// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package backends import ( "context" "errors" "fmt" "math/big" "sync" "time" "github.com/ethereum/go-ethereum" "github.com/ethereum/go-ethereum/accounts/abi/bind" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/params" ) // This nil assignment ensures compile time that SimulatedBackend implements bind.ContractBackend. var _ bind.ContractBackend = (*SimulatedBackend)(nil) var errBlockNumberUnsupported = errors.New("SimulatedBackend cannot access blocks other than the latest block") var errGasEstimationFailed = errors.New("gas required exceeds allowance or always failing transaction") // SimulatedBackend implements bind.ContractBackend, simulating a blockchain in // the background. Its main purpose is to allow easily testing contract bindings. type SimulatedBackend struct { database ethdb.Database // In memory database to store our testing data blockchain *core.BlockChain // Ethereum blockchain to handle the consensus mu sync.Mutex pendingBlock *types.Block // Currently pending block that will be imported on request pendingState *state.StateDB // Currently pending state that will be the active on on request config *params.ChainConfig } // NewSimulatedBackend creates a new binding backend using a simulated blockchain // for testing purposes. func NewSimulatedBackend(alloc core.GenesisAlloc) *SimulatedBackend { database, _ := ethdb.NewMemDatabase() genesis := core.Genesis{Config: params.AllEthashProtocolChanges, Alloc: alloc} genesis.MustCommit(database) blockchain, _ := core.NewBlockChain(database, genesis.Config, ethash.NewFaker(), vm.Config{}) backend := &SimulatedBackend{database: database, blockchain: blockchain, config: genesis.Config} backend.rollback() return backend } // Commit imports all the pending transactions as a single block and starts a // fresh new state. func (b *SimulatedBackend) Commit() { b.mu.Lock() defer b.mu.Unlock() if _, err := b.blockchain.InsertChain([]*types.Block{b.pendingBlock}); err != nil { panic(err) // This cannot happen unless the simulator is wrong, fail in that case } b.rollback() } // Rollback aborts all pending transactions, reverting to the last committed state. func (b *SimulatedBackend) Rollback() { b.mu.Lock() defer b.mu.Unlock() b.rollback() } func (b *SimulatedBackend) rollback() { blocks, _ := core.GenerateChain(b.config, b.blockchain.CurrentBlock(), b.database, 1, func(int, *core.BlockGen) {}) b.pendingBlock = blocks[0] b.pendingState, _ = state.New(b.pendingBlock.Root(), state.NewDatabase(b.database)) } // CodeAt returns the code associated with a certain account in the blockchain. func (b *SimulatedBackend) CodeAt(ctx context.Context, contract common.Address, blockNumber *big.Int) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() if blockNumber != nil && blockNumber.Cmp(b.blockchain.CurrentBlock().Number()) != 0 { return nil, errBlockNumberUnsupported } statedb, _ := b.blockchain.State() return statedb.GetCode(contract), nil } // BalanceAt returns the wei balance of a certain account in the blockchain. func (b *SimulatedBackend) BalanceAt(ctx context.Context, contract common.Address, blockNumber *big.Int) (*big.Int, error) { b.mu.Lock() defer b.mu.Unlock() if blockNumber != nil && blockNumber.Cmp(b.blockchain.CurrentBlock().Number()) != 0 { return nil, errBlockNumberUnsupported } statedb, _ := b.blockchain.State() return statedb.GetBalance(contract), nil } // NonceAt returns the nonce of a certain account in the blockchain. func (b *SimulatedBackend) NonceAt(ctx context.Context, contract common.Address, blockNumber *big.Int) (uint64, error) { b.mu.Lock() defer b.mu.Unlock() if blockNumber != nil && blockNumber.Cmp(b.blockchain.CurrentBlock().Number()) != 0 { return 0, errBlockNumberUnsupported } statedb, _ := b.blockchain.State() return statedb.GetNonce(contract), nil } // StorageAt returns the value of key in the storage of an account in the blockchain. func (b *SimulatedBackend) StorageAt(ctx context.Context, contract common.Address, key common.Hash, blockNumber *big.Int) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() if blockNumber != nil && blockNumber.Cmp(b.blockchain.CurrentBlock().Number()) != 0 { return nil, errBlockNumberUnsupported } statedb, _ := b.blockchain.State() val := statedb.GetState(contract, key) return val[:], nil } // TransactionReceipt returns the receipt of a transaction. func (b *SimulatedBackend) TransactionReceipt(ctx context.Context, txHash common.Hash) (*types.Receipt, error) { receipt, _, _, _ := core.GetReceipt(b.database, txHash) return receipt, nil } // PendingCodeAt returns the code associated with an account in the pending state. func (b *SimulatedBackend) PendingCodeAt(ctx context.Context, contract common.Address) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() return b.pendingState.GetCode(contract), nil } // CallContract executes a contract call. func (b *SimulatedBackend) CallContract(ctx context.Context, call ethereum.CallMsg, blockNumber *big.Int) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() if blockNumber != nil && blockNumber.Cmp(b.blockchain.CurrentBlock().Number()) != 0 { return nil, errBlockNumberUnsupported } state, err := b.blockchain.State() if err != nil { return nil, err } rval, _, _, err := b.callContract(ctx, call, b.blockchain.CurrentBlock(), state) return rval, err } // PendingCallContract executes a contract call on the pending state. func (b *SimulatedBackend) PendingCallContract(ctx context.Context, call ethereum.CallMsg) ([]byte, error) { b.mu.Lock() defer b.mu.Unlock() defer b.pendingState.RevertToSnapshot(b.pendingState.Snapshot()) rval, _, _, err := b.callContract(ctx, call, b.pendingBlock, b.pendingState) return rval, err } // PendingNonceAt implements PendingStateReader.PendingNonceAt, retrieving // the nonce currently pending for the account. func (b *SimulatedBackend) PendingNonceAt(ctx context.Context, account common.Address) (uint64, error) { b.mu.Lock() defer b.mu.Unlock() return b.pendingState.GetOrNewStateObject(account).Nonce(), nil } // SuggestGasPrice implements ContractTransactor.SuggestGasPrice. Since the simulated // chain doens't have miners, we just return a gas price of 1 for any call. func (b *SimulatedBackend) SuggestGasPrice(ctx context.Context) (*big.Int, error) { return big.NewInt(1), nil } // EstimateGas executes the requested code against the currently pending block/state and // returns the used amount of gas. func (b *SimulatedBackend) EstimateGas(ctx context.Context, call ethereum.CallMsg) (*big.Int, error) { b.mu.Lock() defer b.mu.Unlock() // Determine the lowest and highest possible gas limits to binary search in between var ( lo uint64 = params.TxGas - 1 hi uint64 cap uint64 ) if call.Gas != nil && call.Gas.Uint64() >= params.TxGas { hi = call.Gas.Uint64() } else { hi = b.pendingBlock.GasLimit().Uint64() } cap = hi // Create a helper to check if a gas allowance results in an executable transaction executable := func(gas uint64) bool { call.Gas = new(big.Int).SetUint64(gas) snapshot := b.pendingState.Snapshot() _, _, failed, err := b.callContract(ctx, call, b.pendingBlock, b.pendingState) b.pendingState.RevertToSnapshot(snapshot) if err != nil || failed { return false } return true } // Execute the binary search and hone in on an executable gas limit for lo+1 < hi { mid := (hi + lo) / 2 if !executable(mid) { lo = mid } else { hi = mid } } // Reject the transaction as invalid if it still fails at the highest allowance if hi == cap { if !executable(hi) { return nil, errGasEstimationFailed } } return new(big.Int).SetUint64(hi), nil } // callContract implemens common code between normal and pending contract calls. // state is modified during execution, make sure to copy it if necessary. func (b *SimulatedBackend) callContract(ctx context.Context, call ethereum.CallMsg, block *types.Block, statedb *state.StateDB) ([]byte, *big.Int, bool, error) { // Ensure message is initialized properly. if call.GasPrice == nil { call.GasPrice = big.NewInt(1) } if call.Gas == nil || call.Gas.Sign() == 0 { call.Gas = big.NewInt(50000000) } if call.Value == nil { call.Value = new(big.Int) } // Set infinite balance to the fake caller account. from := statedb.GetOrNewStateObject(call.From) from.SetBalance(math.MaxBig256) // Execute the call. msg := callmsg{call} evmContext := core.NewEVMContext(msg, block.Header(), b.blockchain, nil) // Create a new environment which holds all relevant information // about the transaction and calling mechanisms. vmenv := vm.NewEVM(evmContext, statedb, b.config, vm.Config{}) gaspool := new(core.GasPool).AddGas(math.MaxBig256) ret, gasUsed, _, failed, err := core.NewStateTransition(vmenv, msg, gaspool).TransitionDb() return ret, gasUsed, failed, err } // SendTransaction updates the pending block to include the given transaction. // It panics if the transaction is invalid. func (b *SimulatedBackend) SendTransaction(ctx context.Context, tx *types.Transaction) error { b.mu.Lock() defer b.mu.Unlock() sender, err := types.Sender(types.HomesteadSigner{}, tx) if err != nil { panic(fmt.Errorf("invalid transaction: %v", err)) } nonce := b.pendingState.GetNonce(sender) if tx.Nonce() != nonce { panic(fmt.Errorf("invalid transaction nonce: got %d, want %d", tx.Nonce(), nonce)) } blocks, _ := core.GenerateChain(b.config, b.blockchain.CurrentBlock(), b.database, 1, func(number int, block *core.BlockGen) { for _, tx := range b.pendingBlock.Transactions() { block.AddTx(tx) } block.AddTx(tx) }) b.pendingBlock = blocks[0] b.pendingState, _ = state.New(b.pendingBlock.Root(), state.NewDatabase(b.database)) return nil } // JumpTimeInSeconds adds skip seconds to the clock func (b *SimulatedBackend) AdjustTime(adjustment time.Duration) error { b.mu.Lock() defer b.mu.Unlock() blocks, _ := core.GenerateChain(b.config, b.blockchain.CurrentBlock(), b.database, 1, func(number int, block *core.BlockGen) { for _, tx := range b.pendingBlock.Transactions() { block.AddTx(tx) } block.OffsetTime(int64(adjustment.Seconds())) }) b.pendingBlock = blocks[0] b.pendingState, _ = state.New(b.pendingBlock.Root(), state.NewDatabase(b.database)) return nil } // callmsg implements core.Message to allow passing it as a transaction simulator. type callmsg struct { ethereum.CallMsg } func (m callmsg) From() common.Address { return m.CallMsg.From } func (m callmsg) Nonce() uint64 { return 0 } func (m callmsg) CheckNonce() bool { return false } func (m callmsg) To() *common.Address { return m.CallMsg.To } func (m callmsg) GasPrice() *big.Int { return m.CallMsg.GasPrice } func (m callmsg) Gas() *big.Int { return m.CallMsg.Gas } func (m callmsg) Value() *big.Int { return m.CallMsg.Value } func (m callmsg) Data() []byte { return m.CallMsg.Data }