// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. // This file contains the implementation for interacting with the Ledger hardware // wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo: // https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc package usbwallet import ( "encoding/binary" "encoding/hex" "errors" "fmt" "io" "math/big" "github.com/ethereum/go-ethereum/accounts" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/hexutil" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" ) // ledgerOpcode is an enumeration encoding the supported Ledger opcodes. type ledgerOpcode byte // ledgerParam1 is an enumeration encoding the supported Ledger parameters for // specific opcodes. The same parameter values may be reused between opcodes. type ledgerParam1 byte // ledgerParam2 is an enumeration encoding the supported Ledger parameters for // specific opcodes. The same parameter values may be reused between opcodes. type ledgerParam2 byte const ( ledgerOpRetrieveAddress ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path ledgerOpSignTransaction ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration ledgerOpSignTypedMessage ledgerOpcode = 0x0c // Signs an Ethereum message following the EIP 712 specification ledgerP1DirectlyFetchAddress ledgerParam1 = 0x00 // Return address directly from the wallet ledgerP1InitTypedMessageData ledgerParam1 = 0x00 // First chunk of Typed Message data ledgerP1InitTransactionData ledgerParam1 = 0x00 // First transaction data block for signing ledgerP1ContTransactionData ledgerParam1 = 0x80 // Subsequent transaction data block for signing ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address ) // errLedgerReplyInvalidHeader is the error message returned by a Ledger data exchange // if the device replies with a mismatching header. This usually means the device // is in browser mode. var errLedgerReplyInvalidHeader = errors.New("ledger: invalid reply header") // errLedgerInvalidVersionReply is the error message returned by a Ledger version retrieval // when a response does arrive, but it does not contain the expected data. var errLedgerInvalidVersionReply = errors.New("ledger: invalid version reply") // ledgerDriver implements the communication with a Ledger hardware wallet. type ledgerDriver struct { device io.ReadWriter // USB device connection to communicate through version [3]byte // Current version of the Ledger firmware (zero if app is offline) browser bool // Flag whether the Ledger is in browser mode (reply channel mismatch) failure error // Any failure that would make the device unusable log log.Logger // Contextual logger to tag the ledger with its id } // newLedgerDriver creates a new instance of a Ledger USB protocol driver. func newLedgerDriver(logger log.Logger) driver { return &ledgerDriver{ log: logger, } } // Status implements usbwallet.driver, returning various states the Ledger can // currently be in. func (w *ledgerDriver) Status() (string, error) { if w.failure != nil { return fmt.Sprintf("Failed: %v", w.failure), w.failure } if w.browser { return "Ethereum app in browser mode", w.failure } if w.offline() { return "Ethereum app offline", w.failure } return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2]), w.failure } // offline returns whether the wallet and the Ethereum app is offline or not. // // The method assumes that the state lock is held! func (w *ledgerDriver) offline() bool { return w.version == [3]byte{0, 0, 0} } // Open implements usbwallet.driver, attempting to initialize the connection to the // Ledger hardware wallet. The Ledger does not require a user passphrase, so that // parameter is silently discarded. func (w *ledgerDriver) Open(device io.ReadWriter, passphrase string) error { w.device, w.failure = device, nil _, err := w.ledgerDerive(accounts.DefaultBaseDerivationPath) if err != nil { // Ethereum app is not running or in browser mode, nothing more to do, return if err == errLedgerReplyInvalidHeader { w.browser = true } return nil } // Try to resolve the Ethereum app's version, will fail prior to v1.0.2 if w.version, err = w.ledgerVersion(); err != nil { w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1 } return nil } // Close implements usbwallet.driver, cleaning up and metadata maintained within // the Ledger driver. func (w *ledgerDriver) Close() error { w.browser, w.version = false, [3]byte{} return nil } // Heartbeat implements usbwallet.driver, performing a sanity check against the // Ledger to see if it's still online. func (w *ledgerDriver) Heartbeat() error { if _, err := w.ledgerVersion(); err != nil && err != errLedgerInvalidVersionReply { w.failure = err return err } return nil } // Derive implements usbwallet.driver, sending a derivation request to the Ledger // and returning the Ethereum address located on that derivation path. func (w *ledgerDriver) Derive(path accounts.DerivationPath) (common.Address, error) { return w.ledgerDerive(path) } // SignTx implements usbwallet.driver, sending the transaction to the Ledger and // waiting for the user to confirm or deny the transaction. // // Note, if the version of the Ethereum application running on the Ledger wallet is // too old to sign EIP-155 transactions, but such is requested nonetheless, an error // will be returned opposed to silently signing in Homestead mode. func (w *ledgerDriver) SignTx(path accounts.DerivationPath, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) { // If the Ethereum app doesn't run, abort if w.offline() { return common.Address{}, nil, accounts.ErrWalletClosed } // Ensure the wallet is capable of signing the given transaction if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 { //lint:ignore ST1005 brand name displayed on the console return common.Address{}, nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2]) } // All infos gathered and metadata checks out, request signing return w.ledgerSign(path, tx, chainID) } // SignTypedMessage implements usbwallet.driver, sending the message to the Ledger and // waiting for the user to sign or deny the transaction. // // Note: this was introduced in the ledger 1.5.0 firmware func (w *ledgerDriver) SignTypedMessage(path accounts.DerivationPath, domainHash []byte, messageHash []byte) ([]byte, error) { // If the Ethereum app doesn't run, abort if w.offline() { return nil, accounts.ErrWalletClosed } // Ensure the wallet is capable of signing the given transaction if w.version[0] < 1 && w.version[1] < 5 { //lint:ignore ST1005 brand name displayed on the console return nil, fmt.Errorf("Ledger version >= 1.5.0 required for EIP-712 signing (found version v%d.%d.%d)", w.version[0], w.version[1], w.version[2]) } // All infos gathered and metadata checks out, request signing return w.ledgerSignTypedMessage(path, domainHash, messageHash) } // ledgerVersion retrieves the current version of the Ethereum wallet app running // on the Ledger wallet. // // The version retrieval protocol is defined as follows: // // CLA | INS | P1 | P2 | Lc | Le // ----+-----+----+----+----+--- // E0 | 06 | 00 | 00 | 00 | 04 // // With no input data, and the output data being: // // Description | Length // ---------------------------------------------------+-------- // Flags 01: arbitrary data signature enabled by user | 1 byte // Application major version | 1 byte // Application minor version | 1 byte // Application patch version | 1 byte func (w *ledgerDriver) ledgerVersion() ([3]byte, error) { // Send the request and wait for the response reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil) if err != nil { return [3]byte{}, err } if len(reply) != 4 { return [3]byte{}, errLedgerInvalidVersionReply } // Cache the version for future reference var version [3]byte copy(version[:], reply[1:]) return version, nil } // ledgerDerive retrieves the currently active Ethereum address from a Ledger // wallet at the specified derivation path. // // The address derivation protocol is defined as follows: // // CLA | INS | P1 | P2 | Lc | Le // ----+-----+----+----+-----+--- // E0 | 02 | 00 return address // 01 display address and confirm before returning // | 00: do not return the chain code // | 01: return the chain code // | var | 00 // // Where the input data is: // // Description | Length // -------------------------------------------------+-------- // Number of BIP 32 derivations to perform (max 10) | 1 byte // First derivation index (big endian) | 4 bytes // ... | 4 bytes // Last derivation index (big endian) | 4 bytes // // And the output data is: // // Description | Length // ------------------------+------------------- // Public Key length | 1 byte // Uncompressed Public Key | arbitrary // Ethereum address length | 1 byte // Ethereum address | 40 bytes hex ascii // Chain code if requested | 32 bytes func (w *ledgerDriver) ledgerDerive(derivationPath []uint32) (common.Address, error) { // Flatten the derivation path into the Ledger request path := make([]byte, 1+4*len(derivationPath)) path[0] = byte(len(derivationPath)) for i, component := range derivationPath { binary.BigEndian.PutUint32(path[1+4*i:], component) } // Send the request and wait for the response reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path) if err != nil { return common.Address{}, err } // Discard the public key, we don't need that for now if len(reply) < 1 || len(reply) < 1+int(reply[0]) { return common.Address{}, errors.New("reply lacks public key entry") } reply = reply[1+int(reply[0]):] // Extract the Ethereum hex address string if len(reply) < 1 || len(reply) < 1+int(reply[0]) { return common.Address{}, errors.New("reply lacks address entry") } hexstr := reply[1 : 1+int(reply[0])] // Decode the hex sting into an Ethereum address and return var address common.Address if _, err = hex.Decode(address[:], hexstr); err != nil { return common.Address{}, err } return address, nil } // ledgerSign sends the transaction to the Ledger wallet, and waits for the user // to confirm or deny the transaction. // // The transaction signing protocol is defined as follows: // // CLA | INS | P1 | P2 | Lc | Le // ----+-----+----+----+-----+--- // E0 | 04 | 00: first transaction data block // 80: subsequent transaction data block // | 00 | variable | variable // // Where the input for the first transaction block (first 255 bytes) is: // // Description | Length // -------------------------------------------------+---------- // Number of BIP 32 derivations to perform (max 10) | 1 byte // First derivation index (big endian) | 4 bytes // ... | 4 bytes // Last derivation index (big endian) | 4 bytes // RLP transaction chunk | arbitrary // // And the input for subsequent transaction blocks (first 255 bytes) are: // // Description | Length // ----------------------+---------- // RLP transaction chunk | arbitrary // // And the output data is: // // Description | Length // ------------+--------- // signature V | 1 byte // signature R | 32 bytes // signature S | 32 bytes func (w *ledgerDriver) ledgerSign(derivationPath []uint32, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) { // Flatten the derivation path into the Ledger request path := make([]byte, 1+4*len(derivationPath)) path[0] = byte(len(derivationPath)) for i, component := range derivationPath { binary.BigEndian.PutUint32(path[1+4*i:], component) } // Create the transaction RLP based on whether legacy or EIP155 signing was requested var ( txrlp []byte err error ) if chainID == nil { if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil { return common.Address{}, nil, err } } else { if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil { return common.Address{}, nil, err } } payload := append(path, txrlp...) // Send the request and wait for the response var ( op = ledgerP1InitTransactionData reply []byte ) for len(payload) > 0 { // Calculate the size of the next data chunk chunk := 255 if chunk > len(payload) { chunk = len(payload) } // Send the chunk over, ensuring it's processed correctly reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk]) if err != nil { return common.Address{}, nil, err } // Shift the payload and ensure subsequent chunks are marked as such payload = payload[chunk:] op = ledgerP1ContTransactionData } // Extract the Ethereum signature and do a sanity validation if len(reply) != crypto.SignatureLength { return common.Address{}, nil, errors.New("reply lacks signature") } signature := append(reply[1:], reply[0]) // Create the correct signer and signature transform based on the chain ID var signer types.Signer if chainID == nil { signer = new(types.HomesteadSigner) } else { signer = types.NewEIP155Signer(chainID) signature[64] -= byte(chainID.Uint64()*2 + 35) } signed, err := tx.WithSignature(signer, signature) if err != nil { return common.Address{}, nil, err } sender, err := types.Sender(signer, signed) if err != nil { return common.Address{}, nil, err } return sender, signed, nil } // ledgerSignTypedMessage sends the transaction to the Ledger wallet, and waits for the user // to confirm or deny the transaction. // // The signing protocol is defined as follows: // // CLA | INS | P1 | P2 | Lc | Le // ----+-----+----+-----------------------------+-----+--- // E0 | 0C | 00 | implementation version : 00 | variable | variable // // Where the input is: // // Description | Length // -------------------------------------------------+---------- // Number of BIP 32 derivations to perform (max 10) | 1 byte // First derivation index (big endian) | 4 bytes // ... | 4 bytes // Last derivation index (big endian) | 4 bytes // domain hash | 32 bytes // message hash | 32 bytes // // // // And the output data is: // // Description | Length // ------------+--------- // signature V | 1 byte // signature R | 32 bytes // signature S | 32 bytes func (w *ledgerDriver) ledgerSignTypedMessage(derivationPath []uint32, domainHash []byte, messageHash []byte) ([]byte, error) { // Flatten the derivation path into the Ledger request path := make([]byte, 1+4*len(derivationPath)) path[0] = byte(len(derivationPath)) for i, component := range derivationPath { binary.BigEndian.PutUint32(path[1+4*i:], component) } // Create the 712 message payload := append(path, domainHash...) payload = append(payload, messageHash...) // Send the request and wait for the response var ( op = ledgerP1InitTypedMessageData reply []byte err error ) // Send the message over, ensuring it's processed correctly reply, err = w.ledgerExchange(ledgerOpSignTypedMessage, op, 0, payload) if err != nil { return nil, err } // Extract the Ethereum signature and do a sanity validation if len(reply) != crypto.SignatureLength { return nil, errors.New("reply lacks signature") } signature := append(reply[1:], reply[0]) return signature, nil } // ledgerExchange performs a data exchange with the Ledger wallet, sending it a // message and retrieving the response. // // The common transport header is defined as follows: // // Description | Length // --------------------------------------+---------- // Communication channel ID (big endian) | 2 bytes // Command tag | 1 byte // Packet sequence index (big endian) | 2 bytes // Payload | arbitrary // // The Communication channel ID allows commands multiplexing over the same // physical link. It is not used for the time being, and should be set to 0101 // to avoid compatibility issues with implementations ignoring a leading 00 byte. // // The Command tag describes the message content. Use TAG_APDU (0x05) for standard // APDU payloads, or TAG_PING (0x02) for a simple link test. // // The Packet sequence index describes the current sequence for fragmented payloads. // The first fragment index is 0x00. // // APDU Command payloads are encoded as follows: // // Description | Length // ----------------------------------- // APDU length (big endian) | 2 bytes // APDU CLA | 1 byte // APDU INS | 1 byte // APDU P1 | 1 byte // APDU P2 | 1 byte // APDU length | 1 byte // Optional APDU data | arbitrary func (w *ledgerDriver) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) { // Construct the message payload, possibly split into multiple chunks apdu := make([]byte, 2, 7+len(data)) binary.BigEndian.PutUint16(apdu, uint16(5+len(data))) apdu = append(apdu, []byte{0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}...) apdu = append(apdu, data...) // Stream all the chunks to the device header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended chunk := make([]byte, 64) space := len(chunk) - len(header) for i := 0; len(apdu) > 0; i++ { // Construct the new message to stream chunk = append(chunk[:0], header...) binary.BigEndian.PutUint16(chunk[3:], uint16(i)) if len(apdu) > space { chunk = append(chunk, apdu[:space]...) apdu = apdu[space:] } else { chunk = append(chunk, apdu...) apdu = nil } // Send over to the device w.log.Trace("Data chunk sent to the Ledger", "chunk", hexutil.Bytes(chunk)) if _, err := w.device.Write(chunk); err != nil { return nil, err } } // Stream the reply back from the wallet in 64 byte chunks var reply []byte chunk = chunk[:64] // Yeah, we surely have enough space for { // Read the next chunk from the Ledger wallet if _, err := io.ReadFull(w.device, chunk); err != nil { return nil, err } w.log.Trace("Data chunk received from the Ledger", "chunk", hexutil.Bytes(chunk)) // Make sure the transport header matches if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 { return nil, errLedgerReplyInvalidHeader } // If it's the first chunk, retrieve the total message length var payload []byte if chunk[3] == 0x00 && chunk[4] == 0x00 { reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7]))) payload = chunk[7:] } else { payload = chunk[5:] } // Append to the reply and stop when filled up if left := cap(reply) - len(reply); left > len(payload) { reply = append(reply, payload...) } else { reply = append(reply, payload[:left]...) break } } return reply[:len(reply)-2], nil }