// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package stacktrie import ( "bytes" "encoding/binary" "errors" "fmt" "hash" "io" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/trie" "github.com/ethereum/go-ethereum/trie/trienode" "golang.org/x/crypto/sha3" "golang.org/x/exp/slices" ) type fuzzer struct { input io.Reader exhausted bool debugging bool } func (f *fuzzer) read(size int) []byte { out := make([]byte, size) if _, err := f.input.Read(out); err != nil { f.exhausted = true } return out } func (f *fuzzer) readSlice(min, max int) []byte { var a uint16 binary.Read(f.input, binary.LittleEndian, &a) size := min + int(a)%(max-min) out := make([]byte, size) if _, err := f.input.Read(out); err != nil { f.exhausted = true } return out } // spongeDb is a dummy db backend which accumulates writes in a sponge type spongeDb struct { sponge hash.Hash debug bool } func (s *spongeDb) Has(key []byte) (bool, error) { panic("implement me") } func (s *spongeDb) Get(key []byte) ([]byte, error) { return nil, errors.New("no such elem") } func (s *spongeDb) Delete(key []byte) error { panic("implement me") } func (s *spongeDb) NewBatch() ethdb.Batch { return &spongeBatch{s} } func (s *spongeDb) NewBatchWithSize(size int) ethdb.Batch { return &spongeBatch{s} } func (s *spongeDb) NewSnapshot() (ethdb.Snapshot, error) { panic("implement me") } func (s *spongeDb) Stat(property string) (string, error) { panic("implement me") } func (s *spongeDb) Compact(start []byte, limit []byte) error { panic("implement me") } func (s *spongeDb) Close() error { return nil } func (s *spongeDb) Put(key []byte, value []byte) error { if s.debug { fmt.Printf("db.Put %x : %x\n", key, value) } s.sponge.Write(key) s.sponge.Write(value) return nil } func (s *spongeDb) NewIterator(prefix []byte, start []byte) ethdb.Iterator { panic("implement me") } // spongeBatch is a dummy batch which immediately writes to the underlying spongedb type spongeBatch struct { db *spongeDb } func (b *spongeBatch) Put(key, value []byte) error { b.db.Put(key, value) return nil } func (b *spongeBatch) Delete(key []byte) error { panic("implement me") } func (b *spongeBatch) ValueSize() int { return 100 } func (b *spongeBatch) Write() error { return nil } func (b *spongeBatch) Reset() {} func (b *spongeBatch) Replay(w ethdb.KeyValueWriter) error { return nil } type kv struct { k, v []byte } // Fuzz is the fuzzing entry-point. // The function must return // // - 1 if the fuzzer should increase priority of the // given input during subsequent fuzzing (for example, the input is lexically // correct and was parsed successfully); // - -1 if the input must not be added to corpus even if gives new coverage; and // - 0 otherwise // // other values are reserved for future use. func Fuzz(data []byte) int { f := fuzzer{ input: bytes.NewReader(data), exhausted: false, } return f.fuzz() } func Debug(data []byte) int { f := fuzzer{ input: bytes.NewReader(data), exhausted: false, debugging: true, } return f.fuzz() } func (f *fuzzer) fuzz() int { // This spongeDb is used to check the sequence of disk-db-writes var ( spongeA = &spongeDb{sponge: sha3.NewLegacyKeccak256()} dbA = trie.NewDatabase(rawdb.NewDatabase(spongeA)) trieA = trie.NewEmpty(dbA) spongeB = &spongeDb{sponge: sha3.NewLegacyKeccak256()} dbB = trie.NewDatabase(rawdb.NewDatabase(spongeB)) trieB = trie.NewStackTrie(func(owner common.Hash, path []byte, hash common.Hash, blob []byte) { rawdb.WriteTrieNode(spongeB, owner, path, hash, blob, dbB.Scheme()) }) vals []kv useful bool maxElements = 10000 // operate on unique keys only keys = make(map[string]struct{}) ) // Fill the trie with elements for i := 0; !f.exhausted && i < maxElements; i++ { k := f.read(32) v := f.readSlice(1, 500) if f.exhausted { // If it was exhausted while reading, the value may be all zeroes, // thus 'deletion' which is not supported on stacktrie break } if _, present := keys[string(k)]; present { // This key is a duplicate, ignore it continue } keys[string(k)] = struct{}{} vals = append(vals, kv{k: k, v: v}) trieA.MustUpdate(k, v) useful = true } if !useful { return 0 } // Flush trie -> database rootA, nodes, err := trieA.Commit(false) if err != nil { panic(err) } if nodes != nil { dbA.Update(rootA, types.EmptyRootHash, trienode.NewWithNodeSet(nodes), nil) } // Flush memdb -> disk (sponge) dbA.Commit(rootA, false) // Stacktrie requires sorted insertion slices.SortFunc(vals, func(a, b kv) bool { return bytes.Compare(a.k, b.k) < 0 }) for _, kv := range vals { if f.debugging { fmt.Printf("{\"%#x\" , \"%#x\"} // stacktrie.Update\n", kv.k, kv.v) } trieB.MustUpdate(kv.k, kv.v) } rootB := trieB.Hash() trieB.Commit() if rootA != rootB { panic(fmt.Sprintf("roots differ: (trie) %x != %x (stacktrie)", rootA, rootB)) } sumA := spongeA.sponge.Sum(nil) sumB := spongeB.sponge.Sum(nil) if !bytes.Equal(sumA, sumB) { panic(fmt.Sprintf("sequence differ: (trie) %x != %x (stacktrie)", sumA, sumB)) } // Ensure all the nodes are persisted correctly var ( nodeset = make(map[string][]byte) // path -> blob trieC = trie.NewStackTrie(func(owner common.Hash, path []byte, hash common.Hash, blob []byte) { if crypto.Keccak256Hash(blob) != hash { panic("invalid node blob") } if owner != (common.Hash{}) { panic("invalid node owner") } nodeset[string(path)] = common.CopyBytes(blob) }) checked int ) for _, kv := range vals { trieC.MustUpdate(kv.k, kv.v) } rootC, _ := trieC.Commit() if rootA != rootC { panic(fmt.Sprintf("roots differ: (trie) %x != %x (stacktrie)", rootA, rootC)) } trieA, _ = trie.New(trie.TrieID(rootA), dbA) iterA := trieA.MustNodeIterator(nil) for iterA.Next(true) { if iterA.Hash() == (common.Hash{}) { if _, present := nodeset[string(iterA.Path())]; present { panic("unexpected tiny node") } continue } nodeBlob, present := nodeset[string(iterA.Path())] if !present { panic("missing node") } if !bytes.Equal(nodeBlob, iterA.NodeBlob()) { panic("node blob is not matched") } checked += 1 } if checked != len(nodeset) { panic("node number is not matched") } return 1 }