* accounts, cmd, eth, ethdb: port logs over to new system
* ethdb: drop concept of cache distribution between dbs
* eth: fix some log nitpicks to make them nicer
The transaction pool keeps track of the current nonce in its local pendingState. When a
new block comes in the pendingState is reset. During the reset it fetches multiple times
the current state through the use of the currentState callback. When a second block comes
in during the reset its possible that the state changes during the reset. If that block
holds transactions that are currently in the pool the local pendingState that is used to
determine nonces can get out of sync.
Shutting down geth prints hundreds of annoying error messages in some
cases. The errors appear because the Stop method of eth.ProtocolManager,
miner.Miner and core.TxPool is asynchronous. Left over peer sessions
generate events which are processed after Stop even though the database
has already been closed.
The fix is to make Stop synchronous using sync.WaitGroup.
For eth.ProtocolManager, in order to make use of WaitGroup safe, we need
a way to stop new peer sessions from being added while waiting on the
WaitGroup. The eth protocol Run function now selects on a signaling
channel and adds to the WaitGroup only if ProtocolManager is not
shutting down.
For miner.worker and core.TxPool the number of goroutines is static,
WaitGroup can be used in the usual way without additional
synchronisation.
Nodes that are out of sync will queue many transactions, which causes
the initial transactions message to grow very large. Larger transactions
messages can make communication impossible if the message is too big to
send. Big transactions messages also exhaust egress bandwidth, which
degrades other peer connections.
The new approach to combat these issues is to send transactions in
smaller batches. This commit introduces a new goroutine that handles
delivery of all initial transaction transfers. Size-limited packs of
transactions are sent to one peer at a time, conserving precious egress
bandwidth.