package metrics import ( "math" "runtime/metrics" "sort" "sync/atomic" ) func getOrRegisterRuntimeHistogram(name string, scale float64, r Registry) *runtimeHistogram { if r == nil { r = DefaultRegistry } constructor := func() Histogram { return newRuntimeHistogram(scale) } return r.GetOrRegister(name, constructor).(*runtimeHistogram) } // runtimeHistogram wraps a runtime/metrics histogram. type runtimeHistogram struct { v atomic.Value // v is a pointer to a metrics.Float64Histogram scaleFactor float64 } func newRuntimeHistogram(scale float64) *runtimeHistogram { h := &runtimeHistogram{scaleFactor: scale} h.update(new(metrics.Float64Histogram)) return h } func RuntimeHistogramFromData(scale float64, hist *metrics.Float64Histogram) *runtimeHistogram { h := &runtimeHistogram{scaleFactor: scale} h.update(hist) return h } func (h *runtimeHistogram) update(mh *metrics.Float64Histogram) { if mh == nil { // The update value can be nil if the current Go version doesn't support a // requested metric. It's just easier to handle nil here than putting // conditionals everywhere. return } s := metrics.Float64Histogram{ Counts: make([]uint64, len(mh.Counts)), Buckets: make([]float64, len(mh.Buckets)), } copy(s.Counts, mh.Counts) for i, b := range mh.Buckets { s.Buckets[i] = b * h.scaleFactor } h.v.Store(&s) } func (h *runtimeHistogram) Clear() { panic("runtimeHistogram does not support Clear") } func (h *runtimeHistogram) Update(int64) { panic("runtimeHistogram does not support Update") } // Snapshot returns a non-changing copy of the histogram. func (h *runtimeHistogram) Snapshot() HistogramSnapshot { hist := h.v.Load().(*metrics.Float64Histogram) return newRuntimeHistogramSnapshot(hist) } type runtimeHistogramSnapshot struct { internal *metrics.Float64Histogram calculated bool // The following fields are (lazily) calculated based on 'internal' mean float64 count int64 min int64 // min is the lowest sample value. max int64 // max is the highest sample value. variance float64 } func newRuntimeHistogramSnapshot(h *metrics.Float64Histogram) *runtimeHistogramSnapshot { return &runtimeHistogramSnapshot{ internal: h, } } // calc calculates the values for the snapshot. This method is not threadsafe. func (h *runtimeHistogramSnapshot) calc() { h.calculated = true var ( count int64 // number of samples sum float64 // approx sum of all sample values min int64 max float64 ) if len(h.internal.Counts) == 0 { return } for i, c := range h.internal.Counts { if c == 0 { continue } if count == 0 { // Set min only first loop iteration min = int64(math.Floor(h.internal.Buckets[i])) } count += int64(c) sum += h.midpoint(i) * float64(c) // Set max on every iteration edge := h.internal.Buckets[i+1] if math.IsInf(edge, 1) { edge = h.internal.Buckets[i] } if edge > max { max = edge } } h.min = min h.max = int64(max) h.mean = sum / float64(count) h.count = count } // Count returns the sample count. func (h *runtimeHistogramSnapshot) Count() int64 { if !h.calculated { h.calc() } return h.count } // Size returns the size of the sample at the time the snapshot was taken. func (h *runtimeHistogramSnapshot) Size() int { return len(h.internal.Counts) } // Mean returns an approximation of the mean. func (h *runtimeHistogramSnapshot) Mean() float64 { if !h.calculated { h.calc() } return h.mean } func (h *runtimeHistogramSnapshot) midpoint(bucket int) float64 { high := h.internal.Buckets[bucket+1] low := h.internal.Buckets[bucket] if math.IsInf(high, 1) { // The edge of the highest bucket can be +Inf, and it's supposed to mean that this // bucket contains all remaining samples > low. We can't get the middle of an // infinite range, so just return the lower bound of this bucket instead. return low } if math.IsInf(low, -1) { // Similarly, we can get -Inf in the left edge of the lowest bucket, // and it means the bucket contains all remaining values < high. return high } return (low + high) / 2 } // StdDev approximates the standard deviation of the histogram. func (h *runtimeHistogramSnapshot) StdDev() float64 { return math.Sqrt(h.Variance()) } // Variance approximates the variance of the histogram. func (h *runtimeHistogramSnapshot) Variance() float64 { if len(h.internal.Counts) == 0 { return 0 } if !h.calculated { h.calc() } if h.count <= 1 { // There is no variance when there are zero or one items. return 0 } // Variance is not calculated in 'calc', because it requires a second iteration. // Therefore we calculate it lazily in this method, triggered either by // a direct call to Variance or via StdDev. if h.variance != 0.0 { return h.variance } var sum float64 for i, c := range h.internal.Counts { midpoint := h.midpoint(i) d := midpoint - h.mean sum += float64(c) * (d * d) } h.variance = sum / float64(h.count-1) return h.variance } // Percentile computes the p'th percentile value. func (h *runtimeHistogramSnapshot) Percentile(p float64) float64 { threshold := float64(h.Count()) * p values := [1]float64{threshold} h.computePercentiles(values[:]) return values[0] } // Percentiles computes all requested percentile values. func (h *runtimeHistogramSnapshot) Percentiles(ps []float64) []float64 { // Compute threshold values. We need these to be sorted // for the percentile computation, but restore the original // order later, so keep the indexes as well. count := float64(h.Count()) thresholds := make([]float64, len(ps)) indexes := make([]int, len(ps)) for i, percentile := range ps { thresholds[i] = count * math.Max(0, math.Min(1.0, percentile)) indexes[i] = i } sort.Sort(floatsAscendingKeepingIndex{thresholds, indexes}) // Now compute. The result is stored back into the thresholds slice. h.computePercentiles(thresholds) // Put the result back into the requested order. sort.Sort(floatsByIndex{thresholds, indexes}) return thresholds } func (h *runtimeHistogramSnapshot) computePercentiles(thresh []float64) { var totalCount float64 for i, count := range h.internal.Counts { totalCount += float64(count) for len(thresh) > 0 && thresh[0] < totalCount { thresh[0] = h.internal.Buckets[i] thresh = thresh[1:] } if len(thresh) == 0 { return } } } // Note: runtime/metrics.Float64Histogram is a collection of float64s, but the methods // below need to return int64 to satisfy the interface. The histogram provided by runtime // also doesn't keep track of individual samples, so results are approximated. // Max returns the highest sample value. func (h *runtimeHistogramSnapshot) Max() int64 { if !h.calculated { h.calc() } return h.max } // Min returns the lowest sample value. func (h *runtimeHistogramSnapshot) Min() int64 { if !h.calculated { h.calc() } return h.min } // Sum returns the sum of all sample values. func (h *runtimeHistogramSnapshot) Sum() int64 { var sum float64 for i := range h.internal.Counts { sum += h.internal.Buckets[i] * float64(h.internal.Counts[i]) } return int64(math.Ceil(sum)) } type floatsAscendingKeepingIndex struct { values []float64 indexes []int } func (s floatsAscendingKeepingIndex) Len() int { return len(s.values) } func (s floatsAscendingKeepingIndex) Less(i, j int) bool { return s.values[i] < s.values[j] } func (s floatsAscendingKeepingIndex) Swap(i, j int) { s.values[i], s.values[j] = s.values[j], s.values[i] s.indexes[i], s.indexes[j] = s.indexes[j], s.indexes[i] } type floatsByIndex struct { values []float64 indexes []int } func (s floatsByIndex) Len() int { return len(s.values) } func (s floatsByIndex) Less(i, j int) bool { return s.indexes[i] < s.indexes[j] } func (s floatsByIndex) Swap(i, j int) { s.values[i], s.values[j] = s.values[j], s.values[i] s.indexes[i], s.indexes[j] = s.indexes[j], s.indexes[i] }