// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package abi import ( "fmt" "reflect" "strings" ) // indirect recursively dereferences the value until it either gets the value // or finds a big.Int func indirect(v reflect.Value) reflect.Value { if v.Kind() == reflect.Ptr && v.Elem().Type() != derefbigT { return indirect(v.Elem()) } return v } // indirectInterfaceOrPtr recursively dereferences the value until value is not interface. func indirectInterfaceOrPtr(v reflect.Value) reflect.Value { if (v.Kind() == reflect.Interface || v.Kind() == reflect.Ptr) && v.Elem().IsValid() { return indirect(v.Elem()) } return v } // reflectIntKind returns the reflect using the given size and // unsignedness. func reflectIntKindAndType(unsigned bool, size int) (reflect.Kind, reflect.Type) { if unsigned { switch size { case 8: return reflect.Uint8, uint8T case 16: return reflect.Uint16, uint16T case 32: return reflect.Uint32, uint32T case 64: return reflect.Uint64, uint64T } } switch size { case 8: return reflect.Int8, int8T case 16: return reflect.Int16, int16T case 32: return reflect.Int32, int32T case 64: return reflect.Int64, int64T } return reflect.Ptr, bigT } // mustArrayToBytesSlice creates a new byte slice with the exact same size as value // and copies the bytes in value to the new slice. func mustArrayToByteSlice(value reflect.Value) reflect.Value { slice := reflect.MakeSlice(reflect.TypeOf([]byte{}), value.Len(), value.Len()) reflect.Copy(slice, value) return slice } // set attempts to assign src to dst by either setting, copying or otherwise. // // set is a bit more lenient when it comes to assignment and doesn't force an as // strict ruleset as bare `reflect` does. func set(dst, src reflect.Value) error { dstType, srcType := dst.Type(), src.Type() switch { case dstType.Kind() == reflect.Interface && dst.Elem().IsValid(): return set(dst.Elem(), src) case dstType.Kind() == reflect.Ptr && dstType.Elem() != derefbigT: return set(dst.Elem(), src) case srcType.AssignableTo(dstType) && dst.CanSet(): dst.Set(src) case dstType.Kind() == reflect.Slice && srcType.Kind() == reflect.Slice && dst.CanSet(): setSlice(dst, src) default: return fmt.Errorf("abi: cannot unmarshal %v in to %v", src.Type(), dst.Type()) } return nil } // setSlice attempts to assign src to dst when slices are not assignable by default // e.g. src: [][]byte -> dst: [][15]byte // setSlice ignores if we cannot copy all of src' elements. func setSlice(dst, src reflect.Value) { slice := reflect.MakeSlice(dst.Type(), src.Len(), src.Len()) for i := 0; i < src.Len(); i++ { reflect.Copy(slice.Index(i), src.Index(i)) } dst.Set(slice) } // requireAssignable assures that `dest` is a pointer and it's not an interface. func requireAssignable(dst, src reflect.Value) error { if dst.Kind() != reflect.Ptr && dst.Kind() != reflect.Interface { return fmt.Errorf("abi: cannot unmarshal %v into %v", src.Type(), dst.Type()) } return nil } // requireUnpackKind verifies preconditions for unpacking `args` into `kind` func requireUnpackKind(v reflect.Value, minLength int, args Arguments) error { switch v.Kind() { case reflect.Struct: case reflect.Slice, reflect.Array: if v.Len() < minLength { return fmt.Errorf("abi: insufficient number of elements in the list/array for unpack, want %d, got %d", minLength, v.Len()) } default: return fmt.Errorf("abi: cannot unmarshal tuple into %v", v.Type()) } return nil } // mapArgNamesToStructFields maps a slice of argument names to struct fields. // first round: for each Exportable field that contains a `abi:""` tag // and this field name exists in the given argument name list, pair them together. // second round: for each argument name that has not been already linked, // find what variable is expected to be mapped into, if it exists and has not been // used, pair them. // Note this function assumes the given value is a struct value. func mapArgNamesToStructFields(argNames []string, value reflect.Value) (map[string]string, error) { typ := value.Type() abi2struct := make(map[string]string) struct2abi := make(map[string]string) // first round ~~~ for i := 0; i < typ.NumField(); i++ { structFieldName := typ.Field(i).Name // skip private struct fields. if structFieldName[:1] != strings.ToUpper(structFieldName[:1]) { continue } // skip fields that have no abi:"" tag. tagName, ok := typ.Field(i).Tag.Lookup("abi") if !ok { continue } // check if tag is empty. if tagName == "" { return nil, fmt.Errorf("struct: abi tag in '%s' is empty", structFieldName) } // check which argument field matches with the abi tag. found := false for _, arg := range argNames { if arg == tagName { if abi2struct[arg] != "" { return nil, fmt.Errorf("struct: abi tag in '%s' already mapped", structFieldName) } // pair them abi2struct[arg] = structFieldName struct2abi[structFieldName] = arg found = true } } // check if this tag has been mapped. if !found { return nil, fmt.Errorf("struct: abi tag '%s' defined but not found in abi", tagName) } } // second round ~~~ for _, argName := range argNames { structFieldName := ToCamelCase(argName) if structFieldName == "" { return nil, fmt.Errorf("abi: purely underscored output cannot unpack to struct") } // this abi has already been paired, skip it... unless there exists another, yet unassigned // struct field with the same field name. If so, raise an error: // abi: [ { "name": "value" } ] // struct { Value *big.Int , Value1 *big.Int `abi:"value"`} if abi2struct[argName] != "" { if abi2struct[argName] != structFieldName && struct2abi[structFieldName] == "" && value.FieldByName(structFieldName).IsValid() { return nil, fmt.Errorf("abi: multiple variables maps to the same abi field '%s'", argName) } continue } // return an error if this struct field has already been paired. if struct2abi[structFieldName] != "" { return nil, fmt.Errorf("abi: multiple outputs mapping to the same struct field '%s'", structFieldName) } if value.FieldByName(structFieldName).IsValid() { // pair them abi2struct[argName] = structFieldName struct2abi[structFieldName] = argName } else { // not paired, but annotate as used, to detect cases like // abi : [ { "name": "value" }, { "name": "_value" } ] // struct { Value *big.Int } struct2abi[structFieldName] = argName } } return abi2struct, nil }