// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package downloader import ( "fmt" "math/big" "math/rand" "sync" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/trie" ) var ( testdb = rawdb.NewMemoryDatabase() genesis = core.GenesisBlockForTesting(testdb, testAddress, big.NewInt(1000000000000000)) ) // makeChain creates a chain of n blocks starting at and including parent. // the returned hash chain is ordered head->parent. In addition, every 3rd block // contains a transaction and every 5th an uncle to allow testing correct block // reassembly. func makeChain(n int, seed byte, parent *types.Block, empty bool) ([]*types.Block, []types.Receipts) { blocks, receipts := core.GenerateChain(params.TestChainConfig, parent, ethash.NewFaker(), testdb, n, func(i int, block *core.BlockGen) { block.SetCoinbase(common.Address{seed}) // Add one tx to every secondblock if !empty && i%2 == 0 { signer := types.MakeSigner(params.TestChainConfig, block.Number()) tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, block.BaseFee(), nil), signer, testKey) if err != nil { panic(err) } block.AddTx(tx) } }) return blocks, receipts } type chainData struct { blocks []*types.Block offset int } var chain *chainData var emptyChain *chainData func init() { // Create a chain of blocks to import targetBlocks := 128 blocks, _ := makeChain(targetBlocks, 0, genesis, false) chain = &chainData{blocks, 0} blocks, _ = makeChain(targetBlocks, 0, genesis, true) emptyChain = &chainData{blocks, 0} } func (chain *chainData) headers() []*types.Header { hdrs := make([]*types.Header, len(chain.blocks)) for i, b := range chain.blocks { hdrs[i] = b.Header() } return hdrs } func (chain *chainData) Len() int { return len(chain.blocks) } func dummyPeer(id string) *peerConnection { p := &peerConnection{ id: id, lacking: make(map[common.Hash]struct{}), } return p } func TestBasics(t *testing.T) { numOfBlocks := len(emptyChain.blocks) numOfReceipts := len(emptyChain.blocks) / 2 q := newQueue(10, 10) if !q.Idle() { t.Errorf("new queue should be idle") } q.Prepare(1, SnapSync) if res := q.Results(false); len(res) != 0 { t.Fatal("new queue should have 0 results") } // Schedule a batch of headers headers := chain.headers() hashes := make([]common.Hash, len(headers)) for i, header := range headers { hashes[i] = header.Hash() } q.Schedule(headers, hashes, 1) if q.Idle() { t.Errorf("queue should not be idle") } if got, exp := q.PendingBodies(), chain.Len(); got != exp { t.Errorf("wrong pending block count, got %d, exp %d", got, exp) } // Only non-empty receipts get added to task-queue if got, exp := q.PendingReceipts(), 64; got != exp { t.Errorf("wrong pending receipt count, got %d, exp %d", got, exp) } // Items are now queued for downloading, next step is that we tell the // queue that a certain peer will deliver them for us { peer := dummyPeer("peer-1") fetchReq, _, throttle := q.ReserveBodies(peer, 50) if !throttle { // queue size is only 10, so throttling should occur t.Fatal("should throttle") } // But we should still get the first things to fetch if got, exp := len(fetchReq.Headers), 5; got != exp { t.Fatalf("expected %d requests, got %d", exp, got) } if got, exp := fetchReq.Headers[0].Number.Uint64(), uint64(1); got != exp { t.Fatalf("expected header %d, got %d", exp, got) } } if exp, got := q.blockTaskQueue.Size(), numOfBlocks-10; exp != got { t.Errorf("expected block task queue to be %d, got %d", exp, got) } if exp, got := q.receiptTaskQueue.Size(), numOfReceipts; exp != got { t.Errorf("expected receipt task queue to be %d, got %d", exp, got) } { peer := dummyPeer("peer-2") fetchReq, _, throttle := q.ReserveBodies(peer, 50) // The second peer should hit throttling if !throttle { t.Fatalf("should throttle") } // And not get any fetches at all, since it was throttled to begin with if fetchReq != nil { t.Fatalf("should have no fetches, got %d", len(fetchReq.Headers)) } } if exp, got := q.blockTaskQueue.Size(), numOfBlocks-10; exp != got { t.Errorf("expected block task queue to be %d, got %d", exp, got) } if exp, got := q.receiptTaskQueue.Size(), numOfReceipts; exp != got { t.Errorf("expected receipt task queue to be %d, got %d", exp, got) } { // The receipt delivering peer should not be affected // by the throttling of body deliveries peer := dummyPeer("peer-3") fetchReq, _, throttle := q.ReserveReceipts(peer, 50) if !throttle { // queue size is only 10, so throttling should occur t.Fatal("should throttle") } // But we should still get the first things to fetch if got, exp := len(fetchReq.Headers), 5; got != exp { t.Fatalf("expected %d requests, got %d", exp, got) } if got, exp := fetchReq.Headers[0].Number.Uint64(), uint64(1); got != exp { t.Fatalf("expected header %d, got %d", exp, got) } } if exp, got := q.blockTaskQueue.Size(), numOfBlocks-10; exp != got { t.Errorf("expected block task queue to be %d, got %d", exp, got) } if exp, got := q.receiptTaskQueue.Size(), numOfReceipts-5; exp != got { t.Errorf("expected receipt task queue to be %d, got %d", exp, got) } if got, exp := q.resultCache.countCompleted(), 0; got != exp { t.Errorf("wrong processable count, got %d, exp %d", got, exp) } } func TestEmptyBlocks(t *testing.T) { numOfBlocks := len(emptyChain.blocks) q := newQueue(10, 10) q.Prepare(1, SnapSync) // Schedule a batch of headers headers := emptyChain.headers() hashes := make([]common.Hash, len(headers)) for i, header := range headers { hashes[i] = header.Hash() } q.Schedule(headers, hashes, 1) if q.Idle() { t.Errorf("queue should not be idle") } if got, exp := q.PendingBodies(), len(emptyChain.blocks); got != exp { t.Errorf("wrong pending block count, got %d, exp %d", got, exp) } if got, exp := q.PendingReceipts(), 0; got != exp { t.Errorf("wrong pending receipt count, got %d, exp %d", got, exp) } // They won't be processable, because the fetchresults haven't been // created yet if got, exp := q.resultCache.countCompleted(), 0; got != exp { t.Errorf("wrong processable count, got %d, exp %d", got, exp) } // Items are now queued for downloading, next step is that we tell the // queue that a certain peer will deliver them for us // That should trigger all of them to suddenly become 'done' { // Reserve blocks peer := dummyPeer("peer-1") fetchReq, _, _ := q.ReserveBodies(peer, 50) // there should be nothing to fetch, blocks are empty if fetchReq != nil { t.Fatal("there should be no body fetch tasks remaining") } } if q.blockTaskQueue.Size() != numOfBlocks-10 { t.Errorf("expected block task queue to be %d, got %d", numOfBlocks-10, q.blockTaskQueue.Size()) } if q.receiptTaskQueue.Size() != 0 { t.Errorf("expected receipt task queue to be %d, got %d", 0, q.receiptTaskQueue.Size()) } { peer := dummyPeer("peer-3") fetchReq, _, _ := q.ReserveReceipts(peer, 50) // there should be nothing to fetch, blocks are empty if fetchReq != nil { t.Fatal("there should be no receipt fetch tasks remaining") } } if q.blockTaskQueue.Size() != numOfBlocks-10 { t.Errorf("expected block task queue to be %d, got %d", numOfBlocks-10, q.blockTaskQueue.Size()) } if q.receiptTaskQueue.Size() != 0 { t.Errorf("expected receipt task queue to be %d, got %d", 0, q.receiptTaskQueue.Size()) } if got, exp := q.resultCache.countCompleted(), 10; got != exp { t.Errorf("wrong processable count, got %d, exp %d", got, exp) } } // XTestDelivery does some more extensive testing of events that happen, // blocks that become known and peers that make reservations and deliveries. // disabled since it's not really a unit-test, but can be executed to test // some more advanced scenarios func XTestDelivery(t *testing.T) { // the outside network, holding blocks blo, rec := makeChain(128, 0, genesis, false) world := newNetwork() world.receipts = rec world.chain = blo world.progress(10) if false { log.Root().SetHandler(log.StdoutHandler) } q := newQueue(10, 10) var wg sync.WaitGroup q.Prepare(1, SnapSync) wg.Add(1) go func() { // deliver headers defer wg.Done() c := 1 for { //fmt.Printf("getting headers from %d\n", c) headers := world.headers(c) hashes := make([]common.Hash, len(headers)) for i, header := range headers { hashes[i] = header.Hash() } l := len(headers) //fmt.Printf("scheduling %d headers, first %d last %d\n", // l, headers[0].Number.Uint64(), headers[len(headers)-1].Number.Uint64()) q.Schedule(headers, hashes, uint64(c)) c += l } }() wg.Add(1) go func() { // collect results defer wg.Done() tot := 0 for { res := q.Results(true) tot += len(res) fmt.Printf("got %d results, %d tot\n", len(res), tot) // Now we can forget about these world.forget(res[len(res)-1].Header.Number.Uint64()) } }() wg.Add(1) go func() { defer wg.Done() // reserve body fetch i := 4 for { peer := dummyPeer(fmt.Sprintf("peer-%d", i)) f, _, _ := q.ReserveBodies(peer, rand.Intn(30)) if f != nil { var ( emptyList []*types.Header txset [][]*types.Transaction uncleset [][]*types.Header ) numToSkip := rand.Intn(len(f.Headers)) for _, hdr := range f.Headers[0 : len(f.Headers)-numToSkip] { txset = append(txset, world.getTransactions(hdr.Number.Uint64())) uncleset = append(uncleset, emptyList) } var ( txsHashes = make([]common.Hash, len(txset)) uncleHashes = make([]common.Hash, len(uncleset)) ) hasher := trie.NewStackTrie(nil) for i, txs := range txset { txsHashes[i] = types.DeriveSha(types.Transactions(txs), hasher) } for i, uncles := range uncleset { uncleHashes[i] = types.CalcUncleHash(uncles) } time.Sleep(100 * time.Millisecond) _, err := q.DeliverBodies(peer.id, txset, txsHashes, uncleset, uncleHashes) if err != nil { fmt.Printf("delivered %d bodies %v\n", len(txset), err) } } else { i++ time.Sleep(200 * time.Millisecond) } } }() go func() { defer wg.Done() // reserve receiptfetch peer := dummyPeer("peer-3") for { f, _, _ := q.ReserveReceipts(peer, rand.Intn(50)) if f != nil { var rcs [][]*types.Receipt for _, hdr := range f.Headers { rcs = append(rcs, world.getReceipts(hdr.Number.Uint64())) } hasher := trie.NewStackTrie(nil) hashes := make([]common.Hash, len(rcs)) for i, receipt := range rcs { hashes[i] = types.DeriveSha(types.Receipts(receipt), hasher) } _, err := q.DeliverReceipts(peer.id, rcs, hashes) if err != nil { fmt.Printf("delivered %d receipts %v\n", len(rcs), err) } time.Sleep(100 * time.Millisecond) } else { time.Sleep(200 * time.Millisecond) } } }() wg.Add(1) go func() { defer wg.Done() for i := 0; i < 50; i++ { time.Sleep(300 * time.Millisecond) //world.tick() //fmt.Printf("trying to progress\n") world.progress(rand.Intn(100)) } for i := 0; i < 50; i++ { time.Sleep(2990 * time.Millisecond) } }() wg.Add(1) go func() { defer wg.Done() for { time.Sleep(990 * time.Millisecond) fmt.Printf("world block tip is %d\n", world.chain[len(world.chain)-1].Header().Number.Uint64()) fmt.Println(q.Stats()) } }() wg.Wait() } func newNetwork() *network { var l sync.RWMutex return &network{ cond: sync.NewCond(&l), offset: 1, // block 1 is at blocks[0] } } // represents the network type network struct { offset int chain []*types.Block receipts []types.Receipts lock sync.RWMutex cond *sync.Cond } func (n *network) getTransactions(blocknum uint64) types.Transactions { index := blocknum - uint64(n.offset) return n.chain[index].Transactions() } func (n *network) getReceipts(blocknum uint64) types.Receipts { index := blocknum - uint64(n.offset) if got := n.chain[index].Header().Number.Uint64(); got != blocknum { fmt.Printf("Err, got %d exp %d\n", got, blocknum) panic("sd") } return n.receipts[index] } func (n *network) forget(blocknum uint64) { index := blocknum - uint64(n.offset) n.chain = n.chain[index:] n.receipts = n.receipts[index:] n.offset = int(blocknum) } func (n *network) progress(numBlocks int) { n.lock.Lock() defer n.lock.Unlock() //fmt.Printf("progressing...\n") newBlocks, newR := makeChain(numBlocks, 0, n.chain[len(n.chain)-1], false) n.chain = append(n.chain, newBlocks...) n.receipts = append(n.receipts, newR...) n.cond.Broadcast() } func (n *network) headers(from int) []*types.Header { numHeaders := 128 var hdrs []*types.Header index := from - n.offset for index >= len(n.chain) { // wait for progress n.cond.L.Lock() //fmt.Printf("header going into wait\n") n.cond.Wait() index = from - n.offset n.cond.L.Unlock() } n.lock.RLock() defer n.lock.RUnlock() for i, b := range n.chain[index:] { hdrs = append(hdrs, b.Header()) if i >= numHeaders { break } } return hdrs }