// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // This file contains the implementation for interacting with the Ledger hardware // wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo: // https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc package usbwallet import ( "context" "encoding/binary" "encoding/hex" "errors" "fmt" "io" "math/big" "sync" "time" ethereum "github.com/ethereum/go-ethereum" "github.com/ethereum/go-ethereum/accounts" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/hexutil" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/rlp" "github.com/karalabe/hid" ) // Maximum time between wallet health checks to detect USB unplugs. const ledgerHeartbeatCycle = time.Second // Minimum time to wait between self derivation attempts, even it the user is // requesting accounts like crazy. const ledgerSelfDeriveThrottling = time.Second // ledgerOpcode is an enumeration encoding the supported Ledger opcodes. type ledgerOpcode byte // ledgerParam1 is an enumeration encoding the supported Ledger parameters for // specific opcodes. The same parameter values may be reused between opcodes. type ledgerParam1 byte // ledgerParam2 is an enumeration encoding the supported Ledger parameters for // specific opcodes. The same parameter values may be reused between opcodes. type ledgerParam2 byte const ( ledgerOpRetrieveAddress ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path ledgerOpSignTransaction ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration ledgerP1DirectlyFetchAddress ledgerParam1 = 0x00 // Return address directly from the wallet ledgerP1ConfirmFetchAddress ledgerParam1 = 0x01 // Require a user confirmation before returning the address ledgerP1InitTransactionData ledgerParam1 = 0x00 // First transaction data block for signing ledgerP1ContTransactionData ledgerParam1 = 0x80 // Subsequent transaction data block for signing ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address ledgerP2ReturnAddressChainCode ledgerParam2 = 0x01 // Require a user confirmation before returning the address ) // errReplyInvalidHeader is the error message returned by a Ledger data exchange // if the device replies with a mismatching header. This usually means the device // is in browser mode. var errReplyInvalidHeader = errors.New("invalid reply header") // errInvalidVersionReply is the error message returned by a Ledger version retrieval // when a response does arrive, but it does not contain the expected data. var errInvalidVersionReply = errors.New("invalid version reply") // ledgerWallet represents a live USB Ledger hardware wallet. type ledgerWallet struct { hub *LedgerHub // USB hub the device originates from (TODO(karalabe): remove if hotplug lands on Windows) url *accounts.URL // Textual URL uniquely identifying this wallet info hid.DeviceInfo // Known USB device infos about the wallet device *hid.Device // USB device advertising itself as a Ledger wallet failure error // Any failure that would make the device unusable version [3]byte // Current version of the Ledger Ethereum app (zero if app is offline) browser bool // Flag whether the Ledger is in browser mode (reply channel mismatch) accounts []accounts.Account // List of derive accounts pinned on the Ledger paths map[common.Address]accounts.DerivationPath // Known derivation paths for signing operations deriveNextPath accounts.DerivationPath // Next derivation path for account auto-discovery deriveNextAddr common.Address // Next derived account address for auto-discovery deriveChain ethereum.ChainStateReader // Blockchain state reader to discover used account with deriveReq chan chan struct{} // Channel to request a self-derivation on deriveQuit chan chan error // Channel to terminate the self-deriver with healthQuit chan chan error // Locking a hardware wallet is a bit special. Since hardware devices are lower // performing, any communication with them might take a non negligible amount of // time. Worse still, waiting for user confirmation can take arbitrarily long, // but exclusive communication must be upheld during. Locking the entire wallet // in the mean time however would stall any parts of the system that don't want // to communicate, just read some state (e.g. list the accounts). // // As such, a hardware wallet needs two locks to function correctly. A state // lock can be used to protect the wallet's software-side internal state, which // must not be held exlusively during hardware communication. A communication // lock can be used to achieve exclusive access to the device itself, this one // however should allow "skipping" waiting for operations that might want to // use the device, but can live without too (e.g. account self-derivation). // // Since we have two locks, it's important to know how to properly use them: // - Communication requires the `device` to not change, so obtaining the // commsLock should be done after having a stateLock. // - Communication must not disable read access to the wallet state, so it // must only ever hold a *read* lock to stateLock. commsLock chan struct{} // Mutex (buf=1) for the USB comms without keeping the state locked stateLock sync.RWMutex // Protects read and write access to the wallet struct fields log log.Logger // Contextual logger to tag the ledger with its id } // URL implements accounts.Wallet, returning the URL of the Ledger device. func (w *ledgerWallet) URL() accounts.URL { return *w.url // Immutable, no need for a lock } // Status implements accounts.Wallet, always whether the Ledger is opened, closed // or whether the Ethereum app was not started on it. func (w *ledgerWallet) Status() string { w.stateLock.RLock() // No device communication, state lock is enough defer w.stateLock.RUnlock() if w.failure != nil { return fmt.Sprintf("Failed: %v", w.failure) } if w.device == nil { return "Closed" } if w.browser { return "Ethereum app in browser mode" } if w.offline() { return "Ethereum app offline" } return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2]) } // offline returns whether the wallet and the Ethereum app is offline or not. // // The method assumes that the state lock is held! func (w *ledgerWallet) offline() bool { return w.version == [3]byte{0, 0, 0} } // failed returns if the USB device wrapped by the wallet failed for some reason. // This is used by the device scanner to report failed wallets as departed. // // The method assumes that the state lock is *not* held! func (w *ledgerWallet) failed() bool { w.stateLock.RLock() // No device communication, state lock is enough defer w.stateLock.RUnlock() return w.failure != nil } // Open implements accounts.Wallet, attempting to open a USB connection to the // Ledger hardware wallet. The Ledger does not require a user passphrase, so that // parameter is silently discarded. func (w *ledgerWallet) Open(passphrase string) error { w.stateLock.Lock() // State lock is enough since there's no connection yet at this point defer w.stateLock.Unlock() // If the wallet was already opened, don't try to open again if w.device != nil { return accounts.ErrWalletAlreadyOpen } // Otherwise iterate over all USB devices and find this again (no way to directly do this) device, err := w.info.Open() if err != nil { return err } // Wallet seems to be successfully opened, guess if the Ethereum app is running w.device = device w.commsLock = make(chan struct{}, 1) w.commsLock <- struct{}{} // Enable lock w.paths = make(map[common.Address]accounts.DerivationPath) w.deriveReq = make(chan chan struct{}) w.deriveQuit = make(chan chan error) w.healthQuit = make(chan chan error) defer func() { go w.heartbeat() go w.selfDerive() }() if _, err = w.ledgerDerive(accounts.DefaultBaseDerivationPath); err != nil { // Ethereum app is not running or in browser mode, nothing more to do, return if err == errReplyInvalidHeader { w.browser = true } return nil } // Try to resolve the Ethereum app's version, will fail prior to v1.0.2 if w.version, err = w.ledgerVersion(); err != nil { w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1 } return nil } // heartbeat is a health check loop for the Ledger wallets to periodically verify // whether they are still present or if they malfunctioned. It is needed because: // - libusb on Windows doesn't support hotplug, so we can't detect USB unplugs // - communication timeout on the Ledger requires a device power cycle to fix func (w *ledgerWallet) heartbeat() { w.log.Debug("Ledger health-check started") defer w.log.Debug("Ledger health-check stopped") // Execute heartbeat checks until termination or error var ( errc chan error err error ) for errc == nil && err == nil { // Wait until termination is requested or the heartbeat cycle arrives select { case errc = <-w.healthQuit: // Termination requested continue case <-time.After(ledgerHeartbeatCycle): // Heartbeat time } // Execute a tiny data exchange to see responsiveness w.stateLock.RLock() if w.device == nil { // Terminated while waiting for the lock w.stateLock.RUnlock() continue } <-w.commsLock // Don't lock state while resolving version _, err = w.ledgerVersion() w.commsLock <- struct{}{} w.stateLock.RUnlock() if err != nil && err != errInvalidVersionReply { w.stateLock.Lock() // Lock state to tear the wallet down w.failure = err w.close() w.stateLock.Unlock() } // Ignore non hardware related errors err = nil } // In case of error, wait for termination if err != nil { w.log.Debug("Ledger health-check failed", "err", err) errc = <-w.healthQuit } errc <- err } // Close implements accounts.Wallet, closing the USB connection to the Ledger. func (w *ledgerWallet) Close() error { // Ensure the wallet was opened w.stateLock.RLock() hQuit, dQuit := w.healthQuit, w.deriveQuit w.stateLock.RUnlock() // Terminate the health checks var herr error if hQuit != nil { errc := make(chan error) hQuit <- errc herr = <-errc // Save for later, we *must* close the USB } // Terminate the self-derivations var derr error if dQuit != nil { errc := make(chan error) dQuit <- errc derr = <-errc // Save for later, we *must* close the USB } // Terminate the device connection w.stateLock.Lock() defer w.stateLock.Unlock() w.healthQuit = nil w.deriveQuit = nil w.deriveReq = nil if err := w.close(); err != nil { return err } if herr != nil { return herr } return derr } // close is the internal wallet closer that terminates the USB connection and // resets all the fields to their defaults. // // Note, close assumes the state lock is held! func (w *ledgerWallet) close() error { // Allow duplicate closes, especially for health-check failures if w.device == nil { return nil } // Close the device, clear everything, then return w.device.Close() w.device = nil w.browser, w.version = false, [3]byte{} w.accounts, w.paths = nil, nil return nil } // Accounts implements accounts.Wallet, returning the list of accounts pinned to // the Ledger hardware wallet. If self-derivation was enabled, the account list // is periodically expanded based on current chain state. func (w *ledgerWallet) Accounts() []accounts.Account { // Attempt self-derivation if it's running reqc := make(chan struct{}, 1) select { case w.deriveReq <- reqc: // Self-derivation request accepted, wait for it <-reqc default: // Self-derivation offline, throttled or busy, skip } // Return whatever account list we ended up with w.stateLock.RLock() defer w.stateLock.RUnlock() cpy := make([]accounts.Account, len(w.accounts)) copy(cpy, w.accounts) return cpy } // selfDerive is an account derivation loop that upon request attempts to find // new non-zero accounts. func (w *ledgerWallet) selfDerive() { w.log.Debug("Ledger self-derivation started") defer w.log.Debug("Ledger self-derivation stopped") // Execute self-derivations until termination or error var ( reqc chan struct{} errc chan error err error ) for errc == nil && err == nil { // Wait until either derivation or termination is requested select { case errc = <-w.deriveQuit: // Termination requested continue case reqc = <-w.deriveReq: // Account discovery requested } // Derivation needs a chain and device access, skip if either unavailable w.stateLock.RLock() if w.device == nil || w.deriveChain == nil || w.offline() { w.stateLock.RUnlock() reqc <- struct{}{} continue } select { case <-w.commsLock: default: w.stateLock.RUnlock() reqc <- struct{}{} continue } // Device lock obtained, derive the next batch of accounts var ( accs []accounts.Account paths []accounts.DerivationPath nextAddr = w.deriveNextAddr nextPath = w.deriveNextPath context = context.Background() ) for empty := false; !empty; { // Retrieve the next derived Ethereum account if nextAddr == (common.Address{}) { if nextAddr, err = w.ledgerDerive(nextPath); err != nil { w.log.Warn("Ledger account derivation failed", "err", err) break } } // Check the account's status against the current chain state var ( balance *big.Int nonce uint64 ) balance, err = w.deriveChain.BalanceAt(context, nextAddr, nil) if err != nil { w.log.Warn("Ledger balance retrieval failed", "err", err) break } nonce, err = w.deriveChain.NonceAt(context, nextAddr, nil) if err != nil { w.log.Warn("Ledger nonce retrieval failed", "err", err) break } // If the next account is empty, stop self-derivation, but add it nonetheless if balance.Sign() == 0 && nonce == 0 { empty = true } // We've just self-derived a new account, start tracking it locally path := make(accounts.DerivationPath, len(nextPath)) copy(path[:], nextPath[:]) paths = append(paths, path) account := accounts.Account{ Address: nextAddr, URL: accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)}, } accs = append(accs, account) // Display a log message to the user for new (or previously empty accounts) if _, known := w.paths[nextAddr]; !known || (!empty && nextAddr == w.deriveNextAddr) { w.log.Info("Ledger discovered new account", "address", nextAddr, "path", path, "balance", balance, "nonce", nonce) } // Fetch the next potential account if !empty { nextAddr = common.Address{} nextPath[len(nextPath)-1]++ } } // Self derivation complete, release device lock w.commsLock <- struct{}{} w.stateLock.RUnlock() // Insert any accounts successfully derived w.stateLock.Lock() for i := 0; i < len(accs); i++ { if _, ok := w.paths[accs[i].Address]; !ok { w.accounts = append(w.accounts, accs[i]) w.paths[accs[i].Address] = paths[i] } } // Shift the self-derivation forward // TODO(karalabe): don't overwrite changes from wallet.SelfDerive w.deriveNextAddr = nextAddr w.deriveNextPath = nextPath w.stateLock.Unlock() // Notify the user of termination and loop after a bit of time (to avoid trashing) reqc <- struct{}{} if err == nil { select { case errc = <-w.deriveQuit: // Termination requested, abort case <-time.After(ledgerSelfDeriveThrottling): // Waited enough, willing to self-derive again } } } // In case of error, wait for termination if err != nil { w.log.Debug("Ledger self-derivation failed", "err", err) errc = <-w.deriveQuit } errc <- err } // Contains implements accounts.Wallet, returning whether a particular account is // or is not pinned into this Ledger instance. Although we could attempt to resolve // unpinned accounts, that would be an non-negligible hardware operation. func (w *ledgerWallet) Contains(account accounts.Account) bool { w.stateLock.RLock() defer w.stateLock.RUnlock() _, exists := w.paths[account.Address] return exists } // Derive implements accounts.Wallet, deriving a new account at the specific // derivation path. If pin is set to true, the account will be added to the list // of tracked accounts. func (w *ledgerWallet) Derive(path accounts.DerivationPath, pin bool) (accounts.Account, error) { // Try to derive the actual account and update its URL if successful w.stateLock.RLock() // Avoid device disappearing during derivation if w.device == nil || w.offline() { w.stateLock.RUnlock() return accounts.Account{}, accounts.ErrWalletClosed } <-w.commsLock // Avoid concurrent hardware access address, err := w.ledgerDerive(path) w.commsLock <- struct{}{} w.stateLock.RUnlock() // If an error occurred or no pinning was requested, return if err != nil { return accounts.Account{}, err } account := accounts.Account{ Address: address, URL: accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)}, } if !pin { return account, nil } // Pinning needs to modify the state w.stateLock.Lock() defer w.stateLock.Unlock() if _, ok := w.paths[address]; !ok { w.accounts = append(w.accounts, account) w.paths[address] = path } return account, nil } // SelfDerive implements accounts.Wallet, trying to discover accounts that the // user used previously (based on the chain state), but ones that he/she did not // explicitly pin to the wallet manually. To avoid chain head monitoring, self // derivation only runs during account listing (and even then throttled). func (w *ledgerWallet) SelfDerive(base accounts.DerivationPath, chain ethereum.ChainStateReader) { w.stateLock.Lock() defer w.stateLock.Unlock() w.deriveNextPath = make(accounts.DerivationPath, len(base)) copy(w.deriveNextPath[:], base[:]) w.deriveNextAddr = common.Address{} w.deriveChain = chain } // SignHash implements accounts.Wallet, however signing arbitrary data is not // supported for Ledger wallets, so this method will always return an error. func (w *ledgerWallet) SignHash(acc accounts.Account, hash []byte) ([]byte, error) { return nil, accounts.ErrNotSupported } // SignTx implements accounts.Wallet. It sends the transaction over to the Ledger // wallet to request a confirmation from the user. It returns either the signed // transaction or a failure if the user denied the transaction. // // Note, if the version of the Ethereum application running on the Ledger wallet is // too old to sign EIP-155 transactions, but such is requested nonetheless, an error // will be returned opposed to silently signing in Homestead mode. func (w *ledgerWallet) SignTx(account accounts.Account, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) { w.stateLock.RLock() // Comms have own mutex, this is for the state fields defer w.stateLock.RUnlock() // If the wallet is closed, or the Ethereum app doesn't run, abort if w.device == nil || w.offline() { return nil, accounts.ErrWalletClosed } // Make sure the requested account is contained within path, ok := w.paths[account.Address] if !ok { return nil, accounts.ErrUnknownAccount } // Ensure the wallet is capable of signing the given transaction if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 { return nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2]) } // All infos gathered and metadata checks out, request signing <-w.commsLock defer func() { w.commsLock <- struct{}{} }() // Ensure the device isn't screwed with while user confirmation is pending // TODO(karalabe): remove if hotplug lands on Windows w.hub.commsLock.RLock() defer w.hub.commsLock.RUnlock() return w.ledgerSign(path, account.Address, tx, chainID) } // SignHashWithPassphrase implements accounts.Wallet, however signing arbitrary // data is not supported for Ledger wallets, so this method will always return // an error. func (w *ledgerWallet) SignHashWithPassphrase(account accounts.Account, passphrase string, hash []byte) ([]byte, error) { return nil, accounts.ErrNotSupported } // SignTxWithPassphrase implements accounts.Wallet, attempting to sign the given // transaction with the given account using passphrase as extra authentication. // Since the Ledger does not support extra passphrases, it is silently ignored. func (w *ledgerWallet) SignTxWithPassphrase(account accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) { return w.SignTx(account, tx, chainID) } // ledgerVersion retrieves the current version of the Ethereum wallet app running // on the Ledger wallet. // // The version retrieval protocol is defined as follows: // // CLA | INS | P1 | P2 | Lc | Le // ----+-----+----+----+----+--- // E0 | 06 | 00 | 00 | 00 | 04 // // With no input data, and the output data being: // // Description | Length // ---------------------------------------------------+-------- // Flags 01: arbitrary data signature enabled by user | 1 byte // Application major version | 1 byte // Application minor version | 1 byte // Application patch version | 1 byte func (w *ledgerWallet) ledgerVersion() ([3]byte, error) { // Send the request and wait for the response reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil) if err != nil { return [3]byte{}, err } if len(reply) != 4 { return [3]byte{}, errInvalidVersionReply } // Cache the version for future reference var version [3]byte copy(version[:], reply[1:]) return version, nil } // ledgerDerive retrieves the currently active Ethereum address from a Ledger // wallet at the specified derivation path. // // The address derivation protocol is defined as follows: // // CLA | INS | P1 | P2 | Lc | Le // ----+-----+----+----+-----+--- // E0 | 02 | 00 return address // 01 display address and confirm before returning // | 00: do not return the chain code // | 01: return the chain code // | var | 00 // // Where the input data is: // // Description | Length // -------------------------------------------------+-------- // Number of BIP 32 derivations to perform (max 10) | 1 byte // First derivation index (big endian) | 4 bytes // ... | 4 bytes // Last derivation index (big endian) | 4 bytes // // And the output data is: // // Description | Length // ------------------------+------------------- // Public Key length | 1 byte // Uncompressed Public Key | arbitrary // Ethereum address length | 1 byte // Ethereum address | 40 bytes hex ascii // Chain code if requested | 32 bytes func (w *ledgerWallet) ledgerDerive(derivationPath []uint32) (common.Address, error) { // Flatten the derivation path into the Ledger request path := make([]byte, 1+4*len(derivationPath)) path[0] = byte(len(derivationPath)) for i, component := range derivationPath { binary.BigEndian.PutUint32(path[1+4*i:], component) } // Send the request and wait for the response reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path) if err != nil { return common.Address{}, err } // Discard the public key, we don't need that for now if len(reply) < 1 || len(reply) < 1+int(reply[0]) { return common.Address{}, errors.New("reply lacks public key entry") } reply = reply[1+int(reply[0]):] // Extract the Ethereum hex address string if len(reply) < 1 || len(reply) < 1+int(reply[0]) { return common.Address{}, errors.New("reply lacks address entry") } hexstr := reply[1 : 1+int(reply[0])] // Decode the hex sting into an Ethereum address and return var address common.Address hex.Decode(address[:], hexstr) return address, nil } // ledgerSign sends the transaction to the Ledger wallet, and waits for the user // to confirm or deny the transaction. // // The transaction signing protocol is defined as follows: // // CLA | INS | P1 | P2 | Lc | Le // ----+-----+----+----+-----+--- // E0 | 04 | 00: first transaction data block // 80: subsequent transaction data block // | 00 | variable | variable // // Where the input for the first transaction block (first 255 bytes) is: // // Description | Length // -------------------------------------------------+---------- // Number of BIP 32 derivations to perform (max 10) | 1 byte // First derivation index (big endian) | 4 bytes // ... | 4 bytes // Last derivation index (big endian) | 4 bytes // RLP transaction chunk | arbitrary // // And the input for subsequent transaction blocks (first 255 bytes) are: // // Description | Length // ----------------------+---------- // RLP transaction chunk | arbitrary // // And the output data is: // // Description | Length // ------------+--------- // signature V | 1 byte // signature R | 32 bytes // signature S | 32 bytes func (w *ledgerWallet) ledgerSign(derivationPath []uint32, address common.Address, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) { // Flatten the derivation path into the Ledger request path := make([]byte, 1+4*len(derivationPath)) path[0] = byte(len(derivationPath)) for i, component := range derivationPath { binary.BigEndian.PutUint32(path[1+4*i:], component) } // Create the transaction RLP based on whether legacy or EIP155 signing was requeste var ( txrlp []byte err error ) if chainID == nil { if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil { return nil, err } } else { if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil { return nil, err } } payload := append(path, txrlp...) // Send the request and wait for the response var ( op = ledgerP1InitTransactionData reply []byte ) for len(payload) > 0 { // Calculate the size of the next data chunk chunk := 255 if chunk > len(payload) { chunk = len(payload) } // Send the chunk over, ensuring it's processed correctly reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk]) if err != nil { return nil, err } // Shift the payload and ensure subsequent chunks are marked as such payload = payload[chunk:] op = ledgerP1ContTransactionData } // Extract the Ethereum signature and do a sanity validation if len(reply) != 65 { return nil, errors.New("reply lacks signature") } signature := append(reply[1:], reply[0]) // Create the correct signer and signature transform based on the chain ID var signer types.Signer if chainID == nil { signer = new(types.HomesteadSigner) } else { signer = types.NewEIP155Signer(chainID) signature[64] = signature[64] - byte(chainID.Uint64()*2+35) } // Inject the final signature into the transaction and sanity check the sender signed, err := tx.WithSignature(signer, signature) if err != nil { return nil, err } sender, err := types.Sender(signer, signed) if err != nil { return nil, err } if sender != address { return nil, fmt.Errorf("signer mismatch: expected %s, got %s", address.Hex(), sender.Hex()) } return signed, nil } // ledgerExchange performs a data exchange with the Ledger wallet, sending it a // message and retrieving the response. // // The common transport header is defined as follows: // // Description | Length // --------------------------------------+---------- // Communication channel ID (big endian) | 2 bytes // Command tag | 1 byte // Packet sequence index (big endian) | 2 bytes // Payload | arbitrary // // The Communication channel ID allows commands multiplexing over the same // physical link. It is not used for the time being, and should be set to 0101 // to avoid compatibility issues with implementations ignoring a leading 00 byte. // // The Command tag describes the message content. Use TAG_APDU (0x05) for standard // APDU payloads, or TAG_PING (0x02) for a simple link test. // // The Packet sequence index describes the current sequence for fragmented payloads. // The first fragment index is 0x00. // // APDU Command payloads are encoded as follows: // // Description | Length // ----------------------------------- // APDU length (big endian) | 2 bytes // APDU CLA | 1 byte // APDU INS | 1 byte // APDU P1 | 1 byte // APDU P2 | 1 byte // APDU length | 1 byte // Optional APDU data | arbitrary func (w *ledgerWallet) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) { // Construct the message payload, possibly split into multiple chunks apdu := make([]byte, 2, 7+len(data)) binary.BigEndian.PutUint16(apdu, uint16(5+len(data))) apdu = append(apdu, []byte{0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}...) apdu = append(apdu, data...) // Stream all the chunks to the device header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended chunk := make([]byte, 64) space := len(chunk) - len(header) for i := 0; len(apdu) > 0; i++ { // Construct the new message to stream chunk = append(chunk[:0], header...) binary.BigEndian.PutUint16(chunk[3:], uint16(i)) if len(apdu) > space { chunk = append(chunk, apdu[:space]...) apdu = apdu[space:] } else { chunk = append(chunk, apdu...) apdu = nil } // Send over to the device w.log.Trace("Data chunk sent to the Ledger", "chunk", hexutil.Bytes(chunk)) if _, err := w.device.Write(chunk); err != nil { return nil, err } } // Stream the reply back from the wallet in 64 byte chunks var reply []byte chunk = chunk[:64] // Yeah, we surely have enough space for { // Read the next chunk from the Ledger wallet if _, err := io.ReadFull(w.device, chunk); err != nil { return nil, err } w.log.Trace("Data chunk received from the Ledger", "chunk", hexutil.Bytes(chunk)) // Make sure the transport header matches if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 { return nil, errReplyInvalidHeader } // If it's the first chunk, retrieve the total message length var payload []byte if chunk[3] == 0x00 && chunk[4] == 0x00 { reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7]))) payload = chunk[7:] } else { payload = chunk[5:] } // Append to the reply and stop when filled up if left := cap(reply) - len(reply); left > len(payload) { reply = append(reply, payload...) } else { reply = append(reply, payload[:left]...) break } } return reply[:len(reply)-2], nil }