// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "fmt" "io" "strings" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/rlp" ) var indices = []string{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "[17]"} type node interface { cache() (hashNode, bool) encode(w rlp.EncoderBuffer) fstring(string) string } type ( fullNode struct { Children [17]node // Actual trie node data to encode/decode (needs custom encoder) flags nodeFlag } shortNode struct { Key []byte Val node flags nodeFlag } hashNode []byte valueNode []byte ) // nilValueNode is used when collapsing internal trie nodes for hashing, since // unset children need to serialize correctly. var nilValueNode = valueNode(nil) // EncodeRLP encodes a full node into the consensus RLP format. func (n *fullNode) EncodeRLP(w io.Writer) error { eb := rlp.NewEncoderBuffer(w) n.encode(eb) return eb.Flush() } func (n *fullNode) copy() *fullNode { copy := *n; return © } func (n *shortNode) copy() *shortNode { copy := *n; return © } // nodeFlag contains caching-related metadata about a node. type nodeFlag struct { hash hashNode // cached hash of the node (may be nil) dirty bool // whether the node has changes that must be written to the database } func (n *fullNode) cache() (hashNode, bool) { return n.flags.hash, n.flags.dirty } func (n *shortNode) cache() (hashNode, bool) { return n.flags.hash, n.flags.dirty } func (n hashNode) cache() (hashNode, bool) { return nil, true } func (n valueNode) cache() (hashNode, bool) { return nil, true } // Pretty printing. func (n *fullNode) String() string { return n.fstring("") } func (n *shortNode) String() string { return n.fstring("") } func (n hashNode) String() string { return n.fstring("") } func (n valueNode) String() string { return n.fstring("") } func (n *fullNode) fstring(ind string) string { resp := fmt.Sprintf("[\n%s ", ind) for i, node := range &n.Children { if node == nil { resp += fmt.Sprintf("%s: ", indices[i]) } else { resp += fmt.Sprintf("%s: %v", indices[i], node.fstring(ind+" ")) } } return resp + fmt.Sprintf("\n%s] ", ind) } func (n *shortNode) fstring(ind string) string { return fmt.Sprintf("{%x: %v} ", n.Key, n.Val.fstring(ind+" ")) } func (n hashNode) fstring(ind string) string { return fmt.Sprintf("<%x> ", []byte(n)) } func (n valueNode) fstring(ind string) string { return fmt.Sprintf("%x ", []byte(n)) } // rawNode is a simple binary blob used to differentiate between collapsed trie // nodes and already encoded RLP binary blobs (while at the same time store them // in the same cache fields). type rawNode []byte func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") } func (n rawNode) EncodeRLP(w io.Writer) error { _, err := w.Write(n) return err } // mustDecodeNode is a wrapper of decodeNode and panic if any error is encountered. func mustDecodeNode(hash, buf []byte) node { n, err := decodeNode(hash, buf) if err != nil { panic(fmt.Sprintf("node %x: %v", hash, err)) } return n } // mustDecodeNodeUnsafe is a wrapper of decodeNodeUnsafe and panic if any error is // encountered. func mustDecodeNodeUnsafe(hash, buf []byte) node { n, err := decodeNodeUnsafe(hash, buf) if err != nil { panic(fmt.Sprintf("node %x: %v", hash, err)) } return n } // decodeNode parses the RLP encoding of a trie node. It will deep-copy the passed // byte slice for decoding, so it's safe to modify the byte slice afterwards. The- // decode performance of this function is not optimal, but it is suitable for most // scenarios with low performance requirements and hard to determine whether the // byte slice be modified or not. func decodeNode(hash, buf []byte) (node, error) { return decodeNodeUnsafe(hash, common.CopyBytes(buf)) } // decodeNodeUnsafe parses the RLP encoding of a trie node. The passed byte slice // will be directly referenced by node without bytes deep copy, so the input MUST // not be changed after. func decodeNodeUnsafe(hash, buf []byte) (node, error) { if len(buf) == 0 { return nil, io.ErrUnexpectedEOF } elems, _, err := rlp.SplitList(buf) if err != nil { return nil, fmt.Errorf("decode error: %v", err) } switch c, _ := rlp.CountValues(elems); c { case 2: n, err := decodeShort(hash, elems) return n, wrapError(err, "short") case 17: n, err := decodeFull(hash, elems) return n, wrapError(err, "full") default: return nil, fmt.Errorf("invalid number of list elements: %v", c) } } func decodeShort(hash, elems []byte) (node, error) { kbuf, rest, err := rlp.SplitString(elems) if err != nil { return nil, err } flag := nodeFlag{hash: hash} key := compactToHex(kbuf) if hasTerm(key) { // value node val, _, err := rlp.SplitString(rest) if err != nil { return nil, fmt.Errorf("invalid value node: %v", err) } return &shortNode{key, valueNode(val), flag}, nil } r, _, err := decodeRef(rest) if err != nil { return nil, wrapError(err, "val") } return &shortNode{key, r, flag}, nil } func decodeFull(hash, elems []byte) (*fullNode, error) { n := &fullNode{flags: nodeFlag{hash: hash}} for i := 0; i < 16; i++ { cld, rest, err := decodeRef(elems) if err != nil { return n, wrapError(err, fmt.Sprintf("[%d]", i)) } n.Children[i], elems = cld, rest } val, _, err := rlp.SplitString(elems) if err != nil { return n, err } if len(val) > 0 { n.Children[16] = valueNode(val) } return n, nil } const hashLen = len(common.Hash{}) func decodeRef(buf []byte) (node, []byte, error) { kind, val, rest, err := rlp.Split(buf) if err != nil { return nil, buf, err } switch { case kind == rlp.List: // 'embedded' node reference. The encoding must be smaller // than a hash in order to be valid. if size := len(buf) - len(rest); size > hashLen { err := fmt.Errorf("oversized embedded node (size is %d bytes, want size < %d)", size, hashLen) return nil, buf, err } n, err := decodeNode(nil, buf) return n, rest, err case kind == rlp.String && len(val) == 0: // empty node return nil, rest, nil case kind == rlp.String && len(val) == 32: return hashNode(val), rest, nil default: return nil, nil, fmt.Errorf("invalid RLP string size %d (want 0 or 32)", len(val)) } } // wraps a decoding error with information about the path to the // invalid child node (for debugging encoding issues). type decodeError struct { what error stack []string } func wrapError(err error, ctx string) error { if err == nil { return nil } if decErr, ok := err.(*decodeError); ok { decErr.stack = append(decErr.stack, ctx) return decErr } return &decodeError{err, []string{ctx}} } func (err *decodeError) Error() string { return fmt.Sprintf("%v (decode path: %s)", err.what, strings.Join(err.stack, "<-")) }