package vm import ( "fmt" "math" "math/big" ) type OpType int const ( tNorm = iota tData tExtro tCrypto ) type TxCallback func(opType OpType) bool // Simple push/pop stack mechanism type Stack struct { data []*big.Int } func NewStack() *Stack { return &Stack{} } func (st *Stack) Data() []*big.Int { return st.data } func (st *Stack) Len() int { return len(st.data) } func (st *Stack) Pop() *big.Int { str := st.data[len(st.data)-1] copy(st.data[:len(st.data)-1], st.data[:len(st.data)-1]) st.data = st.data[:len(st.data)-1] return str } func (st *Stack) Popn() (*big.Int, *big.Int) { ints := st.data[len(st.data)-2:] copy(st.data[:len(st.data)-2], st.data[:len(st.data)-2]) st.data = st.data[:len(st.data)-2] return ints[0], ints[1] } func (st *Stack) Peek() *big.Int { str := st.data[len(st.data)-1] return str } func (st *Stack) Peekn() (*big.Int, *big.Int) { ints := st.data[len(st.data)-2:] return ints[0], ints[1] } func (st *Stack) Swapn(n int) (*big.Int, *big.Int) { st.data[len(st.data)-n], st.data[len(st.data)-1] = st.data[len(st.data)-1], st.data[len(st.data)-n] return st.data[len(st.data)-n], st.data[len(st.data)-1] } func (st *Stack) Dupn(n int) *big.Int { st.Push(st.data[len(st.data)-n]) return st.Peek() } func (st *Stack) Push(d *big.Int) { st.data = append(st.data, new(big.Int).Set(d)) } func (st *Stack) Get(amount *big.Int) []*big.Int { // offset + size <= len(data) length := big.NewInt(int64(len(st.data))) if amount.Cmp(length) <= 0 { start := new(big.Int).Sub(length, amount) return st.data[start.Int64():length.Int64()] } return nil } func (st *Stack) require(n int) { if st.Len() < n { panic(fmt.Sprintf("stack underflow (%d <=> %d)", st.Len(), n)) } } func (st *Stack) Print() { fmt.Println("### stack ###") if len(st.data) > 0 { for i, val := range st.data { fmt.Printf("%-3d %v\n", i, val) } } else { fmt.Println("-- empty --") } fmt.Println("#############") } type Memory struct { store []byte } func NewMemory() *Memory { return &Memory{nil} } func (m *Memory) Set(offset, size uint64, value []byte) { if len(value) > 0 { totSize := offset + size lenSize := uint64(len(m.store) - 1) if totSize > lenSize { // Calculate the diff between the sizes diff := totSize - lenSize if diff > 0 { // Create a new empty slice and append it newSlice := make([]byte, diff-1) // Resize slice m.store = append(m.store, newSlice...) } } copy(m.store[offset:offset+size], value) } } func (m *Memory) Resize(size uint64) { if uint64(m.Len()) < size { m.store = append(m.store, make([]byte, size-uint64(m.Len()))...) } } func (m *Memory) Get(offset, size int64) []byte { if len(m.store) > int(offset) { end := int(math.Min(float64(len(m.store)), float64(offset+size))) return m.store[offset:end] } return nil } func (self *Memory) Geti(offset, size int64) (cpy []byte) { if size == 0 { return nil } if len(self.store) > int(offset) { cpy = make([]byte, size) copy(cpy, self.store[offset:offset+size]) return } return } func (m *Memory) Len() int { return len(m.store) } func (m *Memory) Data() []byte { return m.store } func (m *Memory) Print() { fmt.Printf("### mem %d bytes ###\n", len(m.store)) if len(m.store) > 0 { addr := 0 for i := 0; i+32 <= len(m.store); i += 32 { fmt.Printf("%03d: % x\n", addr, m.store[i:i+32]) addr++ } } else { fmt.Println("-- empty --") } fmt.Println("####################") }