) root := trie.Hash() for i, prover := range makeProvers(trie) { for _, kv := range vals { proof := prover(kv.k) if proof == nil { t.Fatalf("prover %d: nil proof", i) } it := proof.NewIterator(nil, nil) for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ { it.Next() } key := it.Key() val, _ := proof.Get(key) proof.Delete(key) it.Release() mutateByte(val) proof.Put(crypto.Keccak256(val), val) if _, err := VerifyProof(root, kv.k, proof); err == nil { t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k) } } } } // Tests that missing keys can also be proven. The test explicitly uses a single // entry trie and checks for missing keys both before and after the single entry. func TestMissingKeyProof(t *testing.T) { trie := new(Trie) updateString(trie, "k", "v") for i, key := range []string{"a", "j", "l", "z"} { proof := memorydb.New() trie.Prove([]byte(key), 0, proof) if proof.Len() != 1 { t.Errorf("test %d: proof should have one element", i) } val, err := VerifyProof(trie.Hash(), []byte(key), proof) if err != nil { t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof) } if val != nil { t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val) } } } type entrySlice []*kv func (p entrySlice) Len() int { return len(p) } func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 } func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } // TestRangeProof tests normal range proof with both edge proofs // as the existent proof. The test cases are generated randomly. func TestRangeProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) for i := 0; i < 500; i++ { start := mrand.Intn(len(entries)) end := mrand.Intn(len(entries)-start) + start + 1 proof := memorydb.New() if err := trie.Prove(entries[start].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var vals [][]byte for i := start; i < end; i++ { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } _, _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof) if err != nil { t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) } } } // TestRangeProof tests normal range proof with two non-existent proofs. // The test cases are generated randomly. func TestRangeProofWithNonExistentProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) for i := 0; i < 500; i++ { start := mrand.Intn(len(entries)) end := mrand.Intn(len(entries)-start) + start + 1 proof := memorydb.New() // Short circuit if the decreased key is same with the previous key first := decreseKey(common.CopyBytes(entries[start].k)) if start != 0 && bytes.Equal(first, entries[start-1].k) { continue } // Short circuit if the decreased key is underflow if bytes.Compare(first, entries[start].k) > 0 { continue } // Short circuit if the increased key is same with the next key last := increseKey(common.CopyBytes(entries[end-1].k)) if end != len(entries) && bytes.Equal(last, entries[end].k) { continue } // Short circuit if the increased key is overflow if bytes.Compare(last, entries[end-1].k) < 0 { continue } if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var vals [][]byte for i := start; i < end; i++ { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } _, _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof) if err != nil { t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) } } // Special case, two edge proofs for two edge key. proof := memorydb.New() first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes() last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes() if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var k [][]byte var v [][]byte for i := 0; i < len(entries); i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } _, _, err := VerifyRangeProof(trie.Hash(), first, last, k, v, proof) if err != nil { t.Fatal("Failed to verify whole rang with non-existent edges") } } // TestRangeProofWithInvalidNonExistentProof tests such scenarios: // - There exists a gap between the first element and the left edge proof // - There exists a gap between the last element and the right edge proof func TestRangeProofWithInvalidNonExistentProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) // Case 1 start, end := 100, 200 first := decreseKey(common.CopyBytes(entries[start].k)) proof := memorydb.New() if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } start = 105 // Gap created k := make([][]byte, 0) v := make([][]byte, 0) for i := start; i < end; i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } _, _, err := VerifyRangeProof(trie.Hash(), first, k[len(k)-1], k, v, proof) if err == nil { t.Fatalf("Expected to detect the error, got nil") } // Case 2 start, end = 100, 200 last := increseKey(common.CopyBytes(entries[end-1].k)) proof = memorydb.New() if err := trie.Prove(entries[start].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } end = 195 // Capped slice k = make([][]byte, 0) v = make([][]byte, 0) for i := start; i < end; i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } _, _, err = VerifyRangeProof(trie.Hash(), k[0], last, k, v, proof) if err == nil { t.Fatalf("Expected to detect the error, got nil") } } // TestOneElementRangeProof tests the proof with only one // element. The first edge proof can be existent one or // non-existent one. func TestOneElementRangeProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) // One element with existent edge proof, both edge proofs // point to the SAME key. start := 1000 proof := memorydb.New() if err := trie.Prove(entries[start].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } _, _, err := VerifyRangeProof(trie.Hash(), entries[start].k, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } // One element with left non-existent edge proof start = 1000 first := decreseKey(common.CopyBytes(entries[start].k)) proof = memorydb.New() if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[start].k, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } _, _, err = VerifyRangeProof(trie.Hash(), first, entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } // One element with right non-existent edge proof start = 1000 last := increseKey(common.CopyBytes(entries[start].k)) proof = memorydb.New() if err := trie.Prove(entries[start].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } _, _, err = VerifyRangeProof(trie.Hash(), entries[start].k, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } // One element with two non-existent edge proofs start = 1000 first, last = decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[start].k)) proof = memorydb.New() if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } _, _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[start].k}, [][]byte{entries[start].v}, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } // Test the mini trie with only a single element. tinyTrie := new(Trie) entry := &kv{randBytes(32), randBytes(20), false} tinyTrie.Update(entry.k, entry.v) first = common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes() last = entry.k proof = memorydb.New() if err := tinyTrie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := tinyTrie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } _, _, err = VerifyRangeProof(tinyTrie.Hash(), first, last, [][]byte{entry.k}, [][]byte{entry.v}, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } } // TestAllElementsProof tests the range proof with all elements. // The edge proofs can be nil. func TestAllElementsProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) var k [][]byte var v [][]byte for i := 0; i < len(entries); i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } _, _, err := VerifyRangeProof(trie.Hash(), nil, nil, k, v, nil) if err != nil { t.Fatalf("Expected no error, got %v", err) } // With edge proofs, it should still work. proof := memorydb.New() if err := trie.Prove(entries[0].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[len(entries)-1].k, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } _, _, err = VerifyRangeProof(trie.Hash(), k[0], k[len(k)-1], k, v, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } // Even with non-existent edge proofs, it should still work. proof = memorydb.New() first := common.HexToHash("0x0000000000000000000000000000000000000000000000000000000000000000").Bytes() last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes() if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } _, _, err = VerifyRangeProof(trie.Hash(), first, last, k, v, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } } // TestSingleSideRangeProof tests the range starts from zero. func TestSingleSideRangeProof(t *testing.T) { for i := 0; i < 64; i++ { trie := new(Trie) var entries entrySlice for i := 0; i < 4096; i++ { value := &kv{randBytes(32), randBytes(20), false} trie.Update(value.k, value.v) entries = append(entries, value) } sort.Sort(entries) var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1} for _, pos := range cases { proof := memorydb.New() if err := trie.Prove(common.Hash{}.Bytes(), 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[pos].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } k := make([][]byte, 0) v := make([][]byte, 0) for i := 0; i <= pos; i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } _, _, err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k[len(k)-1], k, v, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } } } } // TestReverseSingleSideRangeProof tests the range ends with 0xffff...fff. func TestReverseSingleSideRangeProof(t *testing.T) { for i := 0; i < 64; i++ { trie := new(Trie) var entries entrySlice for i := 0; i < 4096; i++ { value := &kv{randBytes(32), randBytes(20), false} trie.Update(value.k, value.v) entries = append(entries, value) } sort.Sort(entries) var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1} for _, pos := range cases { proof := memorydb.New() if err := trie.Prove(entries[pos].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } last := common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff") if err := trie.Prove(last.Bytes(), 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } k := make([][]byte, 0) v := make([][]byte, 0) for i := pos; i < len(entries); i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } _, _, err := VerifyRangeProof(trie.Hash(), k[0], last.Bytes(), k, v, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } } } } // TestBadRangeProof tests a few cases which the proof is wrong. // The prover is expected to detect the error. func TestBadRangeProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) for i := 0; i < 500; i++ { start := mrand.Intn(len(entries)) end := mrand.Intn(len(entries)-start) + start + 1 proof := memorydb.New() if err := trie.Prove(entries[start].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var vals [][]byte for i := start; i < end; i++ { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } var first, last = keys[0], keys[len(keys)-1] testcase := mrand.Intn(6) var index int switch testcase { case 0: // Modified key index = mrand.Intn(end - start) keys[index] = randBytes(32) // In theory it can't be same case 1: // Modified val index = mrand.Intn(end - start) vals[index] = randBytes(20) // In theory it can't be same case 2: // Gapped entry slice index = mrand.Intn(end - start) if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) { continue } keys = append(keys[:index], keys[index+1:]...) vals = append(vals[:index], vals[index+1:]...) case 3: // Out of order index1 := mrand.Intn(end - start) index2 := mrand.Intn(end - start) if index1 == index2 { continue } keys[index1], keys[index2] = keys[index2], keys[index1] vals[index1], vals[index2] = vals[index2], vals[index1] case 4: // Set random key to nil, do nothing index = mrand.Intn(end - start) keys[index] = nil case 5: // Set random value to nil, deletion index = mrand.Intn(end - start) vals[index] = nil } _, _, err := VerifyRangeProof(trie.Hash(), first, last, keys, vals, proof) if err == nil { t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1) } } } // TestGappedRangeProof focuses on the small trie with embedded nodes. // If the gapped node is embedded in the trie, it should be detected too. func TestGappedRangeProof(t *testing.T) { trie := new(Trie) var entries []*kv // Sorted entries for i := byte(0); i < 10; i++ { value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} trie.Update(value.k, value.v) entries = append(entries, value) } first, last := 2, 8 proof := memorydb.New() if err := trie.Prove(entries[first].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[last-1].k, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var vals [][]byte for i := first; i < last; i++ { if i == (first+last)/2 { continue } keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } _, _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof) if err == nil { t.Fatal("expect error, got nil") } } // TestSameSideProofs tests the element is not in the range covered by proofs func TestSameSideProofs(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) pos := 1000 first := decreseKey(common.CopyBytes(entries[pos].k)) first = decreseKey(first) last := decreseKey(common.CopyBytes(entries[pos].k)) proof := memorydb.New() if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } _, _, err := VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof) if err == nil { t.Fatalf("Expected error, got nil") } first = increseKey(common.CopyBytes(entries[pos].k)) last = increseKey(common.CopyBytes(entries[pos].k)) last = increseKey(last) proof = memorydb.New() if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, proof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } _, _, err = VerifyRangeProof(trie.Hash(), first, last, [][]byte{entries[pos].k}, [][]byte{entries[pos].v}, proof) if err == nil { t.Fatalf("Expected error, got nil") } } func TestHasRightElement(t *testing.T) { trie := new(Trie) var entries entrySlice for i := 0; i < 4096; i++ { value := &kv{randBytes(32), randBytes(20), false} trie.Update(value.k, value.v) entries = append(entries, value) } sort.Sort(entries) var cases = []struct { start int end int hasMore bool }{ {-1, 1, true}, // single element with non-existent left proof {0, 1, true}, // single element with existent left proof {0, 10, true}, {50, 100, true}, {50, len(entries), false}, // No more element expected {len(entries) - 1, len(entries), false}, // Single last element with two existent proofs(point to same key) {len(entries) - 1, -1, false}, // Single last element with non-existent right proof {0, len(entries), false}, // The whole set with existent left proof {-1, len(entries), false}, // The whole set with non-existent left proof {-1, -1, false}, // The whole set with non-existent left/right proof } for _, c := range cases { var ( firstKey []byte lastKey []byte start = c.start end = c.end proof = memorydb.New() ) if c.start == -1 { firstKey, start = common.Hash{}.Bytes(), 0 if err := trie.Prove(firstKey, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } } else { firstKey = entries[c.start].k if err := trie.Prove(entries[c.start].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } } if c.end == -1 { lastKey, end = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").Bytes(), len(entries) if err := trie.Prove(lastKey, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } } else { lastKey = entries[c.end-1].k if err := trie.Prove(entries[c.end-1].k, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } } k := make([][]byte, 0) v := make([][]byte, 0) for i := start; i < end; i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } _, hasMore, err := VerifyRangeProof(trie.Hash(), firstKey, lastKey, k, v, proof) if err != nil { t.Fatalf("Expected no error, got %v", err) } if hasMore != c.hasMore { t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore) } } } // TestEmptyRangeProof tests the range proof with "no" element. // The first edge proof must be a non-existent proof. func TestEmptyRangeProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) var cases = []struct { pos int err bool }{ {len(entries) - 1, false}, {500, true}, } for _, c := range cases { proof := memorydb.New() first := increseKey(common.CopyBytes(entries[c.pos].k)) if err := trie.Prove(first, 0, proof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } db, _, err := VerifyRangeProof(trie.Hash(), first, nil, nil, nil, proof) if c.err && err == nil { t.Fatalf("Expected error, got nil") } if !c.err && err != nil { t.Fatalf("Expected no error, got %v", err) } // If no error was returned, ensure the returned database contains // the entire proof, since there's no value if !c.err { if memdb := db.(*memorydb.Database); memdb.Len() != proof.Len() { t.Errorf("database entry count mismatch: have %d, want %d", memdb.Len(), proof.Len()) } } } } // TestBloatedProof tests a malicious proof, where the proof is more or less the // whole trie. func TestBloatedProof(t *testing.T) { // Use a small trie trie, kvs := nonRandomTrie(100) var entries entrySlice for _, kv := range kvs { entries = append(entries, kv) } sort.Sort(entries) var keys [][]byte var vals [][]byte proof := memorydb.New() // In the 'malicious' case, we add proofs for every single item // (but only one key/value pair used as leaf) for i, entry := range entries { trie.Prove(entry.k, 0, proof) if i == 50 { keys = append(keys, entry.k) vals = append(vals, entry.v) } } // For reference, we use the same function, but _only_ prove the first // and last element want := memorydb.New() trie.Prove(keys[0], 0, want) trie.Prove(keys[len(keys)-1], 0, want) db, _, _ := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, vals, proof) // The db should not contain anything of the bloated data if used := db.(*memorydb.Database); used.Len() != want.Len() { t.Fatalf("notary proof size mismatch: have %d, want %d", used.Len(), want.Len()) } } // mutateByte changes one byte in b. func mutateByte(b []byte) { for r := mrand.Intn(len(b)); ; { new := byte(mrand.Intn(255)) if new != b[r] { b[r] = new break } } } func increseKey(key []byte) []byte { for i := len(key) - 1; i >= 0; i-- { key[i]++ if key[i] != 0x0 { break } } return key } func decreseKey(key []byte) []byte { for i := len(key) - 1; i >= 0; i-- { key[i]-- if key[i] != 0xff { break } } return key } func BenchmarkProve(b *testing.B) { trie, vals := randomTrie(100) var keys []string for k := range vals { keys = append(keys, k) } b.ResetTimer() for i := 0; i < b.N; i++ { kv := vals[keys[i%len(keys)]] proofs := memorydb.New() if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 { b.Fatalf("zero length proof for %x", kv.k) } } } func BenchmarkVerifyProof(b *testing.B) { trie, vals := randomTrie(100) root := trie.Hash() var keys []string var proofs []*memorydb.Database for k := range vals { keys = append(keys, k) proof := memorydb.New() trie.Prove([]byte(k), 0, proof) proofs = append(proofs, proof) } b.ResetTimer() for i := 0; i < b.N; i++ { im := i % len(keys) if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil { b.Fatalf("key %x: %v", keys[im], err) } } } func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) } func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) } func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) } func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) } func benchmarkVerifyRangeProof(b *testing.B, size int) { trie, vals := randomTrie(8192) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) start := 2 end := start + size proof := memorydb.New() if err := trie.Prove(entries[start].k, 0, proof); err != nil { b.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, proof); err != nil { b.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var values [][]byte for i := start; i < end; i++ { keys = append(keys, entries[i].k) values = append(values, entries[i].v) } b.ResetTimer() for i := 0; i < b.N; i++ { _, _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, proof) if err != nil { b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) } } } func BenchmarkVerifyRangeNoProof10(b *testing.B) { benchmarkVerifyRangeNoProof(b, 100) } func BenchmarkVerifyRangeNoProof500(b *testing.B) { benchmarkVerifyRangeNoProof(b, 500) } func BenchmarkVerifyRangeNoProof1000(b *testing.B) { benchmarkVerifyRangeNoProof(b, 1000) } func benchmarkVerifyRangeNoProof(b *testing.B, size int) { trie, vals := randomTrie(size) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) var keys [][]byte var values [][]byte for _, entry := range entries { keys = append(keys, entry.k) values = append(values, entry.v) } b.ResetTimer() for i := 0; i < b.N; i++ { _, _, err := VerifyRangeProof(trie.Hash(), keys[0], keys[len(keys)-1], keys, values, nil) if err != nil { b.Fatalf("Expected no error, got %v", err) } } } func randomTrie(n int) (*Trie, map[string]*kv) { trie := new(Trie) vals := make(map[string]*kv) for i := byte(0); i < 100; i++ { value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false} trie.Update(value.k, value.v) trie.Update(value2.k, value2.v) vals[string(value.k)] = value vals[string(value2.k)] = value2 } for i := 0; i < n; i++ { value := &kv{randBytes(32), randBytes(20), false} trie.Update(value.k, value.v) vals[string(value.k)] = value } return trie, vals } func randBytes(n int) []byte { r := make([]byte, n) crand.Read(r) return r } func nonRandomTrie(n int) (*Trie, map[string]*kv) { trie := new(Trie) vals := make(map[string]*kv) max := uint64(0xffffffffffffffff) for i := uint64(0); i < uint64(n); i++ { value := make([]byte, 32) key := make([]byte, 32) binary.LittleEndian.PutUint64(key, i) binary.LittleEndian.PutUint64(value, i-max) //value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} elem := &kv{key, value, false} trie.Update(elem.k, elem.v) vals[string(elem.k)] = elem } return trie, vals }