// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package state provides a caching layer atop the Ethereum state trie. package state import ( "fmt" "math/big" "sort" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" lru "github.com/hashicorp/golang-lru" ) // Trie cache generation limit after which to evic trie nodes from memory. var MaxTrieCacheGen = uint16(120) const ( // Number of past tries to keep. This value is chosen such that // reasonable chain reorg depths will hit an existing trie. maxPastTries = 12 // Number of codehash->size associations to keep. codeSizeCacheSize = 100000 ) type revision struct { id int journalIndex int } // StateDBs within the ethereum protocol are used to store anything // within the merkle trie. StateDBs take care of caching and storing // nested states. It's the general query interface to retrieve: // * Contracts // * Accounts type StateDB struct { db ethdb.Database trie *trie.SecureTrie pastTries []*trie.SecureTrie codeSizeCache *lru.Cache // This map holds 'live' objects, which will get modified while processing a state transition. stateObjects map[common.Address]*stateObject stateObjectsDirty map[common.Address]struct{} // The refund counter, also used by state transitioning. refund *big.Int thash, bhash common.Hash txIndex int logs map[common.Hash][]*types.Log logSize uint preimages map[common.Hash][]byte // Journal of state modifications. This is the backbone of // Snapshot and RevertToSnapshot. journal journal validRevisions []revision nextRevisionId int lock sync.Mutex } // Create a new state from a given trie func New(root common.Hash, db ethdb.Database) (*StateDB, error) { tr, err := trie.NewSecure(root, db, MaxTrieCacheGen) if err != nil { return nil, err } csc, _ := lru.New(codeSizeCacheSize) return &StateDB{ db: db, trie: tr, codeSizeCache: csc, stateObjects: make(map[common.Address]*stateObject), stateObjectsDirty: make(map[common.Address]struct{}), refund: new(big.Int), logs: make(map[common.Hash][]*types.Log), preimages: make(map[common.Hash][]byte), }, nil } // New creates a new statedb by reusing any journalled tries to avoid costly // disk io. func (self *StateDB) New(root common.Hash) (*StateDB, error) { self.lock.Lock() defer self.lock.Unlock() tr, err := self.openTrie(root) if err != nil { return nil, err } return &StateDB{ db: self.db, trie: tr, codeSizeCache: self.codeSizeCache, stateObjects: make(map[common.Address]*stateObject), stateObjectsDirty: make(map[common.Address]struct{}), refund: new(big.Int), logs: make(map[common.Hash][]*types.Log), preimages: make(map[common.Hash][]byte), }, nil } // Reset clears out all emphemeral state objects from the state db, but keeps // the underlying state trie to avoid reloading data for the next operations. func (self *StateDB) Reset(root common.Hash) error { self.lock.Lock() defer self.lock.Unlock() tr, err := self.openTrie(root) if err != nil { return err } self.trie = tr self.stateObjects = make(map[common.Address]*stateObject) self.stateObjectsDirty = make(map[common.Address]struct{}) self.thash = common.Hash{} self.bhash = common.Hash{} self.txIndex = 0 self.logs = make(map[common.Hash][]*types.Log) self.logSize = 0 self.preimages = make(map[common.Hash][]byte) self.clearJournalAndRefund() return nil } // openTrie creates a trie. It uses an existing trie if one is available // from the journal if available. func (self *StateDB) openTrie(root common.Hash) (*trie.SecureTrie, error) { for i := len(self.pastTries) - 1; i >= 0; i-- { if self.pastTries[i].Hash() == root { tr := *self.pastTries[i] return &tr, nil } } return trie.NewSecure(root, self.db, MaxTrieCacheGen) } func (self *StateDB) pushTrie(t *trie.SecureTrie) { self.lock.Lock() defer self.lock.Unlock() if len(self.pastTries) >= maxPastTries { copy(self.pastTries, self.pastTries[1:]) self.pastTries[len(self.pastTries)-1] = t } else { self.pastTries = append(self.pastTries, t) } } func (self *StateDB) StartRecord(thash, bhash common.Hash, ti int) { self.thash = thash self.bhash = bhash self.txIndex = ti } func (self *StateDB) AddLog(log *types.Log) { self.journal = append(self.journal, addLogChange{txhash: self.thash}) log.TxHash = self.thash log.BlockHash = self.bhash log.TxIndex = uint(self.txIndex) log.Index = self.logSize self.logs[self.thash] = append(self.logs[self.thash], log) self.logSize++ } func (self *StateDB) GetLogs(hash common.Hash) []*types.Log { return self.logs[hash] } func (self *StateDB) Logs() []*types.Log { var logs []*types.Log for _, lgs := range self.logs { logs = append(logs, lgs...) } return logs } // AddPreimage records a SHA3 preimage seen by the VM. func (self *StateDB) AddPreimage(hash common.Hash, preimage []byte) { if _, ok := self.preimages[hash]; !ok { self.journal = append(self.journal, addPreimageChange{hash: hash}) pi := make([]byte, len(preimage)) copy(pi, preimage) self.preimages[hash] = pi } } // Preimages returns a list of SHA3 preimages that have been submitted. func (self *StateDB) Preimages() map[common.Hash][]byte { return self.preimages } func (self *StateDB) AddRefund(gas *big.Int) { self.journal = append(self.journal, refundChange{prev: new(big.Int).Set(self.refund)}) self.refund.Add(self.refund, gas) } // Exist reports whether the given account address exists in the state. // Notably this also returns true for suicided accounts. func (self *StateDB) Exist(addr common.Address) bool { return self.getStateObject(addr) != nil } // Empty returns whether the state object is either non-existent // or empty according to the EIP161 specification (balance = nonce = code = 0) func (self *StateDB) Empty(addr common.Address) bool { so := self.getStateObject(addr) return so == nil || so.empty() } // Retrieve the balance from the given address or 0 if object not found func (self *StateDB) GetBalance(addr common.Address) *big.Int { stateObject := self.getStateObject(addr) if stateObject != nil { return stateObject.Balance() } return common.Big0 } func (self *StateDB) GetNonce(addr common.Address) uint64 { stateObject := self.getStateObject(addr) if stateObject != nil { return stateObject.Nonce() } return 0 } func (self *StateDB) GetCode(addr common.Address) []byte { stateObject := self.getStateObject(addr) if stateObject != nil { code := stateObject.Code(self.db) key := common.BytesToHash(stateObject.CodeHash()) self.codeSizeCache.Add(key, len(code)) return code } return nil } func (self *StateDB) GetCodeSize(addr common.Address) int { stateObject := self.getStateObject(addr) if stateObject == nil { return 0 } key := common.BytesToHash(stateObject.CodeHash()) if cached, ok := self.codeSizeCache.Get(key); ok { return cached.(int) } size := len(stateObject.Code(self.db)) if stateObject.dbErr == nil { self.codeSizeCache.Add(key, size) } return size } func (self *StateDB) GetCodeHash(addr common.Address) common.Hash { stateObject := self.getStateObject(addr) if stateObject == nil { return common.Hash{} } return common.BytesToHash(stateObject.CodeHash()) } func (self *StateDB) GetState(a common.Address, b common.Hash) common.Hash { stateObject := self.getStateObject(a) if stateObject != nil { return stateObject.GetState(self.db, b) } return common.Hash{} } func (self *StateDB) HasSuicided(addr common.Address) bool { stateObject := self.getStateObject(addr) if stateObject != nil { return stateObject.suicided } return false } /* * SETTERS */ // AddBalance adds amount to the account associated with addr func (self *StateDB) AddBalance(addr common.Address, amount *big.Int) { stateObject := self.GetOrNewStateObject(addr) if stateObject != nil { stateObject.AddBalance(amount) } } // SubBalance subtracts amount from the account associated with addr func (self *StateDB) SubBalance(addr common.Address, amount *big.Int) { stateObject := self.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SubBalance(amount) } } func (self *StateDB) SetBalance(addr common.Address, amount *big.Int) { stateObject := self.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetBalance(amount) } } func (self *StateDB) SetNonce(addr common.Address, nonce uint64) { stateObject := self.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetNonce(nonce) } } func (self *StateDB) SetCode(addr common.Address, code []byte) { stateObject := self.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetCode(crypto.Keccak256Hash(code), code) } } func (self *StateDB) SetState(addr common.Address, key common.Hash, value common.Hash) { stateObject := self.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetState(self.db, key, value) } } // Suicide marks the given account as suicided. // This clears the account balance. // // The account's state object is still available until the state is committed, // getStateObject will return a non-nil account after Suicide. func (self *StateDB) Suicide(addr common.Address) bool { stateObject := self.getStateObject(addr) if stateObject == nil { return false } self.journal = append(self.journal, suicideChange{ account: &addr, prev: stateObject.suicided, prevbalance: new(big.Int).Set(stateObject.Balance()), }) stateObject.markSuicided() stateObject.data.Balance = new(big.Int) return true } // // Setting, updating & deleting state object methods // // updateStateObject writes the given object to the trie. func (self *StateDB) updateStateObject(stateObject *stateObject) { addr := stateObject.Address() data, err := rlp.EncodeToBytes(stateObject) if err != nil { panic(fmt.Errorf("can't encode object at %x: %v", addr[:], err)) } self.trie.Update(addr[:], data) } // deleteStateObject removes the given object from the state trie. func (self *StateDB) deleteStateObject(stateObject *stateObject) { stateObject.deleted = true addr := stateObject.Address() self.trie.Delete(addr[:]) } // Retrieve a state object given my the address. Returns nil if not found. func (self *StateDB) getStateObject(addr common.Address) (stateObject *stateObject) { // Prefer 'live' objects. if obj := self.stateObjects[addr]; obj != nil { if obj.deleted { return nil } return obj } // Load the object from the database. enc := self.trie.Get(addr[:]) if len(enc) == 0 { return nil } var data Account if err := rlp.DecodeBytes(enc, &data); err != nil { log.Error("Failed to decode state object", "addr", addr, "err", err) return nil } // Insert into the live set. obj := newObject(self, addr, data, self.MarkStateObjectDirty) self.setStateObject(obj) return obj } func (self *StateDB) setStateObject(object *stateObject) { self.stateObjects[object.Address()] = object } // Retrieve a state object or create a new state object if nil func (self *StateDB) GetOrNewStateObject(addr common.Address) *stateObject { stateObject := self.getStateObject(addr) if stateObject == nil || stateObject.deleted { stateObject, _ = self.createObject(addr) } return stateObject } // MarkStateObjectDirty adds the specified object to the dirty map to avoid costly // state object cache iteration to find a handful of modified ones. func (self *StateDB) MarkStateObjectDirty(addr common.Address) { self.stateObjectsDirty[addr] = struct{}{} } // createObject creates a new state object. If there is an existing account with // the given address, it is overwritten and returned as the second return value. func (self *StateDB) createObject(addr common.Address) (newobj, prev *stateObject) { prev = self.getStateObject(addr) newobj = newObject(self, addr, Account{}, self.MarkStateObjectDirty) newobj.setNonce(0) // sets the object to dirty if prev == nil { self.journal = append(self.journal, createObjectChange{account: &addr}) } else { self.journal = append(self.journal, resetObjectChange{prev: prev}) } self.setStateObject(newobj) return newobj, prev } // CreateAccount explicitly creates a state object. If a state object with the address // already exists the balance is carried over to the new account. // // CreateAccount is called during the EVM CREATE operation. The situation might arise that // a contract does the following: // // 1. sends funds to sha(account ++ (nonce + 1)) // 2. tx_create(sha(account ++ nonce)) (note that this gets the address of 1) // // Carrying over the balance ensures that Ether doesn't disappear. func (self *StateDB) CreateAccount(addr common.Address) { new, prev := self.createObject(addr) if prev != nil { new.setBalance(prev.data.Balance) } } func (db *StateDB) ForEachStorage(addr common.Address, cb func(key, value common.Hash) bool) { so := db.getStateObject(addr) if so == nil { return } // When iterating over the storage check the cache first for h, value := range so.cachedStorage { cb(h, value) } it := trie.NewIterator(so.getTrie(db.db).NodeIterator()) for it.Next() { // ignore cached values key := common.BytesToHash(db.trie.GetKey(it.Key)) if _, ok := so.cachedStorage[key]; !ok { cb(key, common.BytesToHash(it.Value)) } } } // Copy creates a deep, independent copy of the state. // Snapshots of the copied state cannot be applied to the copy. func (self *StateDB) Copy() *StateDB { self.lock.Lock() defer self.lock.Unlock() // Copy all the basic fields, initialize the memory ones state := &StateDB{ db: self.db, trie: self.trie, pastTries: self.pastTries, codeSizeCache: self.codeSizeCache, stateObjects: make(map[common.Address]*stateObject, len(self.stateObjectsDirty)), stateObjectsDirty: make(map[common.Address]struct{}, len(self.stateObjectsDirty)), refund: new(big.Int).Set(self.refund), logs: make(map[common.Hash][]*types.Log, len(self.logs)), logSize: self.logSize, preimages: make(map[common.Hash][]byte), } // Copy the dirty states, logs, and preimages for addr := range self.stateObjectsDirty { state.stateObjects[addr] = self.stateObjects[addr].deepCopy(state, state.MarkStateObjectDirty) state.stateObjectsDirty[addr] = struct{}{} } for hash, logs := range self.logs { state.logs[hash] = make([]*types.Log, len(logs)) copy(state.logs[hash], logs) } for hash, preimage := range self.preimages { state.preimages[hash] = preimage } return state } // Snapshot returns an identifier for the current revision of the state. func (self *StateDB) Snapshot() int { id := self.nextRevisionId self.nextRevisionId++ self.validRevisions = append(self.validRevisions, revision{id, len(self.journal)}) return id } // RevertToSnapshot reverts all state changes made since the given revision. func (self *StateDB) RevertToSnapshot(revid int) { // Find the snapshot in the stack of valid snapshots. idx := sort.Search(len(self.validRevisions), func(i int) bool { return self.validRevisions[i].id >= revid }) if idx == len(self.validRevisions) || self.validRevisions[idx].id != revid { panic(fmt.Errorf("revision id %v cannot be reverted", revid)) } snapshot := self.validRevisions[idx].journalIndex // Replay the journal to undo changes. for i := len(self.journal) - 1; i >= snapshot; i-- { self.journal[i].undo(self) } self.journal = self.journal[:snapshot] // Remove invalidated snapshots from the stack. self.validRevisions = self.validRevisions[:idx] } // GetRefund returns the current value of the refund counter. // The return value must not be modified by the caller and will become // invalid at the next call to AddRefund. func (self *StateDB) GetRefund() *big.Int { return self.refund } // IntermediateRoot computes the current root hash of the state trie. // It is called in between transactions to get the root hash that // goes into transaction receipts. func (s *StateDB) IntermediateRoot(deleteEmptyObjects bool) common.Hash { for addr := range s.stateObjectsDirty { stateObject := s.stateObjects[addr] if stateObject.suicided || (deleteEmptyObjects && stateObject.empty()) { s.deleteStateObject(stateObject) } else { stateObject.updateRoot(s.db) s.updateStateObject(stateObject) } } // Invalidate journal because reverting across transactions is not allowed. s.clearJournalAndRefund() return s.trie.Hash() } // DeleteSuicides flags the suicided objects for deletion so that it // won't be referenced again when called / queried up on. // // DeleteSuicides should not be used for consensus related updates // under any circumstances. func (s *StateDB) DeleteSuicides() { // Reset refund so that any used-gas calculations can use this method. s.clearJournalAndRefund() for addr := range s.stateObjectsDirty { stateObject := s.stateObjects[addr] // If the object has been removed by a suicide // flag the object as deleted. if stateObject.suicided { stateObject.deleted = true } delete(s.stateObjectsDirty, addr) } } // Commit commits all state changes to the database. func (s *StateDB) Commit(deleteEmptyObjects bool) (root common.Hash, err error) { root, batch := s.CommitBatch(deleteEmptyObjects) return root, batch.Write() } // CommitBatch commits all state changes to a write batch but does not // execute the batch. It is used to validate state changes against // the root hash stored in a block. func (s *StateDB) CommitBatch(deleteEmptyObjects bool) (root common.Hash, batch ethdb.Batch) { batch = s.db.NewBatch() root, _ = s.CommitTo(batch, deleteEmptyObjects) log.Debug("Trie cache stats after commit", "misses", trie.CacheMisses(), "unloads", trie.CacheUnloads()) return root, batch } func (s *StateDB) clearJournalAndRefund() { s.journal = nil s.validRevisions = s.validRevisions[:0] s.refund = new(big.Int) } // CommitTo writes the state to the given database. func (s *StateDB) CommitTo(dbw trie.DatabaseWriter, deleteEmptyObjects bool) (root common.Hash, err error) { defer s.clearJournalAndRefund() // Commit objects to the trie. for addr, stateObject := range s.stateObjects { _, isDirty := s.stateObjectsDirty[addr] switch { case stateObject.suicided || (isDirty && deleteEmptyObjects && stateObject.empty()): // If the object has been removed, don't bother syncing it // and just mark it for deletion in the trie. s.deleteStateObject(stateObject) case isDirty: // Write any contract code associated with the state object if stateObject.code != nil && stateObject.dirtyCode { if err := dbw.Put(stateObject.CodeHash(), stateObject.code); err != nil { return common.Hash{}, err } stateObject.dirtyCode = false } // Write any storage changes in the state object to its storage trie. if err := stateObject.CommitTrie(s.db, dbw); err != nil { return common.Hash{}, err } // Update the object in the main account trie. s.updateStateObject(stateObject) } delete(s.stateObjectsDirty, addr) } // Write trie changes. root, err = s.trie.CommitTo(dbw) if err == nil { s.pushTrie(s.trie) } return root, err }