// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" "fmt" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb/memorydb" ) // makeTestTrie create a sample test trie to test node-wise reconstruction. func makeTestTrie() (*Database, *SecureTrie, map[string][]byte) { // Create an empty trie triedb := NewDatabase(memorydb.New()) trie, _ := NewSecure(common.Hash{}, common.Hash{}, triedb) // Fill it with some arbitrary data content := make(map[string][]byte) for i := byte(0); i < 255; i++ { // Map the same data under multiple keys key, val := common.LeftPadBytes([]byte{1, i}, 32), []byte{i} content[string(key)] = val trie.Update(key, val) key, val = common.LeftPadBytes([]byte{2, i}, 32), []byte{i} content[string(key)] = val trie.Update(key, val) // Add some other data to inflate the trie for j := byte(3); j < 13; j++ { key, val = common.LeftPadBytes([]byte{j, i}, 32), []byte{j, i} content[string(key)] = val trie.Update(key, val) } } root, nodes, err := trie.Commit(false) if err != nil { panic(fmt.Errorf("failed to commit trie %v", err)) } if err := triedb.Update(NewWithNodeSet(nodes)); err != nil { panic(fmt.Errorf("failed to commit db %v", err)) } // Re-create the trie based on the new state trie, _ = NewSecure(common.Hash{}, root, triedb) return triedb, trie, content } // checkTrieContents cross references a reconstructed trie with an expected data // content map. func checkTrieContents(t *testing.T, db *Database, root []byte, content map[string][]byte) { // Check root availability and trie contents trie, err := NewSecure(common.Hash{}, common.BytesToHash(root), db) if err != nil { t.Fatalf("failed to create trie at %x: %v", root, err) } if err := checkTrieConsistency(db, common.BytesToHash(root)); err != nil { t.Fatalf("inconsistent trie at %x: %v", root, err) } for key, val := range content { if have := trie.Get([]byte(key)); !bytes.Equal(have, val) { t.Errorf("entry %x: content mismatch: have %x, want %x", key, have, val) } } } // checkTrieConsistency checks that all nodes in a trie are indeed present. func checkTrieConsistency(db *Database, root common.Hash) error { // Create and iterate a trie rooted in a subnode trie, err := NewSecure(common.Hash{}, root, db) if err != nil { return nil // Consider a non existent state consistent } it := trie.NodeIterator(nil) for it.Next(true) { } return it.Error() } // trieElement represents the element in the state trie(bytecode or trie node). type trieElement struct { path string hash common.Hash syncPath SyncPath } // Tests that an empty trie is not scheduled for syncing. func TestEmptySync(t *testing.T) { dbA := NewDatabase(memorydb.New()) dbB := NewDatabase(memorydb.New()) emptyA := NewEmpty(dbA) emptyB, _ := New(common.Hash{}, emptyRoot, dbB) for i, trie := range []*Trie{emptyA, emptyB} { sync := NewSync(trie.Hash(), memorydb.New(), nil) if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 { t.Errorf("test %d: content requested for empty trie: %v, %v, %v", i, paths, nodes, codes) } } } // Tests that given a root hash, a trie can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go. func TestIterativeSyncIndividual(t *testing.T) { testIterativeSync(t, 1, false) } func TestIterativeSyncBatched(t *testing.T) { testIterativeSync(t, 100, false) } func TestIterativeSyncIndividualByPath(t *testing.T) { testIterativeSync(t, 1, true) } func TestIterativeSyncBatchedByPath(t *testing.T) { testIterativeSync(t, 100, true) } func testIterativeSync(t *testing.T, count int, bypath bool) { // Create a random trie to copy srcDb, srcTrie, srcData := makeTestTrie() // Create a destination trie and sync with the scheduler diskdb := memorydb.New() triedb := NewDatabase(diskdb) sched := NewSync(srcTrie.Hash(), diskdb, nil) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(count) var elements []trieElement for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } for len(elements) > 0 { results := make([]NodeSyncResult, len(elements)) if !bypath { for i, element := range elements { data, err := srcDb.Node(element.hash) if err != nil { t.Fatalf("failed to retrieve node data for hash %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } } else { for i, element := range elements { data, _, err := srcTrie.TryGetNode(element.syncPath[len(element.syncPath)-1]) if err != nil { t.Fatalf("failed to retrieve node data for path %x: %v", element.path, err) } results[i] = NodeSyncResult{element.path, data} } } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(count) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } // Cross check that the two tries are in sync checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned, and the others sent only later. func TestIterativeDelayedSync(t *testing.T) { // Create a random trie to copy srcDb, srcTrie, srcData := makeTestTrie() // Create a destination trie and sync with the scheduler diskdb := memorydb.New() triedb := NewDatabase(diskdb) sched := NewSync(srcTrie.Hash(), diskdb, nil) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(10000) var elements []trieElement for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } for len(elements) > 0 { // Sync only half of the scheduled nodes results := make([]NodeSyncResult, len(elements)/2+1) for i, element := range elements[:len(results)] { data, err := srcDb.Node(element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(10000) elements = elements[len(results):] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } // Cross check that the two tries are in sync checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData) } // Tests that given a root hash, a trie can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go, however in a // random order. func TestIterativeRandomSyncIndividual(t *testing.T) { testIterativeRandomSync(t, 1) } func TestIterativeRandomSyncBatched(t *testing.T) { testIterativeRandomSync(t, 100) } func testIterativeRandomSync(t *testing.T, count int) { // Create a random trie to copy srcDb, srcTrie, srcData := makeTestTrie() // Create a destination trie and sync with the scheduler diskdb := memorydb.New() triedb := NewDatabase(diskdb) sched := NewSync(srcTrie.Hash(), diskdb, nil) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(count) queue := make(map[string]trieElement) for i, path := range paths { queue[path] = trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), } } for len(queue) > 0 { // Fetch all the queued nodes in a random order results := make([]NodeSyncResult, 0, len(queue)) for path, element := range queue { data, err := srcDb.Node(element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results = append(results, NodeSyncResult{path, data}) } // Feed the retrieved results back and queue new tasks for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(count) queue = make(map[string]trieElement) for i, path := range paths { queue[path] = trieElement{ path: path, hash: nodes[i], syncPath: NewSyncPath([]byte(path)), } } } // Cross check that the two tries are in sync checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned (Even those randomly), others sent only later. func TestIterativeRandomDelayedSync(t *testing.T) { // Create a random trie to copy srcDb, srcTrie, srcData := makeTestTrie() // Create a destination trie and sync with the scheduler diskdb := memorydb.New() triedb := NewDatabase(diskdb) sched := NewSync(srcTrie.Hash(), diskdb, nil) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(10000) queue := make(map[string]trieElement) for i, path := range paths { queue[path] = trieElement{ path: path, hash: nodes[i], syncPath: NewSyncPath([]byte(path)), } } for len(queue) > 0 { // Sync only half of the scheduled nodes, even those in random order results := make([]NodeSyncResult, 0, len(queue)/2+1) for path, element := range queue { data, err := srcDb.Node(element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results = append(results, NodeSyncResult{path, data}) if len(results) >= cap(results) { break } } // Feed the retrieved results back and queue new tasks for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() for _, result := range results { delete(queue, result.Path) } paths, nodes, _ = sched.Missing(10000) for i, path := range paths { queue[path] = trieElement{ path: path, hash: nodes[i], syncPath: NewSyncPath([]byte(path)), } } } // Cross check that the two tries are in sync checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData) } // Tests that a trie sync will not request nodes multiple times, even if they // have such references. func TestDuplicateAvoidanceSync(t *testing.T) { // Create a random trie to copy srcDb, srcTrie, srcData := makeTestTrie() // Create a destination trie and sync with the scheduler diskdb := memorydb.New() triedb := NewDatabase(diskdb) sched := NewSync(srcTrie.Hash(), diskdb, nil) // The code requests are ignored here since there is no code // at the testing trie. paths, nodes, _ := sched.Missing(0) var elements []trieElement for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } requested := make(map[common.Hash]struct{}) for len(elements) > 0 { results := make([]NodeSyncResult, len(elements)) for i, element := range elements { data, err := srcDb.Node(element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } if _, ok := requested[element.hash]; ok { t.Errorf("hash %x already requested once", element.hash) } requested[element.hash] = struct{}{} results[i] = NodeSyncResult{element.path, data} } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(0) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } // Cross check that the two tries are in sync checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData) } // Tests that at any point in time during a sync, only complete sub-tries are in // the database. func TestIncompleteSync(t *testing.T) { // Create a random trie to copy srcDb, srcTrie, _ := makeTestTrie() // Create a destination trie and sync with the scheduler diskdb := memorydb.New() triedb := NewDatabase(diskdb) sched := NewSync(srcTrie.Hash(), diskdb, nil) // The code requests are ignored here since there is no code // at the testing trie. var ( added []common.Hash elements []trieElement root = srcTrie.Hash() ) paths, nodes, _ := sched.Missing(1) for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } for len(elements) > 0 { // Fetch a batch of trie nodes results := make([]NodeSyncResult, len(elements)) for i, element := range elements { data, err := srcDb.Node(element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } // Process each of the trie nodes for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() for _, result := range results { hash := crypto.Keccak256Hash(result.Data) if hash != root { added = append(added, hash) } // Check that all known sub-tries in the synced trie are complete if err := checkTrieConsistency(triedb, hash); err != nil { t.Fatalf("trie inconsistent: %v", err) } } // Fetch the next batch to retrieve paths, nodes, _ = sched.Missing(1) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) } } // Sanity check that removing any node from the database is detected for _, hash := range added { value, _ := diskdb.Get(hash.Bytes()) diskdb.Delete(hash.Bytes()) if err := checkTrieConsistency(triedb, root); err == nil { t.Fatalf("trie inconsistency not caught, missing: %x", hash) } diskdb.Put(hash.Bytes(), value) } } // Tests that trie nodes get scheduled lexicographically when having the same // depth. func TestSyncOrdering(t *testing.T) { // Create a random trie to copy srcDb, srcTrie, srcData := makeTestTrie() // Create a destination trie and sync with the scheduler, tracking the requests diskdb := memorydb.New() triedb := NewDatabase(diskdb) sched := NewSync(srcTrie.Hash(), diskdb, nil) // The code requests are ignored here since there is no code // at the testing trie. var ( reqs []SyncPath elements []trieElement ) paths, nodes, _ := sched.Missing(1) for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) reqs = append(reqs, NewSyncPath([]byte(paths[i]))) } for len(elements) > 0 { results := make([]NodeSyncResult, len(elements)) for i, element := range elements { data, err := srcDb.Node(element.hash) if err != nil { t.Fatalf("failed to retrieve node data for %x: %v", element.hash, err) } results[i] = NodeSyncResult{element.path, data} } for _, result := range results { if err := sched.ProcessNode(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := diskdb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() paths, nodes, _ = sched.Missing(1) elements = elements[:0] for i := 0; i < len(paths); i++ { elements = append(elements, trieElement{ path: paths[i], hash: nodes[i], syncPath: NewSyncPath([]byte(paths[i])), }) reqs = append(reqs, NewSyncPath([]byte(paths[i]))) } } // Cross check that the two tries are in sync checkTrieContents(t, triedb, srcTrie.Hash().Bytes(), srcData) // Check that the trie nodes have been requested path-ordered for i := 0; i < len(reqs)-1; i++ { if len(reqs[i]) > 1 || len(reqs[i+1]) > 1 { // In the case of the trie tests, there's no storage so the tuples // must always be single items. 2-tuples should be tested in state. t.Errorf("Invalid request tuples: len(%v) or len(%v) > 1", reqs[i], reqs[i+1]) } if bytes.Compare(compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0])) > 0 { t.Errorf("Invalid request order: %v before %v", compactToHex(reqs[i][0]), compactToHex(reqs[i+1][0])) } } }