// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package core implements the Ethereum consensus protocol. package core import ( "errors" "fmt" "io" "math/big" mrand "math/rand" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/event" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "github.com/hashicorp/golang-lru" ) var ( accountReadTimer = metrics.NewRegisteredTimer("chain/account/reads", nil) accountHashTimer = metrics.NewRegisteredTimer("chain/account/hashes", nil) accountUpdateTimer = metrics.NewRegisteredTimer("chain/account/updates", nil) accountCommitTimer = metrics.NewRegisteredTimer("chain/account/commits", nil) storageReadTimer = metrics.NewRegisteredTimer("chain/storage/reads", nil) storageHashTimer = metrics.NewRegisteredTimer("chain/storage/hashes", nil) storageUpdateTimer = metrics.NewRegisteredTimer("chain/storage/updates", nil) storageCommitTimer = metrics.NewRegisteredTimer("chain/storage/commits", nil) blockInsertTimer = metrics.NewRegisteredTimer("chain/inserts", nil) blockValidationTimer = metrics.NewRegisteredTimer("chain/validation", nil) blockExecutionTimer = metrics.NewRegisteredTimer("chain/execution", nil) blockWriteTimer = metrics.NewRegisteredTimer("chain/write", nil) blockPrefetchExecuteTimer = metrics.NewRegisteredTimer("chain/prefetch/executes", nil) blockPrefetchInterruptMeter = metrics.NewRegisteredMeter("chain/prefetch/interrupts", nil) ErrNoGenesis = errors.New("Genesis not found in chain") ) const ( bodyCacheLimit = 256 blockCacheLimit = 256 receiptsCacheLimit = 32 maxFutureBlocks = 256 maxTimeFutureBlocks = 30 badBlockLimit = 10 triesInMemory = 128 // BlockChainVersion ensures that an incompatible database forces a resync from scratch. // // Changelog: // // - Version 4 // The following incompatible database changes were added: // * the `BlockNumber`, `TxHash`, `TxIndex`, `BlockHash` and `Index` fields of log are deleted // * the `Bloom` field of receipt is deleted // * the `BlockIndex` and `TxIndex` fields of txlookup are deleted // - Version 5 // The following incompatible database changes were added: // * the `TxHash`, `GasCost`, and `ContractAddress` fields are no longer stored for a receipt // * the `TxHash`, `GasCost`, and `ContractAddress` fields are computed by looking up the // receipts' corresponding block // - Version 6 // The following incompatible database changes were added: // * Transaction lookup information stores the corresponding block number instead of block hash BlockChainVersion uint64 = 6 ) // CacheConfig contains the configuration values for the trie caching/pruning // that's resident in a blockchain. type CacheConfig struct { TrieCleanLimit int // Memory allowance (MB) to use for caching trie nodes in memory TrieCleanNoPrefetch bool // Whether to disable heuristic state prefetching for followup blocks TrieDirtyLimit int // Memory limit (MB) at which to start flushing dirty trie nodes to disk TrieDirtyDisabled bool // Whether to disable trie write caching and GC altogether (archive node) TrieTimeLimit time.Duration // Time limit after which to flush the current in-memory trie to disk } // BlockChain represents the canonical chain given a database with a genesis // block. The Blockchain manages chain imports, reverts, chain reorganisations. // // Importing blocks in to the block chain happens according to the set of rules // defined by the two stage Validator. Processing of blocks is done using the // Processor which processes the included transaction. The validation of the state // is done in the second part of the Validator. Failing results in aborting of // the import. // // The BlockChain also helps in returning blocks from **any** chain included // in the database as well as blocks that represents the canonical chain. It's // important to note that GetBlock can return any block and does not need to be // included in the canonical one where as GetBlockByNumber always represents the // canonical chain. type BlockChain struct { chainConfig *params.ChainConfig // Chain & network configuration cacheConfig *CacheConfig // Cache configuration for pruning db ethdb.Database // Low level persistent database to store final content in triegc *prque.Prque // Priority queue mapping block numbers to tries to gc gcproc time.Duration // Accumulates canonical block processing for trie dumping hc *HeaderChain rmLogsFeed event.Feed chainFeed event.Feed chainSideFeed event.Feed chainHeadFeed event.Feed logsFeed event.Feed blockProcFeed event.Feed scope event.SubscriptionScope genesisBlock *types.Block chainmu sync.RWMutex // blockchain insertion lock checkpoint int // checkpoint counts towards the new checkpoint currentBlock atomic.Value // Current head of the block chain currentFastBlock atomic.Value // Current head of the fast-sync chain (may be above the block chain!) stateCache state.Database // State database to reuse between imports (contains state cache) bodyCache *lru.Cache // Cache for the most recent block bodies bodyRLPCache *lru.Cache // Cache for the most recent block bodies in RLP encoded format receiptsCache *lru.Cache // Cache for the most recent receipts per block blockCache *lru.Cache // Cache for the most recent entire blocks futureBlocks *lru.Cache // future blocks are blocks added for later processing quit chan struct{} // blockchain quit channel running int32 // running must be called atomically // procInterrupt must be atomically called procInterrupt int32 // interrupt signaler for block processing wg sync.WaitGroup // chain processing wait group for shutting down engine consensus.Engine validator Validator // Block and state validator interface prefetcher Prefetcher // Block state prefetcher interface processor Processor // Block transaction processor interface vmConfig vm.Config badBlocks *lru.Cache // Bad block cache shouldPreserve func(*types.Block) bool // Function used to determine whether should preserve the given block. } // NewBlockChain returns a fully initialised block chain using information // available in the database. It initialises the default Ethereum Validator and // Processor. func NewBlockChain(db ethdb.Database, cacheConfig *CacheConfig, chainConfig *params.ChainConfig, engine consensus.Engine, vmConfig vm.Config, shouldPreserve func(block *types.Block) bool) (*BlockChain, error) { if cacheConfig == nil { cacheConfig = &CacheConfig{ TrieCleanLimit: 256, TrieDirtyLimit: 256, TrieTimeLimit: 5 * time.Minute, } } bodyCache, _ := lru.New(bodyCacheLimit) bodyRLPCache, _ := lru.New(bodyCacheLimit) receiptsCache, _ := lru.New(receiptsCacheLimit) blockCache, _ := lru.New(blockCacheLimit) futureBlocks, _ := lru.New(maxFutureBlocks) badBlocks, _ := lru.New(badBlockLimit) bc := &BlockChain{ chainConfig: chainConfig, cacheConfig: cacheConfig, db: db, triegc: prque.New(nil), stateCache: state.NewDatabaseWithCache(db, cacheConfig.TrieCleanLimit), quit: make(chan struct{}), shouldPreserve: shouldPreserve, bodyCache: bodyCache, bodyRLPCache: bodyRLPCache, receiptsCache: receiptsCache, blockCache: blockCache, futureBlocks: futureBlocks, engine: engine, vmConfig: vmConfig, badBlocks: badBlocks, } bc.validator = NewBlockValidator(chainConfig, bc, engine) bc.prefetcher = newStatePrefetcher(chainConfig, bc, engine) bc.processor = NewStateProcessor(chainConfig, bc, engine) var err error bc.hc, err = NewHeaderChain(db, chainConfig, engine, bc.getProcInterrupt) if err != nil { return nil, err } bc.genesisBlock = bc.GetBlockByNumber(0) if bc.genesisBlock == nil { return nil, ErrNoGenesis } if err := bc.loadLastState(); err != nil { return nil, err } // Check the current state of the block hashes and make sure that we do not have any of the bad blocks in our chain for hash := range BadHashes { if header := bc.GetHeaderByHash(hash); header != nil { // get the canonical block corresponding to the offending header's number headerByNumber := bc.GetHeaderByNumber(header.Number.Uint64()) // make sure the headerByNumber (if present) is in our current canonical chain if headerByNumber != nil && headerByNumber.Hash() == header.Hash() { log.Error("Found bad hash, rewinding chain", "number", header.Number, "hash", header.ParentHash) bc.SetHead(header.Number.Uint64() - 1) log.Error("Chain rewind was successful, resuming normal operation") } } } // Take ownership of this particular state go bc.update() return bc, nil } func (bc *BlockChain) getProcInterrupt() bool { return atomic.LoadInt32(&bc.procInterrupt) == 1 } // GetVMConfig returns the block chain VM config. func (bc *BlockChain) GetVMConfig() *vm.Config { return &bc.vmConfig } // loadLastState loads the last known chain state from the database. This method // assumes that the chain manager mutex is held. func (bc *BlockChain) loadLastState() error { // Restore the last known head block head := rawdb.ReadHeadBlockHash(bc.db) if head == (common.Hash{}) { // Corrupt or empty database, init from scratch log.Warn("Empty database, resetting chain") return bc.Reset() } // Make sure the entire head block is available currentBlock := bc.GetBlockByHash(head) if currentBlock == nil { // Corrupt or empty database, init from scratch log.Warn("Head block missing, resetting chain", "hash", head) return bc.Reset() } // Make sure the state associated with the block is available if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil { // Dangling block without a state associated, init from scratch log.Warn("Head state missing, repairing chain", "number", currentBlock.Number(), "hash", currentBlock.Hash()) if err := bc.repair(¤tBlock); err != nil { return err } } // Everything seems to be fine, set as the head block bc.currentBlock.Store(currentBlock) // Restore the last known head header currentHeader := currentBlock.Header() if head := rawdb.ReadHeadHeaderHash(bc.db); head != (common.Hash{}) { if header := bc.GetHeaderByHash(head); header != nil { currentHeader = header } } bc.hc.SetCurrentHeader(currentHeader) // Restore the last known head fast block bc.currentFastBlock.Store(currentBlock) if head := rawdb.ReadHeadFastBlockHash(bc.db); head != (common.Hash{}) { if block := bc.GetBlockByHash(head); block != nil { bc.currentFastBlock.Store(block) } } // Issue a status log for the user currentFastBlock := bc.CurrentFastBlock() headerTd := bc.GetTd(currentHeader.Hash(), currentHeader.Number.Uint64()) blockTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64()) fastTd := bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()) log.Info("Loaded most recent local header", "number", currentHeader.Number, "hash", currentHeader.Hash(), "td", headerTd, "age", common.PrettyAge(time.Unix(int64(currentHeader.Time), 0))) log.Info("Loaded most recent local full block", "number", currentBlock.Number(), "hash", currentBlock.Hash(), "td", blockTd, "age", common.PrettyAge(time.Unix(int64(currentBlock.Time()), 0))) log.Info("Loaded most recent local fast block", "number", currentFastBlock.Number(), "hash", currentFastBlock.Hash(), "td", fastTd, "age", common.PrettyAge(time.Unix(int64(currentFastBlock.Time()), 0))) return nil } // SetHead rewinds the local chain to a new head. In the case of headers, everything // above the new head will be deleted and the new one set. In the case of blocks // though, the head may be further rewound if block bodies are missing (non-archive // nodes after a fast sync). func (bc *BlockChain) SetHead(head uint64) error { log.Warn("Rewinding blockchain", "target", head) bc.chainmu.Lock() defer bc.chainmu.Unlock() // Rewind the header chain, deleting all block bodies until then delFn := func(db ethdb.Writer, hash common.Hash, num uint64) { rawdb.DeleteBody(db, hash, num) } bc.hc.SetHead(head, delFn) currentHeader := bc.hc.CurrentHeader() // Clear out any stale content from the caches bc.bodyCache.Purge() bc.bodyRLPCache.Purge() bc.receiptsCache.Purge() bc.blockCache.Purge() bc.futureBlocks.Purge() // Rewind the block chain, ensuring we don't end up with a stateless head block if currentBlock := bc.CurrentBlock(); currentBlock != nil && currentHeader.Number.Uint64() < currentBlock.NumberU64() { bc.currentBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64())) } if currentBlock := bc.CurrentBlock(); currentBlock != nil { if _, err := state.New(currentBlock.Root(), bc.stateCache); err != nil { // Rewound state missing, rolled back to before pivot, reset to genesis bc.currentBlock.Store(bc.genesisBlock) } } // Rewind the fast block in a simpleton way to the target head if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock != nil && currentHeader.Number.Uint64() < currentFastBlock.NumberU64() { bc.currentFastBlock.Store(bc.GetBlock(currentHeader.Hash(), currentHeader.Number.Uint64())) } // If either blocks reached nil, reset to the genesis state if currentBlock := bc.CurrentBlock(); currentBlock == nil { bc.currentBlock.Store(bc.genesisBlock) } if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock == nil { bc.currentFastBlock.Store(bc.genesisBlock) } currentBlock := bc.CurrentBlock() currentFastBlock := bc.CurrentFastBlock() rawdb.WriteHeadBlockHash(bc.db, currentBlock.Hash()) rawdb.WriteHeadFastBlockHash(bc.db, currentFastBlock.Hash()) return bc.loadLastState() } // FastSyncCommitHead sets the current head block to the one defined by the hash // irrelevant what the chain contents were prior. func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error { // Make sure that both the block as well at its state trie exists block := bc.GetBlockByHash(hash) if block == nil { return fmt.Errorf("non existent block [%x…]", hash[:4]) } if _, err := trie.NewSecure(block.Root(), bc.stateCache.TrieDB()); err != nil { return err } // If all checks out, manually set the head block bc.chainmu.Lock() bc.currentBlock.Store(block) bc.chainmu.Unlock() log.Info("Committed new head block", "number", block.Number(), "hash", hash) return nil } // GasLimit returns the gas limit of the current HEAD block. func (bc *BlockChain) GasLimit() uint64 { return bc.CurrentBlock().GasLimit() } // CurrentBlock retrieves the current head block of the canonical chain. The // block is retrieved from the blockchain's internal cache. func (bc *BlockChain) CurrentBlock() *types.Block { return bc.currentBlock.Load().(*types.Block) } // CurrentFastBlock retrieves the current fast-sync head block of the canonical // chain. The block is retrieved from the blockchain's internal cache. func (bc *BlockChain) CurrentFastBlock() *types.Block { return bc.currentFastBlock.Load().(*types.Block) } // Validator returns the current validator. func (bc *BlockChain) Validator() Validator { return bc.validator } // Processor returns the current processor. func (bc *BlockChain) Processor() Processor { return bc.processor } // State returns a new mutable state based on the current HEAD block. func (bc *BlockChain) State() (*state.StateDB, error) { return bc.StateAt(bc.CurrentBlock().Root()) } // StateAt returns a new mutable state based on a particular point in time. func (bc *BlockChain) StateAt(root common.Hash) (*state.StateDB, error) { return state.New(root, bc.stateCache) } // StateCache returns the caching database underpinning the blockchain instance. func (bc *BlockChain) StateCache() state.Database { return bc.stateCache } // Reset purges the entire blockchain, restoring it to its genesis state. func (bc *BlockChain) Reset() error { return bc.ResetWithGenesisBlock(bc.genesisBlock) } // ResetWithGenesisBlock purges the entire blockchain, restoring it to the // specified genesis state. func (bc *BlockChain) ResetWithGenesisBlock(genesis *types.Block) error { // Dump the entire block chain and purge the caches if err := bc.SetHead(0); err != nil { return err } bc.chainmu.Lock() defer bc.chainmu.Unlock() // Prepare the genesis block and reinitialise the chain if err := bc.hc.WriteTd(genesis.Hash(), genesis.NumberU64(), genesis.Difficulty()); err != nil { log.Crit("Failed to write genesis block TD", "err", err) } rawdb.WriteBlock(bc.db, genesis) bc.genesisBlock = genesis bc.insert(bc.genesisBlock) bc.currentBlock.Store(bc.genesisBlock) bc.hc.SetGenesis(bc.genesisBlock.Header()) bc.hc.SetCurrentHeader(bc.genesisBlock.Header()) bc.currentFastBlock.Store(bc.genesisBlock) return nil } // repair tries to repair the current blockchain by rolling back the current block // until one with associated state is found. This is needed to fix incomplete db // writes caused either by crashes/power outages, or simply non-committed tries. // // This method only rolls back the current block. The current header and current // fast block are left intact. func (bc *BlockChain) repair(head **types.Block) error { for { // Abort if we've rewound to a head block that does have associated state if _, err := state.New((*head).Root(), bc.stateCache); err == nil { log.Info("Rewound blockchain to past state", "number", (*head).Number(), "hash", (*head).Hash()) return nil } // Otherwise rewind one block and recheck state availability there block := bc.GetBlock((*head).ParentHash(), (*head).NumberU64()-1) if block == nil { return fmt.Errorf("missing block %d [%x]", (*head).NumberU64()-1, (*head).ParentHash()) } *head = block } } // Export writes the active chain to the given writer. func (bc *BlockChain) Export(w io.Writer) error { return bc.ExportN(w, uint64(0), bc.CurrentBlock().NumberU64()) } // ExportN writes a subset of the active chain to the given writer. func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error { bc.chainmu.RLock() defer bc.chainmu.RUnlock() if first > last { return fmt.Errorf("export failed: first (%d) is greater than last (%d)", first, last) } log.Info("Exporting batch of blocks", "count", last-first+1) start, reported := time.Now(), time.Now() for nr := first; nr <= last; nr++ { block := bc.GetBlockByNumber(nr) if block == nil { return fmt.Errorf("export failed on #%d: not found", nr) } if err := block.EncodeRLP(w); err != nil { return err } if time.Since(reported) >= statsReportLimit { log.Info("Exporting blocks", "exported", block.NumberU64()-first, "elapsed", common.PrettyDuration(time.Since(start))) reported = time.Now() } } return nil } // insert injects a new head block into the current block chain. This method // assumes that the block is indeed a true head. It will also reset the head // header and the head fast sync block to this very same block if they are older // or if they are on a different side chain. // // Note, this function assumes that the `mu` mutex is held! func (bc *BlockChain) insert(block *types.Block) { // If the block is on a side chain or an unknown one, force other heads onto it too updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash() // Add the block to the canonical chain number scheme and mark as the head rawdb.WriteCanonicalHash(bc.db, block.Hash(), block.NumberU64()) rawdb.WriteHeadBlockHash(bc.db, block.Hash()) bc.currentBlock.Store(block) // If the block is better than our head or is on a different chain, force update heads if updateHeads { bc.hc.SetCurrentHeader(block.Header()) rawdb.WriteHeadFastBlockHash(bc.db, block.Hash()) bc.currentFastBlock.Store(block) } } // Genesis retrieves the chain's genesis block. func (bc *BlockChain) Genesis() *types.Block { return bc.genesisBlock } // GetBody retrieves a block body (transactions and uncles) from the database by // hash, caching it if found. func (bc *BlockChain) GetBody(hash common.Hash) *types.Body { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := bc.bodyCache.Get(hash); ok { body := cached.(*types.Body) return body } number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } body := rawdb.ReadBody(bc.db, hash, *number) if body == nil { return nil } // Cache the found body for next time and return bc.bodyCache.Add(hash, body) return body } // GetBodyRLP retrieves a block body in RLP encoding from the database by hash, // caching it if found. func (bc *BlockChain) GetBodyRLP(hash common.Hash) rlp.RawValue { // Short circuit if the body's already in the cache, retrieve otherwise if cached, ok := bc.bodyRLPCache.Get(hash); ok { return cached.(rlp.RawValue) } number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } body := rawdb.ReadBodyRLP(bc.db, hash, *number) if len(body) == 0 { return nil } // Cache the found body for next time and return bc.bodyRLPCache.Add(hash, body) return body } // HasBlock checks if a block is fully present in the database or not. func (bc *BlockChain) HasBlock(hash common.Hash, number uint64) bool { if bc.blockCache.Contains(hash) { return true } return rawdb.HasBody(bc.db, hash, number) } // HasFastBlock checks if a fast block is fully present in the database or not. func (bc *BlockChain) HasFastBlock(hash common.Hash, number uint64) bool { if !bc.HasBlock(hash, number) { return false } if bc.receiptsCache.Contains(hash) { return true } return rawdb.HasReceipts(bc.db, hash, number) } // HasState checks if state trie is fully present in the database or not. func (bc *BlockChain) HasState(hash common.Hash) bool { _, err := bc.stateCache.OpenTrie(hash) return err == nil } // HasBlockAndState checks if a block and associated state trie is fully present // in the database or not, caching it if present. func (bc *BlockChain) HasBlockAndState(hash common.Hash, number uint64) bool { // Check first that the block itself is known block := bc.GetBlock(hash, number) if block == nil { return false } return bc.HasState(block.Root()) } // GetBlock retrieves a block from the database by hash and number, // caching it if found. func (bc *BlockChain) GetBlock(hash common.Hash, number uint64) *types.Block { // Short circuit if the block's already in the cache, retrieve otherwise if block, ok := bc.blockCache.Get(hash); ok { return block.(*types.Block) } block := rawdb.ReadBlock(bc.db, hash, number) if block == nil { return nil } // Cache the found block for next time and return bc.blockCache.Add(block.Hash(), block) return block } // GetBlockByHash retrieves a block from the database by hash, caching it if found. func (bc *BlockChain) GetBlockByHash(hash common.Hash) *types.Block { number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } return bc.GetBlock(hash, *number) } // GetBlockByNumber retrieves a block from the database by number, caching it // (associated with its hash) if found. func (bc *BlockChain) GetBlockByNumber(number uint64) *types.Block { hash := rawdb.ReadCanonicalHash(bc.db, number) if hash == (common.Hash{}) { return nil } return bc.GetBlock(hash, number) } // GetReceiptsByHash retrieves the receipts for all transactions in a given block. func (bc *BlockChain) GetReceiptsByHash(hash common.Hash) types.Receipts { if receipts, ok := bc.receiptsCache.Get(hash); ok { return receipts.(types.Receipts) } number := rawdb.ReadHeaderNumber(bc.db, hash) if number == nil { return nil } receipts := rawdb.ReadReceipts(bc.db, hash, *number, bc.chainConfig) if receipts == nil { return nil } bc.receiptsCache.Add(hash, receipts) return receipts } // GetBlocksFromHash returns the block corresponding to hash and up to n-1 ancestors. // [deprecated by eth/62] func (bc *BlockChain) GetBlocksFromHash(hash common.Hash, n int) (blocks []*types.Block) { number := bc.hc.GetBlockNumber(hash) if number == nil { return nil } for i := 0; i < n; i++ { block := bc.GetBlock(hash, *number) if block == nil { break } blocks = append(blocks, block) hash = block.ParentHash() *number-- } return } // GetUnclesInChain retrieves all the uncles from a given block backwards until // a specific distance is reached. func (bc *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header { uncles := []*types.Header{} for i := 0; block != nil && i < length; i++ { uncles = append(uncles, block.Uncles()...) block = bc.GetBlock(block.ParentHash(), block.NumberU64()-1) } return uncles } // TrieNode retrieves a blob of data associated with a trie node (or code hash) // either from ephemeral in-memory cache, or from persistent storage. func (bc *BlockChain) TrieNode(hash common.Hash) ([]byte, error) { return bc.stateCache.TrieDB().Node(hash) } // Stop stops the blockchain service. If any imports are currently in progress // it will abort them using the procInterrupt. func (bc *BlockChain) Stop() { if !atomic.CompareAndSwapInt32(&bc.running, 0, 1) { return } // Unsubscribe all subscriptions registered from blockchain bc.scope.Close() close(bc.quit) atomic.StoreInt32(&bc.procInterrupt, 1) bc.wg.Wait() // Ensure the state of a recent block is also stored to disk before exiting. // We're writing three different states to catch different restart scenarios: // - HEAD: So we don't need to reprocess any blocks in the general case // - HEAD-1: So we don't do large reorgs if our HEAD becomes an uncle // - HEAD-127: So we have a hard limit on the number of blocks reexecuted if !bc.cacheConfig.TrieDirtyDisabled { triedb := bc.stateCache.TrieDB() for _, offset := range []uint64{0, 1, triesInMemory - 1} { if number := bc.CurrentBlock().NumberU64(); number > offset { recent := bc.GetBlockByNumber(number - offset) log.Info("Writing cached state to disk", "block", recent.Number(), "hash", recent.Hash(), "root", recent.Root()) if err := triedb.Commit(recent.Root(), true); err != nil { log.Error("Failed to commit recent state trie", "err", err) } } } for !bc.triegc.Empty() { triedb.Dereference(bc.triegc.PopItem().(common.Hash)) } if size, _ := triedb.Size(); size != 0 { log.Error("Dangling trie nodes after full cleanup") } } log.Info("Blockchain manager stopped") } func (bc *BlockChain) procFutureBlocks() { blocks := make([]*types.Block, 0, bc.futureBlocks.Len()) for _, hash := range bc.futureBlocks.Keys() { if block, exist := bc.futureBlocks.Peek(hash); exist { blocks = append(blocks, block.(*types.Block)) } } if len(blocks) > 0 { types.BlockBy(types.Number).Sort(blocks) // Insert one by one as chain insertion needs contiguous ancestry between blocks for i := range blocks { bc.InsertChain(blocks[i : i+1]) } } } // WriteStatus status of write type WriteStatus byte const ( NonStatTy WriteStatus = iota CanonStatTy SideStatTy ) // Rollback is designed to remove a chain of links from the database that aren't // certain enough to be valid. func (bc *BlockChain) Rollback(chain []common.Hash) { bc.chainmu.Lock() defer bc.chainmu.Unlock() for i := len(chain) - 1; i >= 0; i-- { hash := chain[i] currentHeader := bc.hc.CurrentHeader() if currentHeader.Hash() == hash { bc.hc.SetCurrentHeader(bc.GetHeader(currentHeader.ParentHash, currentHeader.Number.Uint64()-1)) } if currentFastBlock := bc.CurrentFastBlock(); currentFastBlock.Hash() == hash { newFastBlock := bc.GetBlock(currentFastBlock.ParentHash(), currentFastBlock.NumberU64()-1) bc.currentFastBlock.Store(newFastBlock) rawdb.WriteHeadFastBlockHash(bc.db, newFastBlock.Hash()) } if currentBlock := bc.CurrentBlock(); currentBlock.Hash() == hash { newBlock := bc.GetBlock(currentBlock.ParentHash(), currentBlock.NumberU64()-1) bc.currentBlock.Store(newBlock) rawdb.WriteHeadBlockHash(bc.db, newBlock.Hash()) } } } // InsertReceiptChain attempts to complete an already existing header chain with // transaction and receipt data. func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain []types.Receipts) (int, error) { bc.wg.Add(1) defer bc.wg.Done() // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(blockChain); i++ { if blockChain[i].NumberU64() != blockChain[i-1].NumberU64()+1 || blockChain[i].ParentHash() != blockChain[i-1].Hash() { log.Error("Non contiguous receipt insert", "number", blockChain[i].Number(), "hash", blockChain[i].Hash(), "parent", blockChain[i].ParentHash(), "prevnumber", blockChain[i-1].Number(), "prevhash", blockChain[i-1].Hash()) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, blockChain[i-1].NumberU64(), blockChain[i-1].Hash().Bytes()[:4], i, blockChain[i].NumberU64(), blockChain[i].Hash().Bytes()[:4], blockChain[i].ParentHash().Bytes()[:4]) } } var ( stats = struct{ processed, ignored int32 }{} start = time.Now() bytes = 0 batch = bc.db.NewBatch() ) for i, block := range blockChain { receipts := receiptChain[i] // Short circuit insertion if shutting down or processing failed if atomic.LoadInt32(&bc.procInterrupt) == 1 { return 0, nil } // Short circuit if the owner header is unknown if !bc.HasHeader(block.Hash(), block.NumberU64()) { return i, fmt.Errorf("containing header #%d [%x…] unknown", block.Number(), block.Hash().Bytes()[:4]) } // Skip if the entire data is already known if bc.HasBlock(block.Hash(), block.NumberU64()) { stats.ignored++ continue } // Compute all the non-consensus fields of the receipts if err := receipts.DeriveFields(bc.chainConfig, block.Hash(), block.NumberU64(), block.Transactions()); err != nil { return i, fmt.Errorf("failed to derive receipts data: %v", err) } // Write all the data out into the database rawdb.WriteBody(batch, block.Hash(), block.NumberU64(), block.Body()) rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts) rawdb.WriteTxLookupEntries(batch, block) stats.processed++ if batch.ValueSize() >= ethdb.IdealBatchSize { if err := batch.Write(); err != nil { return 0, err } bytes += batch.ValueSize() batch.Reset() } } if batch.ValueSize() > 0 { bytes += batch.ValueSize() if err := batch.Write(); err != nil { return 0, err } } // Update the head fast sync block if better bc.chainmu.Lock() head := blockChain[len(blockChain)-1] if td := bc.GetTd(head.Hash(), head.NumberU64()); td != nil { // Rewind may have occurred, skip in that case currentFastBlock := bc.CurrentFastBlock() if bc.GetTd(currentFastBlock.Hash(), currentFastBlock.NumberU64()).Cmp(td) < 0 { rawdb.WriteHeadFastBlockHash(bc.db, head.Hash()) bc.currentFastBlock.Store(head) } } bc.chainmu.Unlock() context := []interface{}{ "count", stats.processed, "elapsed", common.PrettyDuration(time.Since(start)), "number", head.Number(), "hash", head.Hash(), "age", common.PrettyAge(time.Unix(int64(head.Time()), 0)), "size", common.StorageSize(bytes), } if stats.ignored > 0 { context = append(context, []interface{}{"ignored", stats.ignored}...) } log.Info("Imported new block receipts", context...) return 0, nil } var lastWrite uint64 // WriteBlockWithoutState writes only the block and its metadata to the database, // but does not write any state. This is used to construct competing side forks // up to the point where they exceed the canonical total difficulty. func (bc *BlockChain) WriteBlockWithoutState(block *types.Block, td *big.Int) (err error) { bc.wg.Add(1) defer bc.wg.Done() if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), td); err != nil { return err } rawdb.WriteBlock(bc.db, block) return nil } // WriteBlockWithState writes the block and all associated state to the database. func (bc *BlockChain) WriteBlockWithState(block *types.Block, receipts []*types.Receipt, state *state.StateDB) (status WriteStatus, err error) { bc.chainmu.Lock() defer bc.chainmu.Unlock() return bc.writeBlockWithState(block, receipts, state) } // writeBlockWithState writes the block and all associated state to the database, // but is expects the chain mutex to be held. func (bc *BlockChain) writeBlockWithState(block *types.Block, receipts []*types.Receipt, state *state.StateDB) (status WriteStatus, err error) { bc.wg.Add(1) defer bc.wg.Done() // Calculate the total difficulty of the block ptd := bc.GetTd(block.ParentHash(), block.NumberU64()-1) if ptd == nil { return NonStatTy, consensus.ErrUnknownAncestor } // Make sure no inconsistent state is leaked during insertion currentBlock := bc.CurrentBlock() localTd := bc.GetTd(currentBlock.Hash(), currentBlock.NumberU64()) externTd := new(big.Int).Add(block.Difficulty(), ptd) // Irrelevant of the canonical status, write the block itself to the database if err := bc.hc.WriteTd(block.Hash(), block.NumberU64(), externTd); err != nil { return NonStatTy, err } rawdb.WriteBlock(bc.db, block) root, err := state.Commit(bc.chainConfig.IsEIP158(block.Number())) if err != nil { return NonStatTy, err } triedb := bc.stateCache.TrieDB() // If we're running an archive node, always flush if bc.cacheConfig.TrieDirtyDisabled { if err := triedb.Commit(root, false); err != nil { return NonStatTy, err } } else { // Full but not archive node, do proper garbage collection triedb.Reference(root, common.Hash{}) // metadata reference to keep trie alive bc.triegc.Push(root, -int64(block.NumberU64())) if current := block.NumberU64(); current > triesInMemory { // If we exceeded our memory allowance, flush matured singleton nodes to disk var ( nodes, imgs = triedb.Size() limit = common.StorageSize(bc.cacheConfig.TrieDirtyLimit) * 1024 * 1024 ) if nodes > limit || imgs > 4*1024*1024 { triedb.Cap(limit - ethdb.IdealBatchSize) } // Find the next state trie we need to commit chosen := current - triesInMemory // If we exceeded out time allowance, flush an entire trie to disk if bc.gcproc > bc.cacheConfig.TrieTimeLimit { // If the header is missing (canonical chain behind), we're reorging a low // diff sidechain. Suspend committing until this operation is completed. header := bc.GetHeaderByNumber(chosen) if header == nil { log.Warn("Reorg in progress, trie commit postponed", "number", chosen) } else { // If we're exceeding limits but haven't reached a large enough memory gap, // warn the user that the system is becoming unstable. if chosen < lastWrite+triesInMemory && bc.gcproc >= 2*bc.cacheConfig.TrieTimeLimit { log.Info("State in memory for too long, committing", "time", bc.gcproc, "allowance", bc.cacheConfig.TrieTimeLimit, "optimum", float64(chosen-lastWrite)/triesInMemory) } // Flush an entire trie and restart the counters triedb.Commit(header.Root, true) lastWrite = chosen bc.gcproc = 0 } } // Garbage collect anything below our required write retention for !bc.triegc.Empty() { root, number := bc.triegc.Pop() if uint64(-number) > chosen { bc.triegc.Push(root, number) break } triedb.Dereference(root.(common.Hash)) } } } // Write other block data using a batch. batch := bc.db.NewBatch() rawdb.WriteReceipts(batch, block.Hash(), block.NumberU64(), receipts) // If the total difficulty is higher than our known, add it to the canonical chain // Second clause in the if statement reduces the vulnerability to selfish mining. // Please refer to http://www.cs.cornell.edu/~ie53/publications/btcProcFC.pdf reorg := externTd.Cmp(localTd) > 0 currentBlock = bc.CurrentBlock() if !reorg && externTd.Cmp(localTd) == 0 { // Split same-difficulty blocks by number, then preferentially select // the block generated by the local miner as the canonical block. if block.NumberU64() < currentBlock.NumberU64() { reorg = true } else if block.NumberU64() == currentBlock.NumberU64() { var currentPreserve, blockPreserve bool if bc.shouldPreserve != nil { currentPreserve, blockPreserve = bc.shouldPreserve(currentBlock), bc.shouldPreserve(block) } reorg = !currentPreserve && (blockPreserve || mrand.Float64() < 0.5) } } if reorg { // Reorganise the chain if the parent is not the head block if block.ParentHash() != currentBlock.Hash() { if err := bc.reorg(currentBlock, block); err != nil { return NonStatTy, err } } // Write the positional metadata for transaction/receipt lookups and preimages rawdb.WriteTxLookupEntries(batch, block) rawdb.WritePreimages(batch, state.Preimages()) status = CanonStatTy } else { status = SideStatTy } if err := batch.Write(); err != nil { return NonStatTy, err } // Set new head. if status == CanonStatTy { bc.insert(block) } bc.futureBlocks.Remove(block.Hash()) return status, nil } // addFutureBlock checks if the block is within the max allowed window to get // accepted for future processing, and returns an error if the block is too far // ahead and was not added. func (bc *BlockChain) addFutureBlock(block *types.Block) error { max := uint64(time.Now().Unix() + maxTimeFutureBlocks) if block.Time() > max { return fmt.Errorf("future block timestamp %v > allowed %v", block.Time(), max) } bc.futureBlocks.Add(block.Hash(), block) return nil } // InsertChain attempts to insert the given batch of blocks in to the canonical // chain or, otherwise, create a fork. If an error is returned it will return // the index number of the failing block as well an error describing what went // wrong. // // After insertion is done, all accumulated events will be fired. func (bc *BlockChain) InsertChain(chain types.Blocks) (int, error) { // Sanity check that we have something meaningful to import if len(chain) == 0 { return 0, nil } bc.blockProcFeed.Send(true) defer bc.blockProcFeed.Send(false) // Remove already known canon-blocks var ( block, prev *types.Block ) // Do a sanity check that the provided chain is actually ordered and linked for i := 1; i < len(chain); i++ { block = chain[i] prev = chain[i-1] if block.NumberU64() != prev.NumberU64()+1 || block.ParentHash() != prev.Hash() { // Chain broke ancestry, log a message (programming error) and skip insertion log.Error("Non contiguous block insert", "number", block.Number(), "hash", block.Hash(), "parent", block.ParentHash(), "prevnumber", prev.Number(), "prevhash", prev.Hash()) return 0, fmt.Errorf("non contiguous insert: item %d is #%d [%x…], item %d is #%d [%x…] (parent [%x…])", i-1, prev.NumberU64(), prev.Hash().Bytes()[:4], i, block.NumberU64(), block.Hash().Bytes()[:4], block.ParentHash().Bytes()[:4]) } } // Pre-checks passed, start the full block imports bc.wg.Add(1) bc.chainmu.Lock() n, events, logs, err := bc.insertChain(chain, true) bc.chainmu.Unlock() bc.wg.Done() bc.PostChainEvents(events, logs) return n, err } // insertChain is the internal implementation of InsertChain, which assumes that // 1) chains are contiguous, and 2) The chain mutex is held. // // This method is split out so that import batches that require re-injecting // historical blocks can do so without releasing the lock, which could lead to // racey behaviour. If a sidechain import is in progress, and the historic state // is imported, but then new canon-head is added before the actual sidechain // completes, then the historic state could be pruned again func (bc *BlockChain) insertChain(chain types.Blocks, verifySeals bool) (int, []interface{}, []*types.Log, error) { // If the chain is terminating, don't even bother starting up if atomic.LoadInt32(&bc.procInterrupt) == 1 { return 0, nil, nil, nil } // Start a parallel signature recovery (signer will fluke on fork transition, minimal perf loss) senderCacher.recoverFromBlocks(types.MakeSigner(bc.chainConfig, chain[0].Number()), chain) // A queued approach to delivering events. This is generally // faster than direct delivery and requires much less mutex // acquiring. var ( stats = insertStats{startTime: mclock.Now()} events = make([]interface{}, 0, len(chain)) lastCanon *types.Block coalescedLogs []*types.Log ) // Start the parallel header verifier headers := make([]*types.Header, len(chain)) seals := make([]bool, len(chain)) for i, block := range chain { headers[i] = block.Header() seals[i] = verifySeals } abort, results := bc.engine.VerifyHeaders(bc, headers, seals) defer close(abort) // Peek the error for the first block to decide the directing import logic it := newInsertIterator(chain, results, bc.validator) block, err := it.next() // Left-trim all the known blocks if err == ErrKnownBlock { // First block (and state) is known // 1. We did a roll-back, and should now do a re-import // 2. The block is stored as a sidechain, and is lying about it's stateroot, and passes a stateroot // from the canonical chain, which has not been verified. // Skip all known blocks that are behind us current := bc.CurrentBlock().NumberU64() for block != nil && err == ErrKnownBlock && current >= block.NumberU64() { stats.ignored++ block, err = it.next() } // Falls through to the block import } switch { // First block is pruned, insert as sidechain and reorg only if TD grows enough case err == consensus.ErrPrunedAncestor: return bc.insertSidechain(block, it) // First block is future, shove it (and all children) to the future queue (unknown ancestor) case err == consensus.ErrFutureBlock || (err == consensus.ErrUnknownAncestor && bc.futureBlocks.Contains(it.first().ParentHash())): for block != nil && (it.index == 0 || err == consensus.ErrUnknownAncestor) { if err := bc.addFutureBlock(block); err != nil { return it.index, events, coalescedLogs, err } block, err = it.next() } stats.queued += it.processed() stats.ignored += it.remaining() // If there are any still remaining, mark as ignored return it.index, events, coalescedLogs, err // Some other error occurred, abort case err != nil: stats.ignored += len(it.chain) bc.reportBlock(block, nil, err) return it.index, events, coalescedLogs, err } // No validation errors for the first block (or chain prefix skipped) for ; block != nil && err == nil; block, err = it.next() { // If the chain is terminating, stop processing blocks if atomic.LoadInt32(&bc.procInterrupt) == 1 { log.Debug("Premature abort during blocks processing") break } // If the header is a banned one, straight out abort if BadHashes[block.Hash()] { bc.reportBlock(block, nil, ErrBlacklistedHash) return it.index, events, coalescedLogs, ErrBlacklistedHash } // Retrieve the parent block and it's state to execute on top start := time.Now() parent := it.previous() if parent == nil { parent = bc.GetHeader(block.ParentHash(), block.NumberU64()-1) } statedb, err := state.New(parent.Root, bc.stateCache) if err != nil { return it.index, events, coalescedLogs, err } // If we have a followup block, run that against the current state to pre-cache // transactions and probabilistically some of the account/storage trie nodes. var followupInterrupt uint32 if !bc.cacheConfig.TrieCleanNoPrefetch { if followup, err := it.peek(); followup != nil && err == nil { go func(start time.Time) { throwaway, _ := state.New(parent.Root, bc.stateCache) bc.prefetcher.Prefetch(followup, throwaway, bc.vmConfig, &followupInterrupt) blockPrefetchExecuteTimer.Update(time.Since(start)) if atomic.LoadUint32(&followupInterrupt) == 1 { blockPrefetchInterruptMeter.Mark(1) } }(time.Now()) } } // Process block using the parent state as reference point substart := time.Now() receipts, logs, usedGas, err := bc.processor.Process(block, statedb, bc.vmConfig) if err != nil { bc.reportBlock(block, receipts, err) atomic.StoreUint32(&followupInterrupt, 1) return it.index, events, coalescedLogs, err } // Update the metrics touched during block processing accountReadTimer.Update(statedb.AccountReads) // Account reads are complete, we can mark them storageReadTimer.Update(statedb.StorageReads) // Storage reads are complete, we can mark them accountUpdateTimer.Update(statedb.AccountUpdates) // Account updates are complete, we can mark them storageUpdateTimer.Update(statedb.StorageUpdates) // Storage updates are complete, we can mark them triehash := statedb.AccountHashes + statedb.StorageHashes // Save to not double count in validation trieproc := statedb.AccountReads + statedb.AccountUpdates trieproc += statedb.StorageReads + statedb.StorageUpdates blockExecutionTimer.Update(time.Since(substart) - trieproc - triehash) // Validate the state using the default validator substart = time.Now() if err := bc.validator.ValidateState(block, statedb, receipts, usedGas); err != nil { bc.reportBlock(block, receipts, err) atomic.StoreUint32(&followupInterrupt, 1) return it.index, events, coalescedLogs, err } proctime := time.Since(start) // Update the metrics touched during block validation accountHashTimer.Update(statedb.AccountHashes) // Account hashes are complete, we can mark them storageHashTimer.Update(statedb.StorageHashes) // Storage hashes are complete, we can mark them blockValidationTimer.Update(time.Since(substart) - (statedb.AccountHashes + statedb.StorageHashes - triehash)) // Write the block to the chain and get the status. substart = time.Now() status, err := bc.writeBlockWithState(block, receipts, statedb) if err != nil { atomic.StoreUint32(&followupInterrupt, 1) return it.index, events, coalescedLogs, err } atomic.StoreUint32(&followupInterrupt, 1) // Update the metrics touched during block commit accountCommitTimer.Update(statedb.AccountCommits) // Account commits are complete, we can mark them storageCommitTimer.Update(statedb.StorageCommits) // Storage commits are complete, we can mark them blockWriteTimer.Update(time.Since(substart) - statedb.AccountCommits - statedb.StorageCommits) blockInsertTimer.UpdateSince(start) switch status { case CanonStatTy: log.Debug("Inserted new block", "number", block.Number(), "hash", block.Hash(), "uncles", len(block.Uncles()), "txs", len(block.Transactions()), "gas", block.GasUsed(), "elapsed", common.PrettyDuration(time.Since(start)), "root", block.Root()) coalescedLogs = append(coalescedLogs, logs...) events = append(events, ChainEvent{block, block.Hash(), logs}) lastCanon = block // Only count canonical blocks for GC processing time bc.gcproc += proctime case SideStatTy: log.Debug("Inserted forked block", "number", block.Number(), "hash", block.Hash(), "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)), "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()), "root", block.Root()) events = append(events, ChainSideEvent{block}) } stats.processed++ stats.usedGas += usedGas dirty, _ := bc.stateCache.TrieDB().Size() stats.report(chain, it.index, dirty) } // Any blocks remaining here? The only ones we care about are the future ones if block != nil && err == consensus.ErrFutureBlock { if err := bc.addFutureBlock(block); err != nil { return it.index, events, coalescedLogs, err } block, err = it.next() for ; block != nil && err == consensus.ErrUnknownAncestor; block, err = it.next() { if err := bc.addFutureBlock(block); err != nil { return it.index, events, coalescedLogs, err } stats.queued++ } } stats.ignored += it.remaining() // Append a single chain head event if we've progressed the chain if lastCanon != nil && bc.CurrentBlock().Hash() == lastCanon.Hash() { events = append(events, ChainHeadEvent{lastCanon}) } return it.index, events, coalescedLogs, err } // insertSidechain is called when an import batch hits upon a pruned ancestor // error, which happens when a sidechain with a sufficiently old fork-block is // found. // // The method writes all (header-and-body-valid) blocks to disk, then tries to // switch over to the new chain if the TD exceeded the current chain. func (bc *BlockChain) insertSidechain(block *types.Block, it *insertIterator) (int, []interface{}, []*types.Log, error) { var ( externTd *big.Int current = bc.CurrentBlock() ) // The first sidechain block error is already verified to be ErrPrunedAncestor. // Since we don't import them here, we expect ErrUnknownAncestor for the remaining // ones. Any other errors means that the block is invalid, and should not be written // to disk. err := consensus.ErrPrunedAncestor for ; block != nil && (err == consensus.ErrPrunedAncestor); block, err = it.next() { // Check the canonical state root for that number if number := block.NumberU64(); current.NumberU64() >= number { canonical := bc.GetBlockByNumber(number) if canonical != nil && canonical.Hash() == block.Hash() { // Not a sidechain block, this is a re-import of a canon block which has it's state pruned continue } if canonical != nil && canonical.Root() == block.Root() { // This is most likely a shadow-state attack. When a fork is imported into the // database, and it eventually reaches a block height which is not pruned, we // just found that the state already exist! This means that the sidechain block // refers to a state which already exists in our canon chain. // // If left unchecked, we would now proceed importing the blocks, without actually // having verified the state of the previous blocks. log.Warn("Sidechain ghost-state attack detected", "number", block.NumberU64(), "sideroot", block.Root(), "canonroot", canonical.Root()) // If someone legitimately side-mines blocks, they would still be imported as usual. However, // we cannot risk writing unverified blocks to disk when they obviously target the pruning // mechanism. return it.index, nil, nil, errors.New("sidechain ghost-state attack") } } if externTd == nil { externTd = bc.GetTd(block.ParentHash(), block.NumberU64()-1) } externTd = new(big.Int).Add(externTd, block.Difficulty()) if !bc.HasBlock(block.Hash(), block.NumberU64()) { start := time.Now() if err := bc.WriteBlockWithoutState(block, externTd); err != nil { return it.index, nil, nil, err } log.Debug("Injected sidechain block", "number", block.Number(), "hash", block.Hash(), "diff", block.Difficulty(), "elapsed", common.PrettyDuration(time.Since(start)), "txs", len(block.Transactions()), "gas", block.GasUsed(), "uncles", len(block.Uncles()), "root", block.Root()) } } // At this point, we've written all sidechain blocks to database. Loop ended // either on some other error or all were processed. If there was some other // error, we can ignore the rest of those blocks. // // If the externTd was larger than our local TD, we now need to reimport the previous // blocks to regenerate the required state localTd := bc.GetTd(current.Hash(), current.NumberU64()) if localTd.Cmp(externTd) > 0 { log.Info("Sidechain written to disk", "start", it.first().NumberU64(), "end", it.previous().Number, "sidetd", externTd, "localtd", localTd) return it.index, nil, nil, err } // Gather all the sidechain hashes (full blocks may be memory heavy) var ( hashes []common.Hash numbers []uint64 ) parent := it.previous() for parent != nil && !bc.HasState(parent.Root) { hashes = append(hashes, parent.Hash()) numbers = append(numbers, parent.Number.Uint64()) parent = bc.GetHeader(parent.ParentHash, parent.Number.Uint64()-1) } if parent == nil { return it.index, nil, nil, errors.New("missing parent") } // Import all the pruned blocks to make the state available var ( blocks []*types.Block memory common.StorageSize ) for i := len(hashes) - 1; i >= 0; i-- { // Append the next block to our batch block := bc.GetBlock(hashes[i], numbers[i]) blocks = append(blocks, block) memory += block.Size() // If memory use grew too large, import and continue. Sadly we need to discard // all raised events and logs from notifications since we're too heavy on the // memory here. if len(blocks) >= 2048 || memory > 64*1024*1024 { log.Info("Importing heavy sidechain segment", "blocks", len(blocks), "start", blocks[0].NumberU64(), "end", block.NumberU64()) if _, _, _, err := bc.insertChain(blocks, false); err != nil { return 0, nil, nil, err } blocks, memory = blocks[:0], 0 // If the chain is terminating, stop processing blocks if atomic.LoadInt32(&bc.procInterrupt) == 1 { log.Debug("Premature abort during blocks processing") return 0, nil, nil, nil } } } if len(blocks) > 0 { log.Info("Importing sidechain segment", "start", blocks[0].NumberU64(), "end", blocks[len(blocks)-1].NumberU64()) return bc.insertChain(blocks, false) } return 0, nil, nil, nil } // reorg takes two blocks, an old chain and a new chain and will reconstruct the // blocks and inserts them to be part of the new canonical chain and accumulates // potential missing transactions and post an event about them. func (bc *BlockChain) reorg(oldBlock, newBlock *types.Block) error { var ( newChain types.Blocks oldChain types.Blocks commonBlock *types.Block deletedTxs types.Transactions addedTxs types.Transactions deletedLogs []*types.Log rebirthLogs []*types.Log // collectLogs collects the logs that were generated during the // processing of the block that corresponds with the given hash. // These logs are later announced as deleted or reborn collectLogs = func(hash common.Hash, removed bool) { number := bc.hc.GetBlockNumber(hash) if number == nil { return } receipts := rawdb.ReadReceipts(bc.db, hash, *number, bc.chainConfig) for _, receipt := range receipts { for _, log := range receipt.Logs { l := *log if removed { l.Removed = true deletedLogs = append(deletedLogs, &l) } else { rebirthLogs = append(rebirthLogs, &l) } } } } ) // Reduce the longer chain to the same number as the shorter one if oldBlock.NumberU64() > newBlock.NumberU64() { // Old chain is longer, gather all transactions and logs as deleted ones for ; oldBlock != nil && oldBlock.NumberU64() != newBlock.NumberU64(); oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) { oldChain = append(oldChain, oldBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash(), true) } } else { // New chain is longer, stash all blocks away for subsequent insertion for ; newBlock != nil && newBlock.NumberU64() != oldBlock.NumberU64(); newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) { newChain = append(newChain, newBlock) } } if oldBlock == nil { return fmt.Errorf("invalid old chain") } if newBlock == nil { return fmt.Errorf("invalid new chain") } // Both sides of the reorg are at the same number, reduce both until the common // ancestor is found for { // If the common ancestor was found, bail out if oldBlock.Hash() == newBlock.Hash() { commonBlock = oldBlock break } // Remove an old block as well as stash away a new block oldChain = append(oldChain, oldBlock) deletedTxs = append(deletedTxs, oldBlock.Transactions()...) collectLogs(oldBlock.Hash(), true) newChain = append(newChain, newBlock) // Step back with both chains oldBlock = bc.GetBlock(oldBlock.ParentHash(), oldBlock.NumberU64()-1) if oldBlock == nil { return fmt.Errorf("invalid old chain") } newBlock = bc.GetBlock(newBlock.ParentHash(), newBlock.NumberU64()-1) if newBlock == nil { return fmt.Errorf("invalid new chain") } } // Ensure the user sees large reorgs if len(oldChain) > 0 && len(newChain) > 0 { logFn := log.Debug if len(oldChain) > 63 { logFn = log.Warn } logFn("Chain split detected", "number", commonBlock.Number(), "hash", commonBlock.Hash(), "drop", len(oldChain), "dropfrom", oldChain[0].Hash(), "add", len(newChain), "addfrom", newChain[0].Hash()) } else { log.Error("Impossible reorg, please file an issue", "oldnum", oldBlock.Number(), "oldhash", oldBlock.Hash(), "newnum", newBlock.Number(), "newhash", newBlock.Hash()) } // Insert the new chain, taking care of the proper incremental order for i := len(newChain) - 1; i >= 0; i-- { // Insert the block in the canonical way, re-writing history bc.insert(newChain[i]) // Collect reborn logs due to chain reorg (except head block (reverse order)) if i != 0 { collectLogs(newChain[i].Hash(), false) } // Write lookup entries for hash based transaction/receipt searches rawdb.WriteTxLookupEntries(bc.db, newChain[i]) addedTxs = append(addedTxs, newChain[i].Transactions()...) } // When transactions get deleted from the database, the receipts that were // created in the fork must also be deleted batch := bc.db.NewBatch() for _, tx := range types.TxDifference(deletedTxs, addedTxs) { rawdb.DeleteTxLookupEntry(batch, tx.Hash()) } // Delete any canonical number assignments above the new head number := bc.CurrentBlock().NumberU64() for i := number + 1; ; i++ { hash := rawdb.ReadCanonicalHash(bc.db, i) if hash == (common.Hash{}) { break } rawdb.DeleteCanonicalHash(batch, i) } batch.Write() // If any logs need to be fired, do it now. In theory we could avoid creating // this goroutine if there are no events to fire, but realistcally that only // ever happens if we're reorging empty blocks, which will only happen on idle // networks where performance is not an issue either way. // // TODO(karalabe): Can we get rid of the goroutine somehow to guarantee correct // event ordering? go func() { if len(deletedLogs) > 0 { bc.rmLogsFeed.Send(RemovedLogsEvent{deletedLogs}) } if len(rebirthLogs) > 0 { bc.logsFeed.Send(rebirthLogs) } if len(oldChain) > 0 { for _, block := range oldChain { bc.chainSideFeed.Send(ChainSideEvent{Block: block}) } } }() return nil } // PostChainEvents iterates over the events generated by a chain insertion and // posts them into the event feed. // TODO: Should not expose PostChainEvents. The chain events should be posted in WriteBlock. func (bc *BlockChain) PostChainEvents(events []interface{}, logs []*types.Log) { // post event logs for further processing if logs != nil { bc.logsFeed.Send(logs) } for _, event := range events { switch ev := event.(type) { case ChainEvent: bc.chainFeed.Send(ev) case ChainHeadEvent: bc.chainHeadFeed.Send(ev) case ChainSideEvent: bc.chainSideFeed.Send(ev) } } } func (bc *BlockChain) update() { futureTimer := time.NewTicker(5 * time.Second) defer futureTimer.Stop() for { select { case <-futureTimer.C: bc.procFutureBlocks() case <-bc.quit: return } } } // BadBlocks returns a list of the last 'bad blocks' that the client has seen on the network func (bc *BlockChain) BadBlocks() []*types.Block { blocks := make([]*types.Block, 0, bc.badBlocks.Len()) for _, hash := range bc.badBlocks.Keys() { if blk, exist := bc.badBlocks.Peek(hash); exist { block := blk.(*types.Block) blocks = append(blocks, block) } } return blocks } // addBadBlock adds a bad block to the bad-block LRU cache func (bc *BlockChain) addBadBlock(block *types.Block) { bc.badBlocks.Add(block.Hash(), block) } // reportBlock logs a bad block error. func (bc *BlockChain) reportBlock(block *types.Block, receipts types.Receipts, err error) { bc.addBadBlock(block) var receiptString string for i, receipt := range receipts { receiptString += fmt.Sprintf("\t %d: cumulative: %v gas: %v contract: %v status: %v tx: %v logs: %v bloom: %x state: %x\n", i, receipt.CumulativeGasUsed, receipt.GasUsed, receipt.ContractAddress.Hex(), receipt.Status, receipt.TxHash.Hex(), receipt.Logs, receipt.Bloom, receipt.PostState) } log.Error(fmt.Sprintf(` ########## BAD BLOCK ######### Chain config: %v Number: %v Hash: 0x%x %v Error: %v ############################## `, bc.chainConfig, block.Number(), block.Hash(), receiptString, err)) } // InsertHeaderChain attempts to insert the given header chain in to the local // chain, possibly creating a reorg. If an error is returned, it will return the // index number of the failing header as well an error describing what went wrong. // // The verify parameter can be used to fine tune whether nonce verification // should be done or not. The reason behind the optional check is because some // of the header retrieval mechanisms already need to verify nonces, as well as // because nonces can be verified sparsely, not needing to check each. func (bc *BlockChain) InsertHeaderChain(chain []*types.Header, checkFreq int) (int, error) { start := time.Now() if i, err := bc.hc.ValidateHeaderChain(chain, checkFreq); err != nil { return i, err } // Make sure only one thread manipulates the chain at once bc.chainmu.Lock() defer bc.chainmu.Unlock() bc.wg.Add(1) defer bc.wg.Done() whFunc := func(header *types.Header) error { _, err := bc.hc.WriteHeader(header) return err } return bc.hc.InsertHeaderChain(chain, whFunc, start) } // CurrentHeader retrieves the current head header of the canonical chain. The // header is retrieved from the HeaderChain's internal cache. func (bc *BlockChain) CurrentHeader() *types.Header { return bc.hc.CurrentHeader() } // GetTd retrieves a block's total difficulty in the canonical chain from the // database by hash and number, caching it if found. func (bc *BlockChain) GetTd(hash common.Hash, number uint64) *big.Int { return bc.hc.GetTd(hash, number) } // GetTdByHash retrieves a block's total difficulty in the canonical chain from the // database by hash, caching it if found. func (bc *BlockChain) GetTdByHash(hash common.Hash) *big.Int { return bc.hc.GetTdByHash(hash) } // GetHeader retrieves a block header from the database by hash and number, // caching it if found. func (bc *BlockChain) GetHeader(hash common.Hash, number uint64) *types.Header { return bc.hc.GetHeader(hash, number) } // GetHeaderByHash retrieves a block header from the database by hash, caching it if // found. func (bc *BlockChain) GetHeaderByHash(hash common.Hash) *types.Header { return bc.hc.GetHeaderByHash(hash) } // HasHeader checks if a block header is present in the database or not, caching // it if present. func (bc *BlockChain) HasHeader(hash common.Hash, number uint64) bool { return bc.hc.HasHeader(hash, number) } // GetBlockHashesFromHash retrieves a number of block hashes starting at a given // hash, fetching towards the genesis block. func (bc *BlockChain) GetBlockHashesFromHash(hash common.Hash, max uint64) []common.Hash { return bc.hc.GetBlockHashesFromHash(hash, max) } // GetAncestor retrieves the Nth ancestor of a given block. It assumes that either the given block or // a close ancestor of it is canonical. maxNonCanonical points to a downwards counter limiting the // number of blocks to be individually checked before we reach the canonical chain. // // Note: ancestor == 0 returns the same block, 1 returns its parent and so on. func (bc *BlockChain) GetAncestor(hash common.Hash, number, ancestor uint64, maxNonCanonical *uint64) (common.Hash, uint64) { bc.chainmu.RLock() defer bc.chainmu.RUnlock() return bc.hc.GetAncestor(hash, number, ancestor, maxNonCanonical) } // GetHeaderByNumber retrieves a block header from the database by number, // caching it (associated with its hash) if found. func (bc *BlockChain) GetHeaderByNumber(number uint64) *types.Header { return bc.hc.GetHeaderByNumber(number) } // Config retrieves the blockchain's chain configuration. func (bc *BlockChain) Config() *params.ChainConfig { return bc.chainConfig } // Engine retrieves the blockchain's consensus engine. func (bc *BlockChain) Engine() consensus.Engine { return bc.engine } // SubscribeRemovedLogsEvent registers a subscription of RemovedLogsEvent. func (bc *BlockChain) SubscribeRemovedLogsEvent(ch chan<- RemovedLogsEvent) event.Subscription { return bc.scope.Track(bc.rmLogsFeed.Subscribe(ch)) } // SubscribeChainEvent registers a subscription of ChainEvent. func (bc *BlockChain) SubscribeChainEvent(ch chan<- ChainEvent) event.Subscription { return bc.scope.Track(bc.chainFeed.Subscribe(ch)) } // SubscribeChainHeadEvent registers a subscription of ChainHeadEvent. func (bc *BlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription { return bc.scope.Track(bc.chainHeadFeed.Subscribe(ch)) } // SubscribeChainSideEvent registers a subscription of ChainSideEvent. func (bc *BlockChain) SubscribeChainSideEvent(ch chan<- ChainSideEvent) event.Subscription { return bc.scope.Track(bc.chainSideFeed.Subscribe(ch)) } // SubscribeLogsEvent registers a subscription of []*types.Log. func (bc *BlockChain) SubscribeLogsEvent(ch chan<- []*types.Log) event.Subscription { return bc.scope.Track(bc.logsFeed.Subscribe(ch)) } // SubscribeBlockProcessingEvent registers a subscription of bool where true means // block processing has started while false means it has stopped. func (bc *BlockChain) SubscribeBlockProcessingEvent(ch chan<- bool) event.Subscription { return bc.scope.Track(bc.blockProcFeed.Subscribe(ch)) }