// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package client import ( "io" "math" "time" "github.com/ethereum/go-ethereum/les/utils" "github.com/ethereum/go-ethereum/rlp" ) const ( minResponseTime = time.Millisecond * 50 maxResponseTime = time.Second * 10 timeStatLength = 32 weightScaleFactor = 1000000 ) // ResponseTimeStats is the response time distribution of a set of answered requests, // weighted with request value, either served by a single server or aggregated for // multiple servers. // It it a fixed length (timeStatLength) distribution vector with linear interpolation. // The X axis (the time values) are not linear, they should be transformed with // TimeToStatScale and StatScaleToTime. type ( ResponseTimeStats struct { stats [timeStatLength]uint64 exp uint64 } ResponseTimeWeights [timeStatLength]float64 ) var timeStatsLogFactor = (timeStatLength - 1) / (math.Log(float64(maxResponseTime)/float64(minResponseTime)) + 1) // TimeToStatScale converts a response time to a distribution vector index. The index // is represented by a float64 so that linear interpolation can be applied. func TimeToStatScale(d time.Duration) float64 { if d < 0 { return 0 } r := float64(d) / float64(minResponseTime) if r > 1 { r = math.Log(r) + 1 } r *= timeStatsLogFactor if r > timeStatLength-1 { return timeStatLength - 1 } return r } // StatScaleToTime converts a distribution vector index to a response time. The index // is represented by a float64 so that linear interpolation can be applied. func StatScaleToTime(r float64) time.Duration { r /= timeStatsLogFactor if r > 1 { r = math.Exp(r - 1) } return time.Duration(r * float64(minResponseTime)) } // TimeoutWeights calculates the weight function used for calculating service value // based on the response time distribution of the received service. // It is based on the request timeout value of the system. It consists of a half cosine // function starting with 1, crossing zero at timeout and reaching -1 at 2*timeout. // After 2*timeout the weight is constant -1. func TimeoutWeights(timeout time.Duration) (res ResponseTimeWeights) { for i := range res { t := StatScaleToTime(float64(i)) if t < 2*timeout { res[i] = math.Cos(math.Pi / 2 * float64(t) / float64(timeout)) } else { res[i] = -1 } } return } // EncodeRLP implements rlp.Encoder func (rt *ResponseTimeStats) EncodeRLP(w io.Writer) error { enc := struct { Stats [timeStatLength]uint64 Exp uint64 }{rt.stats, rt.exp} return rlp.Encode(w, &enc) } // DecodeRLP implements rlp.Decoder func (rt *ResponseTimeStats) DecodeRLP(s *rlp.Stream) error { var enc struct { Stats [timeStatLength]uint64 Exp uint64 } if err := s.Decode(&enc); err != nil { return err } rt.stats, rt.exp = enc.Stats, enc.Exp return nil } // Add adds a new response time with the given weight to the distribution. func (rt *ResponseTimeStats) Add(respTime time.Duration, weight float64, expFactor utils.ExpirationFactor) { rt.setExp(expFactor.Exp) weight *= expFactor.Factor * weightScaleFactor r := TimeToStatScale(respTime) i := int(r) r -= float64(i) rt.stats[i] += uint64(weight * (1 - r)) if i < timeStatLength-1 { rt.stats[i+1] += uint64(weight * r) } } // setExp sets the power of 2 exponent of the structure, scaling base values (the vector // itself) up or down if necessary. func (rt *ResponseTimeStats) setExp(exp uint64) { if exp > rt.exp { shift := exp - rt.exp for i, v := range rt.stats { rt.stats[i] = v >> shift } rt.exp = exp } if exp < rt.exp { shift := rt.exp - exp for i, v := range rt.stats { rt.stats[i] = v << shift } rt.exp = exp } } // Value calculates the total service value based on the given distribution, using the // specified weight function. func (rt ResponseTimeStats) Value(weights ResponseTimeWeights, expFactor utils.ExpirationFactor) float64 { var v float64 for i, s := range rt.stats { v += float64(s) * weights[i] } if v < 0 { return 0 } return expFactor.Value(v, rt.exp) / weightScaleFactor } // AddStats adds the given ResponseTimeStats to the current one. func (rt *ResponseTimeStats) AddStats(s *ResponseTimeStats) { rt.setExp(s.exp) for i, v := range s.stats { rt.stats[i] += v } } // SubStats subtracts the given ResponseTimeStats from the current one. func (rt *ResponseTimeStats) SubStats(s *ResponseTimeStats) { rt.setExp(s.exp) for i, v := range s.stats { if v < rt.stats[i] { rt.stats[i] -= v } else { rt.stats[i] = 0 } } } // Timeout suggests a timeout value based on the previous distribution. The parameter // is the desired rate of timeouts assuming a similar distribution in the future. // Note that the actual timeout should have a sensible minimum bound so that operating // under ideal working conditions for a long time (for example, using a local server // with very low response times) will not make it very hard for the system to accommodate // longer response times in the future. func (rt ResponseTimeStats) Timeout(failRatio float64) time.Duration { var sum uint64 for _, v := range rt.stats { sum += v } s := uint64(float64(sum) * failRatio) i := timeStatLength - 1 for i > 0 && s >= rt.stats[i] { s -= rt.stats[i] i-- } r := float64(i) + 0.5 if rt.stats[i] > 0 { r -= float64(s) / float64(rt.stats[i]) } if r < 0 { r = 0 } th := StatScaleToTime(r) if th > maxResponseTime { th = maxResponseTime } return th } // RtDistribution represents a distribution as a series of (X, Y) chart coordinates, // where the X axis is the response time in seconds while the Y axis is the amount of // service value received with a response time close to the X coordinate. type RtDistribution [timeStatLength][2]float64 // Distribution returns a RtDistribution, optionally normalized to a sum of 1. func (rt ResponseTimeStats) Distribution(normalized bool, expFactor utils.ExpirationFactor) (res RtDistribution) { var mul float64 if normalized { var sum uint64 for _, v := range rt.stats { sum += v } if sum > 0 { mul = 1 / float64(sum) } } else { mul = expFactor.Value(float64(1)/weightScaleFactor, rt.exp) } for i, v := range rt.stats { res[i][0] = float64(StatScaleToTime(float64(i))) / float64(time.Second) res[i][1] = float64(v) * mul } return }