// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package downloader import ( "fmt" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/trie" "golang.org/x/crypto/sha3" ) // stateReq represents a batch of state fetch requests grouped together into // a single data retrieval network packet. type stateReq struct { nItems uint16 // Number of items requested for download (max is 384, so uint16 is sufficient) trieTasks map[string]*trieTask // Trie node download tasks to track previous attempts codeTasks map[common.Hash]*codeTask // Byte code download tasks to track previous attempts timeout time.Duration // Maximum round trip time for this to complete timer *time.Timer // Timer to fire when the RTT timeout expires peer *peerConnection // Peer that we're requesting from delivered time.Time // Time when the packet was delivered (independent when we process it) response [][]byte // Response data of the peer (nil for timeouts) dropped bool // Flag whether the peer dropped off early } // timedOut returns if this request timed out. func (req *stateReq) timedOut() bool { return req.response == nil } // stateSyncStats is a collection of progress stats to report during a state trie // sync to RPC requests as well as to display in user logs. type stateSyncStats struct { processed uint64 // Number of state entries processed duplicate uint64 // Number of state entries downloaded twice unexpected uint64 // Number of non-requested state entries received pending uint64 // Number of still pending state entries } // syncState starts downloading state with the given root hash. func (d *Downloader) syncState(root common.Hash) *stateSync { // Create the state sync s := newStateSync(d, root) select { case d.stateSyncStart <- s: // If we tell the statesync to restart with a new root, we also need // to wait for it to actually also start -- when old requests have timed // out or been delivered <-s.started case <-d.quitCh: s.err = errCancelStateFetch close(s.done) } return s } // stateFetcher manages the active state sync and accepts requests // on its behalf. func (d *Downloader) stateFetcher() { for { select { case s := <-d.stateSyncStart: for next := s; next != nil; { next = d.runStateSync(next) } case <-d.stateCh: // Ignore state responses while no sync is running. case <-d.quitCh: return } } } // runStateSync runs a state synchronisation until it completes or another root // hash is requested to be switched over to. func (d *Downloader) runStateSync(s *stateSync) *stateSync { var ( active = make(map[string]*stateReq) // Currently in-flight requests finished []*stateReq // Completed or failed requests timeout = make(chan *stateReq) // Timed out active requests ) log.Trace("State sync starting", "root", s.root) defer func() { // Cancel active request timers on exit. Also set peers to idle so they're // available for the next sync. for _, req := range active { req.timer.Stop() req.peer.SetNodeDataIdle(int(req.nItems), time.Now()) } }() go s.run() defer s.Cancel() // Listen for peer departure events to cancel assigned tasks peerDrop := make(chan *peerConnection, 1024) peerSub := s.d.peers.SubscribePeerDrops(peerDrop) defer peerSub.Unsubscribe() for { // Enable sending of the first buffered element if there is one. var ( deliverReq *stateReq deliverReqCh chan *stateReq ) if len(finished) > 0 { deliverReq = finished[0] deliverReqCh = s.deliver } select { // The stateSync lifecycle: case next := <-d.stateSyncStart: d.spindownStateSync(active, finished, timeout, peerDrop) return next case <-s.done: d.spindownStateSync(active, finished, timeout, peerDrop) return nil // Send the next finished request to the current sync: case deliverReqCh <- deliverReq: // Shift out the first request, but also set the emptied slot to nil for GC copy(finished, finished[1:]) finished[len(finished)-1] = nil finished = finished[:len(finished)-1] // Handle incoming state packs: case pack := <-d.stateCh: // Discard any data not requested (or previously timed out) req := active[pack.PeerId()] if req == nil { log.Debug("Unrequested node data", "peer", pack.PeerId(), "len", pack.Items()) continue } // Finalize the request and queue up for processing req.timer.Stop() req.response = pack.(*statePack).states req.delivered = time.Now() finished = append(finished, req) delete(active, pack.PeerId()) // Handle dropped peer connections: case p := <-peerDrop: // Skip if no request is currently pending req := active[p.id] if req == nil { continue } // Finalize the request and queue up for processing req.timer.Stop() req.dropped = true req.delivered = time.Now() finished = append(finished, req) delete(active, p.id) // Handle timed-out requests: case req := <-timeout: // If the peer is already requesting something else, ignore the stale timeout. // This can happen when the timeout and the delivery happens simultaneously, // causing both pathways to trigger. if active[req.peer.id] != req { continue } req.delivered = time.Now() // Move the timed out data back into the download queue finished = append(finished, req) delete(active, req.peer.id) // Track outgoing state requests: case req := <-d.trackStateReq: // If an active request already exists for this peer, we have a problem. In // theory the trie node schedule must never assign two requests to the same // peer. In practice however, a peer might receive a request, disconnect and // immediately reconnect before the previous times out. In this case the first // request is never honored, alas we must not silently overwrite it, as that // causes valid requests to go missing and sync to get stuck. if old := active[req.peer.id]; old != nil { log.Warn("Busy peer assigned new state fetch", "peer", old.peer.id) // Move the previous request to the finished set old.timer.Stop() old.dropped = true old.delivered = time.Now() finished = append(finished, old) } // Start a timer to notify the sync loop if the peer stalled. req.timer = time.AfterFunc(req.timeout, func() { timeout <- req }) active[req.peer.id] = req } } } // spindownStateSync 'drains' the outstanding requests; some will be delivered and other // will time out. This is to ensure that when the next stateSync starts working, all peers // are marked as idle and de facto _are_ idle. func (d *Downloader) spindownStateSync(active map[string]*stateReq, finished []*stateReq, timeout chan *stateReq, peerDrop chan *peerConnection) { log.Trace("State sync spinning down", "active", len(active), "finished", len(finished)) for len(active) > 0 { var ( req *stateReq reason string ) select { // Handle (drop) incoming state packs: case pack := <-d.stateCh: req = active[pack.PeerId()] reason = "delivered" // Handle dropped peer connections: case p := <-peerDrop: req = active[p.id] reason = "peerdrop" // Handle timed-out requests: case req = <-timeout: reason = "timeout" } if req == nil { continue } req.peer.log.Trace("State peer marked idle (spindown)", "req.items", int(req.nItems), "reason", reason) req.timer.Stop() delete(active, req.peer.id) req.peer.SetNodeDataIdle(int(req.nItems), time.Now()) } // The 'finished' set contains deliveries that we were going to pass to processing. // Those are now moot, but we still need to set those peers as idle, which would // otherwise have been done after processing for _, req := range finished { req.peer.SetNodeDataIdle(int(req.nItems), time.Now()) } } // stateSync schedules requests for downloading a particular state trie defined // by a given state root. type stateSync struct { d *Downloader // Downloader instance to access and manage current peerset root common.Hash // State root currently being synced sched *trie.Sync // State trie sync scheduler defining the tasks keccak crypto.KeccakState // Keccak256 hasher to verify deliveries with trieTasks map[string]*trieTask // Set of trie node tasks currently queued for retrieval, indexed by path codeTasks map[common.Hash]*codeTask // Set of byte code tasks currently queued for retrieval, indexed by hash numUncommitted int bytesUncommitted int started chan struct{} // Started is signalled once the sync loop starts deliver chan *stateReq // Delivery channel multiplexing peer responses cancel chan struct{} // Channel to signal a termination request cancelOnce sync.Once // Ensures cancel only ever gets called once done chan struct{} // Channel to signal termination completion err error // Any error hit during sync (set before completion) } // trieTask represents a single trie node download task, containing a set of // peers already attempted retrieval from to detect stalled syncs and abort. type trieTask struct { hash common.Hash path [][]byte attempts map[string]struct{} } // codeTask represents a single byte code download task, containing a set of // peers already attempted retrieval from to detect stalled syncs and abort. type codeTask struct { attempts map[string]struct{} } // newStateSync creates a new state trie download scheduler. This method does not // yet start the sync. The user needs to call run to initiate. func newStateSync(d *Downloader, root common.Hash) *stateSync { return &stateSync{ d: d, root: root, sched: state.NewStateSync(root, d.stateDB, nil), keccak: sha3.NewLegacyKeccak256().(crypto.KeccakState), trieTasks: make(map[string]*trieTask), codeTasks: make(map[common.Hash]*codeTask), deliver: make(chan *stateReq), cancel: make(chan struct{}), done: make(chan struct{}), started: make(chan struct{}), } } // run starts the task assignment and response processing loop, blocking until // it finishes, and finally notifying any goroutines waiting for the loop to // finish. func (s *stateSync) run() { close(s.started) if s.d.snapSync { s.err = s.d.SnapSyncer.Sync(s.root, s.cancel) } else { s.err = s.loop() } close(s.done) } // Wait blocks until the sync is done or canceled. func (s *stateSync) Wait() error { <-s.done return s.err } // Cancel cancels the sync and waits until it has shut down. func (s *stateSync) Cancel() error { s.cancelOnce.Do(func() { close(s.cancel) }) return s.Wait() } // loop is the main event loop of a state trie sync. It it responsible for the // assignment of new tasks to peers (including sending it to them) as well as // for the processing of inbound data. Note, that the loop does not directly // receive data from peers, rather those are buffered up in the downloader and // pushed here async. The reason is to decouple processing from data receipt // and timeouts. func (s *stateSync) loop() (err error) { // Listen for new peer events to assign tasks to them newPeer := make(chan *peerConnection, 1024) peerSub := s.d.peers.SubscribeNewPeers(newPeer) defer peerSub.Unsubscribe() defer func() { cerr := s.commit(true) if err == nil { err = cerr } }() // Keep assigning new tasks until the sync completes or aborts for s.sched.Pending() > 0 { if err = s.commit(false); err != nil { return err } s.assignTasks() // Tasks assigned, wait for something to happen select { case <-newPeer: // New peer arrived, try to assign it download tasks case <-s.cancel: return errCancelStateFetch case <-s.d.cancelCh: return errCanceled case req := <-s.deliver: // Response, disconnect or timeout triggered, drop the peer if stalling log.Trace("Received node data response", "peer", req.peer.id, "count", len(req.response), "dropped", req.dropped, "timeout", !req.dropped && req.timedOut()) if req.nItems <= 2 && !req.dropped && req.timedOut() { // 2 items are the minimum requested, if even that times out, we've no use of // this peer at the moment. log.Warn("Stalling state sync, dropping peer", "peer", req.peer.id) if s.d.dropPeer == nil { // The dropPeer method is nil when `--copydb` is used for a local copy. // Timeouts can occur if e.g. compaction hits at the wrong time, and can be ignored req.peer.log.Warn("Downloader wants to drop peer, but peerdrop-function is not set", "peer", req.peer.id) } else { s.d.dropPeer(req.peer.id) // If this peer was the master peer, abort sync immediately s.d.cancelLock.RLock() master := req.peer.id == s.d.cancelPeer s.d.cancelLock.RUnlock() if master { s.d.cancel() return errTimeout } } } // Process all the received blobs and check for stale delivery delivered, err := s.process(req) req.peer.SetNodeDataIdle(delivered, req.delivered) if err != nil { log.Warn("Node data write error", "err", err) return err } } } return nil } func (s *stateSync) commit(force bool) error { if !force && s.bytesUncommitted < ethdb.IdealBatchSize { return nil } start := time.Now() b := s.d.stateDB.NewBatch() if err := s.sched.Commit(b); err != nil { return err } if err := b.Write(); err != nil { return fmt.Errorf("DB write error: %v", err) } s.updateStats(s.numUncommitted, 0, 0, time.Since(start)) s.numUncommitted = 0 s.bytesUncommitted = 0 return nil } // assignTasks attempts to assign new tasks to all idle peers, either from the // batch currently being retried, or fetching new data from the trie sync itself. func (s *stateSync) assignTasks() { // Iterate over all idle peers and try to assign them state fetches peers, _ := s.d.peers.NodeDataIdlePeers() for _, p := range peers { // Assign a batch of fetches proportional to the estimated latency/bandwidth cap := p.NodeDataCapacity(s.d.peers.rates.TargetRoundTrip()) req := &stateReq{peer: p, timeout: s.d.peers.rates.TargetTimeout()} nodes, _, codes := s.fillTasks(cap, req) // If the peer was assigned tasks to fetch, send the network request if len(nodes)+len(codes) > 0 { req.peer.log.Trace("Requesting batch of state data", "nodes", len(nodes), "codes", len(codes), "root", s.root) select { case s.d.trackStateReq <- req: req.peer.FetchNodeData(append(nodes, codes...)) // Unified retrieval under eth/6x case <-s.cancel: case <-s.d.cancelCh: } } } } // fillTasks fills the given request object with a maximum of n state download // tasks to send to the remote peer. func (s *stateSync) fillTasks(n int, req *stateReq) (nodes []common.Hash, paths []trie.SyncPath, codes []common.Hash) { // Refill available tasks from the scheduler. if fill := n - (len(s.trieTasks) + len(s.codeTasks)); fill > 0 { paths, hashes, codes := s.sched.Missing(fill) for i, path := range paths { s.trieTasks[path] = &trieTask{ hash: hashes[i], path: trie.NewSyncPath([]byte(path)), attempts: make(map[string]struct{}), } } for _, hash := range codes { s.codeTasks[hash] = &codeTask{ attempts: make(map[string]struct{}), } } } // Find tasks that haven't been tried with the request's peer. Prefer code // over trie nodes as those can be written to disk and forgotten about. nodes = make([]common.Hash, 0, n) paths = make([]trie.SyncPath, 0, n) codes = make([]common.Hash, 0, n) req.trieTasks = make(map[string]*trieTask, n) req.codeTasks = make(map[common.Hash]*codeTask, n) for hash, t := range s.codeTasks { // Stop when we've gathered enough requests if len(nodes)+len(codes) == n { break } // Skip any requests we've already tried from this peer if _, ok := t.attempts[req.peer.id]; ok { continue } // Assign the request to this peer t.attempts[req.peer.id] = struct{}{} codes = append(codes, hash) req.codeTasks[hash] = t delete(s.codeTasks, hash) } for path, t := range s.trieTasks { // Stop when we've gathered enough requests if len(nodes)+len(codes) == n { break } // Skip any requests we've already tried from this peer if _, ok := t.attempts[req.peer.id]; ok { continue } // Assign the request to this peer t.attempts[req.peer.id] = struct{}{} nodes = append(nodes, t.hash) paths = append(paths, t.path) req.trieTasks[path] = t delete(s.trieTasks, path) } req.nItems = uint16(len(nodes) + len(codes)) return nodes, paths, codes } // process iterates over a batch of delivered state data, injecting each item // into a running state sync, re-queuing any items that were requested but not // delivered. Returns whether the peer actually managed to deliver anything of // value, and any error that occurred. func (s *stateSync) process(req *stateReq) (int, error) { // Collect processing stats and update progress if valid data was received duplicate, unexpected, successful := 0, 0, 0 defer func(start time.Time) { if duplicate > 0 || unexpected > 0 { s.updateStats(0, duplicate, unexpected, time.Since(start)) } }(time.Now()) // Iterate over all the delivered data and inject one-by-one into the trie for _, blob := range req.response { hash, err := s.processNodeData(req.trieTasks, req.codeTasks, blob) switch err { case nil: s.numUncommitted++ s.bytesUncommitted += len(blob) successful++ case trie.ErrNotRequested: unexpected++ case trie.ErrAlreadyProcessed: duplicate++ default: return successful, fmt.Errorf("invalid state node %s: %v", hash.TerminalString(), err) } } // Put unfulfilled tasks back into the retry queue npeers := s.d.peers.Len() for path, task := range req.trieTasks { // If the node did deliver something, missing items may be due to a protocol // limit or a previous timeout + delayed delivery. Both cases should permit // the node to retry the missing items (to avoid single-peer stalls). if len(req.response) > 0 || req.timedOut() { delete(task.attempts, req.peer.id) } // If we've requested the node too many times already, it may be a malicious // sync where nobody has the right data. Abort. if len(task.attempts) >= npeers { return successful, fmt.Errorf("trie node %s failed with all peers (%d tries, %d peers)", task.hash.TerminalString(), len(task.attempts), npeers) } // Missing item, place into the retry queue. s.trieTasks[path] = task } for hash, task := range req.codeTasks { // If the node did deliver something, missing items may be due to a protocol // limit or a previous timeout + delayed delivery. Both cases should permit // the node to retry the missing items (to avoid single-peer stalls). if len(req.response) > 0 || req.timedOut() { delete(task.attempts, req.peer.id) } // If we've requested the node too many times already, it may be a malicious // sync where nobody has the right data. Abort. if len(task.attempts) >= npeers { return successful, fmt.Errorf("byte code %s failed with all peers (%d tries, %d peers)", hash.TerminalString(), len(task.attempts), npeers) } // Missing item, place into the retry queue. s.codeTasks[hash] = task } return successful, nil } // processNodeData tries to inject a trie node data blob delivered from a remote // peer into the state trie, returning whether anything useful was written or any // error occurred. // // If multiple requests correspond to the same hash, this method will inject the // blob as a result for the first one only, leaving the remaining duplicates to // be fetched again. func (s *stateSync) processNodeData(nodeTasks map[string]*trieTask, codeTasks map[common.Hash]*codeTask, blob []byte) (common.Hash, error) { var hash common.Hash s.keccak.Reset() s.keccak.Write(blob) s.keccak.Read(hash[:]) if _, present := codeTasks[hash]; present { err := s.sched.ProcessCode(trie.CodeSyncResult{ Hash: hash, Data: blob, }) delete(codeTasks, hash) return hash, err } for path, task := range nodeTasks { if task.hash == hash { err := s.sched.ProcessNode(trie.NodeSyncResult{ Path: path, Data: blob, }) delete(nodeTasks, path) return hash, err } } return common.Hash{}, trie.ErrNotRequested } // updateStats bumps the various state sync progress counters and displays a log // message for the user to see. func (s *stateSync) updateStats(written, duplicate, unexpected int, duration time.Duration) { s.d.syncStatsLock.Lock() defer s.d.syncStatsLock.Unlock() s.d.syncStatsState.pending = uint64(s.sched.Pending()) s.d.syncStatsState.processed += uint64(written) s.d.syncStatsState.duplicate += uint64(duplicate) s.d.syncStatsState.unexpected += uint64(unexpected) if written > 0 || duplicate > 0 || unexpected > 0 { log.Info("Imported new state entries", "count", written, "elapsed", common.PrettyDuration(duration), "processed", s.d.syncStatsState.processed, "pending", s.d.syncStatsState.pending, "trieretry", len(s.trieTasks), "coderetry", len(s.codeTasks), "duplicate", s.d.syncStatsState.duplicate, "unexpected", s.d.syncStatsState.unexpected) } //if written > 0 { //rawdb.WriteFastTrieProgress(s.d.stateDB, s.d.syncStatsState.processed) //} }