// Copyright 2020 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" "errors" "sync" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" ) var ( stPool = sync.Pool{New: func() any { return new(stNode) }} _ = types.TrieHasher((*StackTrie)(nil)) ) // StackTrieOptions contains the configured options for manipulating the stackTrie. type StackTrieOptions struct { Writer func(path []byte, hash common.Hash, blob []byte) // The function to commit the dirty nodes Cleaner func(path []byte) // The function to clean up dangling nodes SkipLeftBoundary bool // Flag whether the nodes on the left boundary are skipped for committing SkipRightBoundary bool // Flag whether the nodes on the right boundary are skipped for committing boundaryGauge metrics.Gauge // Gauge to track how many boundary nodes are met } // NewStackTrieOptions initializes an empty options for stackTrie. func NewStackTrieOptions() *StackTrieOptions { return &StackTrieOptions{} } // WithWriter configures trie node writer within the options. func (o *StackTrieOptions) WithWriter(writer func(path []byte, hash common.Hash, blob []byte)) *StackTrieOptions { o.Writer = writer return o } // WithCleaner configures the cleaner in the option for removing dangling nodes. func (o *StackTrieOptions) WithCleaner(cleaner func(path []byte)) *StackTrieOptions { o.Cleaner = cleaner return o } // WithSkipBoundary configures whether the left and right boundary nodes are // filtered for committing, along with a gauge metrics to track how many // boundary nodes are met. func (o *StackTrieOptions) WithSkipBoundary(skipLeft, skipRight bool, gauge metrics.Gauge) *StackTrieOptions { o.SkipLeftBoundary = skipLeft o.SkipRightBoundary = skipRight o.boundaryGauge = gauge return o } // StackTrie is a trie implementation that expects keys to be inserted // in order. Once it determines that a subtree will no longer be inserted // into, it will hash it and free up the memory it uses. type StackTrie struct { options *StackTrieOptions root *stNode h *hasher first []byte // The (hex-encoded without terminator) key of first inserted entry, tracked as left boundary. last []byte // The (hex-encoded without terminator) key of last inserted entry, tracked as right boundary. } // NewStackTrie allocates and initializes an empty trie. func NewStackTrie(options *StackTrieOptions) *StackTrie { if options == nil { options = NewStackTrieOptions() } return &StackTrie{ options: options, root: stPool.Get().(*stNode), h: newHasher(false), } } // Update inserts a (key, value) pair into the stack trie. func (t *StackTrie) Update(key, value []byte) error { if len(value) == 0 { return errors.New("trying to insert empty (deletion)") } k := keybytesToHex(key) k = k[:len(k)-1] // chop the termination flag if bytes.Compare(t.last, k) >= 0 { return errors.New("non-ascending key order") } // track the first and last inserted entries. if t.first == nil { t.first = append([]byte{}, k...) } if t.last == nil { t.last = append([]byte{}, k...) // allocate key slice } else { t.last = append(t.last[:0], k...) // reuse key slice } t.insert(t.root, k, value, nil) return nil } // MustUpdate is a wrapper of Update and will omit any encountered error but // just print out an error message. func (t *StackTrie) MustUpdate(key, value []byte) { if err := t.Update(key, value); err != nil { log.Error("Unhandled trie error in StackTrie.Update", "err", err) } } // Reset resets the stack trie object to empty state. func (t *StackTrie) Reset() { t.options = NewStackTrieOptions() t.root = stPool.Get().(*stNode) t.first = nil t.last = nil } // stNode represents a node within a StackTrie type stNode struct { typ uint8 // node type (as in branch, ext, leaf) key []byte // key chunk covered by this (leaf|ext) node val []byte // value contained by this node if it's a leaf children [16]*stNode // list of children (for branch and exts) } // newLeaf constructs a leaf node with provided node key and value. The key // will be deep-copied in the function and safe to modify afterwards, but // value is not. func newLeaf(key, val []byte) *stNode { st := stPool.Get().(*stNode) st.typ = leafNode st.key = append(st.key, key...) st.val = val return st } // newExt constructs an extension node with provided node key and child. The // key will be deep-copied in the function and safe to modify afterwards. func newExt(key []byte, child *stNode) *stNode { st := stPool.Get().(*stNode) st.typ = extNode st.key = append(st.key, key...) st.children[0] = child return st } // List all values that stNode#nodeType can hold const ( emptyNode = iota branchNode extNode leafNode hashedNode ) func (n *stNode) reset() *stNode { n.key = n.key[:0] n.val = nil for i := range n.children { n.children[i] = nil } n.typ = emptyNode return n } // Helper function that, given a full key, determines the index // at which the chunk pointed by st.keyOffset is different from // the same chunk in the full key. func (n *stNode) getDiffIndex(key []byte) int { for idx, nibble := range n.key { if nibble != key[idx] { return idx } } return len(n.key) } // Helper function to that inserts a (key, value) pair into // the trie. func (t *StackTrie) insert(st *stNode, key, value []byte, path []byte) { switch st.typ { case branchNode: /* Branch */ idx := int(key[0]) // Unresolve elder siblings for i := idx - 1; i >= 0; i-- { if st.children[i] != nil { if st.children[i].typ != hashedNode { t.hash(st.children[i], append(path, byte(i))) } break } } // Add new child if st.children[idx] == nil { st.children[idx] = newLeaf(key[1:], value) } else { t.insert(st.children[idx], key[1:], value, append(path, key[0])) } case extNode: /* Ext */ // Compare both key chunks and see where they differ diffidx := st.getDiffIndex(key) // Check if chunks are identical. If so, recurse into // the child node. Otherwise, the key has to be split // into 1) an optional common prefix, 2) the fullnode // representing the two differing path, and 3) a leaf // for each of the differentiated subtrees. if diffidx == len(st.key) { // Ext key and key segment are identical, recurse into // the child node. t.insert(st.children[0], key[diffidx:], value, append(path, key[:diffidx]...)) return } // Save the original part. Depending if the break is // at the extension's last byte or not, create an // intermediate extension or use the extension's child // node directly. var n *stNode if diffidx < len(st.key)-1 { // Break on the non-last byte, insert an intermediate // extension. The path prefix of the newly-inserted // extension should also contain the different byte. n = newExt(st.key[diffidx+1:], st.children[0]) t.hash(n, append(path, st.key[:diffidx+1]...)) } else { // Break on the last byte, no need to insert // an extension node: reuse the current node. // The path prefix of the original part should // still be same. n = st.children[0] t.hash(n, append(path, st.key...)) } var p *stNode if diffidx == 0 { // the break is on the first byte, so // the current node is converted into // a branch node. st.children[0] = nil p = st st.typ = branchNode } else { // the common prefix is at least one byte // long, insert a new intermediate branch // node. st.children[0] = stPool.Get().(*stNode) st.children[0].typ = branchNode p = st.children[0] } // Create a leaf for the inserted part o := newLeaf(key[diffidx+1:], value) // Insert both child leaves where they belong: origIdx := st.key[diffidx] newIdx := key[diffidx] p.children[origIdx] = n p.children[newIdx] = o st.key = st.key[:diffidx] case leafNode: /* Leaf */ // Compare both key chunks and see where they differ diffidx := st.getDiffIndex(key) // Overwriting a key isn't supported, which means that // the current leaf is expected to be split into 1) an // optional extension for the common prefix of these 2 // keys, 2) a fullnode selecting the path on which the // keys differ, and 3) one leaf for the differentiated // component of each key. if diffidx >= len(st.key) { panic("Trying to insert into existing key") } // Check if the split occurs at the first nibble of the // chunk. In that case, no prefix extnode is necessary. // Otherwise, create that var p *stNode if diffidx == 0 { // Convert current leaf into a branch st.typ = branchNode p = st st.children[0] = nil } else { // Convert current node into an ext, // and insert a child branch node. st.typ = extNode st.children[0] = stPool.Get().(*stNode) st.children[0].typ = branchNode p = st.children[0] } // Create the two child leaves: one containing the original // value and another containing the new value. The child leaf // is hashed directly in order to free up some memory. origIdx := st.key[diffidx] p.children[origIdx] = newLeaf(st.key[diffidx+1:], st.val) t.hash(p.children[origIdx], append(path, st.key[:diffidx+1]...)) newIdx := key[diffidx] p.children[newIdx] = newLeaf(key[diffidx+1:], value) // Finally, cut off the key part that has been passed // over to the children. st.key = st.key[:diffidx] st.val = nil case emptyNode: /* Empty */ st.typ = leafNode st.key = key st.val = value case hashedNode: panic("trying to insert into hash") default: panic("invalid type") } } // hash converts st into a 'hashedNode', if possible. Possible outcomes: // // 1. The rlp-encoded value was >= 32 bytes: // - Then the 32-byte `hash` will be accessible in `st.val`. // - And the 'st.type' will be 'hashedNode' // // 2. The rlp-encoded value was < 32 bytes // - Then the <32 byte rlp-encoded value will be accessible in 'st.val'. // - And the 'st.type' will be 'hashedNode' AGAIN // // This method also sets 'st.type' to hashedNode, and clears 'st.key'. func (t *StackTrie) hash(st *stNode, path []byte) { var ( blob []byte // RLP-encoded node blob internal [][]byte // List of node paths covered by the extension node ) switch st.typ { case hashedNode: return case emptyNode: st.val = types.EmptyRootHash.Bytes() st.key = st.key[:0] st.typ = hashedNode return case branchNode: var nodes fullNode for i, child := range st.children { if child == nil { nodes.Children[i] = nilValueNode continue } t.hash(child, append(path, byte(i))) if len(child.val) < 32 { nodes.Children[i] = rawNode(child.val) } else { nodes.Children[i] = hashNode(child.val) } st.children[i] = nil stPool.Put(child.reset()) // Release child back to pool. } nodes.encode(t.h.encbuf) blob = t.h.encodedBytes() case extNode: // recursively hash and commit child as the first step t.hash(st.children[0], append(path, st.key...)) // Collect the path of internal nodes between shortNode and its **in disk** // child. This is essential in the case of path mode scheme to avoid leaving // danging nodes within the range of this internal path on disk, which would // break the guarantee for state healing. if len(st.children[0].val) >= 32 && t.options.Cleaner != nil { for i := 1; i < len(st.key); i++ { internal = append(internal, append(path, st.key[:i]...)) } } // encode the extension node n := shortNode{Key: hexToCompactInPlace(st.key)} if len(st.children[0].val) < 32 { n.Val = rawNode(st.children[0].val) } else { n.Val = hashNode(st.children[0].val) } n.encode(t.h.encbuf) blob = t.h.encodedBytes() stPool.Put(st.children[0].reset()) // Release child back to pool. st.children[0] = nil case leafNode: st.key = append(st.key, byte(16)) n := shortNode{Key: hexToCompactInPlace(st.key), Val: valueNode(st.val)} n.encode(t.h.encbuf) blob = t.h.encodedBytes() default: panic("invalid node type") } st.typ = hashedNode st.key = st.key[:0] // Skip committing the non-root node if the size is smaller than 32 bytes. if len(blob) < 32 && len(path) > 0 { st.val = common.CopyBytes(blob) return } // Write the hash to the 'val'. We allocate a new val here to not mutate // input values. st.val = t.h.hashData(blob) // Short circuit if the stack trie is not configured for writing. if t.options.Writer == nil { return } // Skip committing if the node is on the left boundary and stackTrie is // configured to filter the boundary. if t.options.SkipLeftBoundary && bytes.HasPrefix(t.first, path) { if t.options.boundaryGauge != nil { t.options.boundaryGauge.Inc(1) } return } // Skip committing if the node is on the right boundary and stackTrie is // configured to filter the boundary. if t.options.SkipRightBoundary && bytes.HasPrefix(t.last, path) { if t.options.boundaryGauge != nil { t.options.boundaryGauge.Inc(1) } return } // Clean up the internal dangling nodes covered by the extension node. // This should be done before writing the node to adhere to the committing // order from bottom to top. for _, path := range internal { t.options.Cleaner(path) } t.options.Writer(path, common.BytesToHash(st.val), blob) } // Hash will firstly hash the entire trie if it's still not hashed and then commit // all nodes to the associated database. Actually most of the trie nodes have been // committed already. The main purpose here is to commit the nodes on right boundary. // // For stack trie, Hash and Commit are functionally identical. func (t *StackTrie) Hash() common.Hash { n := t.root t.hash(n, nil) return common.BytesToHash(n.val) } // Commit will firstly hash the entire trie if it's still not hashed and then commit // all nodes to the associated database. Actually most of the trie nodes have been // committed already. The main purpose here is to commit the nodes on right boundary. // // For stack trie, Hash and Commit are functionally identical. func (t *StackTrie) Commit() common.Hash { return t.Hash() }