Introducing ethash

This commit is contained in:
Matthew Wampler-Doty 2015-02-28 14:58:37 -05:00
parent 080823bdee
commit de9f79133f
52 changed files with 17425 additions and 70 deletions

1
.gitignore vendored
View File

@ -6,6 +6,7 @@
/tmp
*/**/*un~
*/**/*.test
*un~
.DS_Store
*/**/.DS_Store

5
Godeps/Godeps.json generated
View File

@ -15,6 +15,11 @@
"Comment": "null-15",
"Rev": "12e4b4183793ac4b061921e7980845e750679fd0"
},
{
"ImportPath": "github.com/ethereum/ethash",
"Comment": "v17-23-g2561e13",
"Rev": "2561e1322a7e8e3d4a2cc903c44b1e96340bcb27"
},
{
"ImportPath": "github.com/ethereum/serpent-go",
"Rev": "5767a0dbd759d313df3f404dadb7f98d7ab51443"

View File

@ -0,0 +1,5 @@
.idea/
.DS_Store
*/**/*un~
.vagrant/
cpp-build/

View File

@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 2.8.2)
project(ethash)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/Modules/")
set(ETHHASH_LIBS ethash)
if (WIN32 AND WANT_CRYPTOPP)
add_subdirectory(cryptopp)
endif()
add_subdirectory(libethash)
add_subdirectory(libethash-cl EXCLUDE_FROM_ALL)
add_subdirectory(benchmark EXCLUDE_FROM_ALL)
add_subdirectory(test EXCLUDE_FROM_ALL)

View File

@ -0,0 +1,53 @@
include_directories(..)
set(CMAKE_BUILD_TYPE Release)
if (MSVC)
add_definitions("/openmp")
endif()
if (NOT MPI_FOUND)
find_package(MPI)
endif()
if (NOT CRYPTOPP_FOUND)
find_package(CryptoPP 5.6.2)
endif()
if (CRYPTOPP_FOUND)
add_definitions(-DWITH_CRYPTOPP)
endif()
if (NOT OpenCL_FOUND)
find_package(OpenCL)
endif()
if (OpenCL_FOUND)
add_definitions(-DWITH_OPENCL)
include_directories(${OpenCL_INCLUDE_DIRS})
list(APPEND FILES ethash_cl_miner.cpp ethash_cl_miner.h)
endif()
if (MPI_FOUND)
include_directories(${MPI_INCLUDE_PATH})
add_executable (Benchmark_MPI_FULL benchmark.cpp)
target_link_libraries (Benchmark_MPI_FULL ${ETHHASH_LIBS} ${MPI_LIBRARIES})
SET_TARGET_PROPERTIES(Benchmark_MPI_FULL PROPERTIES COMPILE_FLAGS "${COMPILE_FLAGS} ${MPI_COMPILE_FLAGS} -DFULL -DMPI")
add_executable (Benchmark_MPI_LIGHT benchmark.cpp)
target_link_libraries (Benchmark_MPI_LIGHT ${ETHHASH_LIBS} ${MPI_LIBRARIES})
SET_TARGET_PROPERTIES(Benchmark_MPI_LIGHT PROPERTIES COMPILE_FLAGS "${COMPILE_FLAGS} ${MPI_COMPILE_FLAGS} -DMPI")
endif()
add_executable (Benchmark_FULL benchmark.cpp)
target_link_libraries (Benchmark_FULL ${ETHHASH_LIBS})
SET_TARGET_PROPERTIES(Benchmark_FULL PROPERTIES COMPILE_FLAGS "${COMPILE_FLAGS} -DFULL")
add_executable (Benchmark_LIGHT benchmark.cpp)
target_link_libraries (Benchmark_LIGHT ${ETHHASH_LIBS})
if (OpenCL_FOUND)
add_executable (Benchmark_CL benchmark.cpp)
target_link_libraries (Benchmark_CL ${ETHHASH_LIBS} ethash-cl)
SET_TARGET_PROPERTIES(Benchmark_CL PROPERTIES COMPILE_FLAGS "${COMPILE_FLAGS} -DOPENCL")
endif()

View File

@ -0,0 +1,260 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file benchmark.cpp
* @author Tim Hughes <tim@twistedfury.com>
* @date 2015
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <libethash/ethash.h>
#include <libethash/util.h>
#ifdef OPENCL
#include <libethash-cl/ethash_cl_miner.h>
#endif
#include <vector>
#include <algorithm>
#ifdef WITH_CRYPTOPP
#include <libethash/SHA3_cryptopp.h>
#include <string>
#else
#include "libethash/sha3.h"
#endif // WITH_CRYPTOPP
#undef min
#undef max
#if defined(OPENCL)
const unsigned trials = 1024*1024*32;
#elif defined(FULL)
const unsigned trials = 1024*1024/8;
#else
const unsigned trials = 1024*1024/1024;
#endif
uint8_t g_hashes[1024*32];
static char nibbleToChar(unsigned nibble)
{
return (char) ((nibble >= 10 ? 'a'-10 : '0') + nibble);
}
static uint8_t charToNibble(char chr)
{
if (chr >= '0' && chr <= '9')
{
return (uint8_t) (chr - '0');
}
if (chr >= 'a' && chr <= 'z')
{
return (uint8_t) (chr - 'a' + 10);
}
if (chr >= 'A' && chr <= 'Z')
{
return (uint8_t) (chr - 'A' + 10);
}
return 0;
}
static std::vector<uint8_t> hexStringToBytes(char const* str)
{
std::vector<uint8_t> bytes(strlen(str) >> 1);
for (unsigned i = 0; i != bytes.size(); ++i)
{
bytes[i] = charToNibble(str[i*2 | 0]) << 4;
bytes[i] |= charToNibble(str[i*2 | 1]);
}
return bytes;
}
static std::string bytesToHexString(uint8_t const* bytes, unsigned size)
{
std::string str;
for (unsigned i = 0; i != size; ++i)
{
str += nibbleToChar(bytes[i] >> 4);
str += nibbleToChar(bytes[i] & 0xf);
}
return str;
}
extern "C" int main(void)
{
// params for ethash
ethash_params params;
ethash_params_init(&params, 0);
//params.full_size = 262147 * 4096; // 1GBish;
//params.full_size = 32771 * 4096; // 128MBish;
//params.full_size = 8209 * 4096; // 8MBish;
//params.cache_size = 8209*4096;
//params.cache_size = 2053*4096;
uint8_t seed[32], previous_hash[32];
memcpy(seed, hexStringToBytes("9410b944535a83d9adf6bbdcc80e051f30676173c16ca0d32d6f1263fc246466").data(), 32);
memcpy(previous_hash, hexStringToBytes("c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470").data(), 32);
// allocate page aligned buffer for dataset
#ifdef FULL
void* full_mem_buf = malloc(params.full_size + 4095);
void* full_mem = (void*)((uintptr_t(full_mem_buf) + 4095) & ~4095);
#endif
void* cache_mem_buf = malloc(params.cache_size + 63);
void* cache_mem = (void*)((uintptr_t(cache_mem_buf) + 63) & ~63);
ethash_cache cache;
cache.mem = cache_mem;
// compute cache or full data
{
clock_t startTime = clock();
ethash_mkcache(&cache, &params, seed);
clock_t time = clock() - startTime;
uint8_t cache_hash[32];
SHA3_256(cache_hash, (uint8_t const*)cache_mem, params.cache_size);
debugf("ethash_mkcache: %ums, sha3: %s\n", (unsigned)((time*1000)/CLOCKS_PER_SEC), bytesToHexString(cache_hash,sizeof(cache_hash)).data());
// print a couple of test hashes
{
const clock_t startTime = clock();
ethash_return_value hash;
ethash_light(&hash, &cache, &params, previous_hash, 0);
const clock_t time = clock() - startTime;
debugf("ethash_light test: %ums, %s\n", (unsigned)((time*1000)/CLOCKS_PER_SEC), bytesToHexString(hash.result, 32).data());
}
#ifdef FULL
startTime = clock();
ethash_compute_full_data(full_mem, &params, &cache);
time = clock() - startTime;
debugf("ethash_compute_full_data: %ums\n", (unsigned)((time*1000)/CLOCKS_PER_SEC));
#endif // FULL
}
#ifdef OPENCL
ethash_cl_miner miner;
{
const clock_t startTime = clock();
if (!miner.init(params, seed))
exit(-1);
const clock_t time = clock() - startTime;
debugf("ethash_cl_miner init: %ums\n", (unsigned)((time*1000)/CLOCKS_PER_SEC));
}
#endif
#ifdef FULL
{
const clock_t startTime = clock();
ethash_return_value hash;
ethash_full(&hash, full_mem, &params, previous_hash, 0);
const clock_t time = clock() - startTime;
debugf("ethash_full test: %uns, %s\n", (unsigned)((time*1000000)/CLOCKS_PER_SEC), bytesToHexString(hash.result, 32).data());
}
#endif
#ifdef OPENCL
// validate 1024 hashes against CPU
miner.hash(g_hashes, previous_hash, 0, 1024);
for (unsigned i = 0; i != 1024; ++i)
{
ethash_return_value hash;
ethash_light(&hash, &cache, &params, previous_hash, i);
if (memcmp(hash.result, g_hashes + 32*i, 32) != 0)
{
debugf("nonce %u failed: %s %s\n", i, bytesToHexString(g_hashes + 32*i, 32).c_str(), bytesToHexString(hash.result, 32).c_str());
static unsigned c = 0;
if (++c == 16)
{
exit(-1);
}
}
}
#endif
clock_t startTime = clock();
unsigned hash_count = trials;
#ifdef OPENCL
{
struct search_hook : ethash_cl_miner::search_hook
{
unsigned hash_count;
std::vector<uint64_t> nonce_vec;
virtual bool found(uint64_t const* nonces, uint32_t count)
{
nonce_vec.assign(nonces, nonces + count);
return false;
}
virtual bool searched(uint64_t start_nonce, uint32_t count)
{
// do nothing
hash_count += count;
return hash_count >= trials;
}
};
search_hook hook;
hook.hash_count = 0;
miner.search(previous_hash, 0x000000ffffffffff, hook);
for (unsigned i = 0; i != hook.nonce_vec.size(); ++i)
{
uint64_t nonce = hook.nonce_vec[i];
ethash_return_value hash;
ethash_light(&hash, &cache, &params, previous_hash, nonce);
debugf("found: %.8x%.8x -> %s\n", unsigned(nonce>>32), unsigned(nonce), bytesToHexString(hash.result, 32).c_str());
}
hash_count = hook.hash_count;
}
#else
{
//#pragma omp parallel for
for (int nonce = 0; nonce < trials; ++nonce)
{
ethash_return_value hash;
#ifdef FULL
ethash_full(&hash, full_mem, &params, previous_hash, nonce);
#else
ethash_light(&hash, &cache, &params, previous_hash, nonce);
#endif // FULL
}
}
#endif
clock_t time = std::max((clock_t)1u, clock() - startTime);
unsigned read_size = ACCESSES * MIX_BYTES;
debugf(
"hashrate: %8u, bw: %6u MB/s\n",
(unsigned)(((uint64_t)hash_count*CLOCKS_PER_SEC)/time),
(unsigned)((((uint64_t)hash_count*read_size*CLOCKS_PER_SEC)/time) / (1024*1024))
);
free(cache_mem_buf);
#ifdef FULL
free(full_mem_buf);
#endif
return 0;
}

View File

@ -0,0 +1,108 @@
# Module for locating the Crypto++ encryption library.
#
# Customizable variables:
# CRYPTOPP_ROOT_DIR
# This variable points to the CryptoPP root directory. On Windows the
# library location typically will have to be provided explicitly using the
# -D command-line option. The directory should include the include/cryptopp,
# lib and/or bin sub-directories.
#
# Read-only variables:
# CRYPTOPP_FOUND
# Indicates whether the library has been found.
#
# CRYPTOPP_INCLUDE_DIRS
# Points to the CryptoPP include directory.
#
# CRYPTOPP_LIBRARIES
# Points to the CryptoPP libraries that should be passed to
# target_link_libararies.
#
#
# Copyright (c) 2012 Sergiu Dotenco
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
INCLUDE (FindPackageHandleStandardArgs)
FIND_PATH (CRYPTOPP_ROOT_DIR
NAMES cryptopp/cryptlib.h include/cryptopp/cryptlib.h
PATHS ENV CRYPTOPPROOT
DOC "CryptoPP root directory")
# Re-use the previous path:
FIND_PATH (CRYPTOPP_INCLUDE_DIR
NAMES cryptopp/cryptlib.h
HINTS ${CRYPTOPP_ROOT_DIR}
PATH_SUFFIXES include
DOC "CryptoPP include directory")
FIND_LIBRARY (CRYPTOPP_LIBRARY_DEBUG
NAMES cryptlibd cryptoppd
HINTS ${CRYPTOPP_ROOT_DIR}
PATH_SUFFIXES lib
DOC "CryptoPP debug library")
FIND_LIBRARY (CRYPTOPP_LIBRARY_RELEASE
NAMES cryptlib cryptopp
HINTS ${CRYPTOPP_ROOT_DIR}
PATH_SUFFIXES lib
DOC "CryptoPP release library")
IF (CRYPTOPP_LIBRARY_DEBUG AND CRYPTOPP_LIBRARY_RELEASE)
SET (CRYPTOPP_LIBRARY
optimized ${CRYPTOPP_LIBRARY_RELEASE}
debug ${CRYPTOPP_LIBRARY_DEBUG} CACHE DOC "CryptoPP library")
ELSEIF (CRYPTOPP_LIBRARY_RELEASE)
SET (CRYPTOPP_LIBRARY ${CRYPTOPP_LIBRARY_RELEASE} CACHE DOC
"CryptoPP library")
ENDIF (CRYPTOPP_LIBRARY_DEBUG AND CRYPTOPP_LIBRARY_RELEASE)
IF (CRYPTOPP_INCLUDE_DIR)
SET (_CRYPTOPP_VERSION_HEADER ${CRYPTOPP_INCLUDE_DIR}/cryptopp/config.h)
IF (EXISTS ${_CRYPTOPP_VERSION_HEADER})
FILE (STRINGS ${_CRYPTOPP_VERSION_HEADER} _CRYPTOPP_VERSION_TMP REGEX
"^#define CRYPTOPP_VERSION[ \t]+[0-9]+$")
STRING (REGEX REPLACE
"^#define CRYPTOPP_VERSION[ \t]+([0-9]+)" "\\1" _CRYPTOPP_VERSION_TMP
${_CRYPTOPP_VERSION_TMP})
STRING (REGEX REPLACE "([0-9]+)[0-9][0-9]" "\\1" CRYPTOPP_VERSION_MAJOR
${_CRYPTOPP_VERSION_TMP})
STRING (REGEX REPLACE "[0-9]([0-9])[0-9]" "\\1" CRYPTOPP_VERSION_MINOR
${_CRYPTOPP_VERSION_TMP})
STRING (REGEX REPLACE "[0-9][0-9]([0-9])" "\\1" CRYPTOPP_VERSION_PATCH
${_CRYPTOPP_VERSION_TMP})
SET (CRYPTOPP_VERSION_COUNT 3)
SET (CRYPTOPP_VERSION
${CRYPTOPP_VERSION_MAJOR}.${CRYPTOPP_VERSION_MINOR}.${CRYPTOPP_VERSION_PATCH})
ENDIF (EXISTS ${_CRYPTOPP_VERSION_HEADER})
ENDIF (CRYPTOPP_INCLUDE_DIR)
SET (CRYPTOPP_INCLUDE_DIRS ${CRYPTOPP_INCLUDE_DIR})
SET (CRYPTOPP_LIBRARIES ${CRYPTOPP_LIBRARY})
MARK_AS_ADVANCED (CRYPTOPP_INCLUDE_DIR CRYPTOPP_LIBRARY CRYPTOPP_LIBRARY_DEBUG
CRYPTOPP_LIBRARY_RELEASE)
FIND_PACKAGE_HANDLE_STANDARD_ARGS (CryptoPP REQUIRED_VARS CRYPTOPP_ROOT_DIR
CRYPTOPP_INCLUDE_DIR CRYPTOPP_LIBRARY VERSION_VAR CRYPTOPP_VERSION)

View File

@ -0,0 +1,91 @@
#
# This file taken from FindOpenCL project @ http://gitorious.com/findopencl
#
# - Try to find OpenCL
# This module tries to find an OpenCL implementation on your system. It supports
# AMD / ATI, Apple and NVIDIA implementations, but shoudl work, too.
#
# Once done this will define
# OPENCL_FOUND - system has OpenCL
# OPENCL_INCLUDE_DIRS - the OpenCL include directory
# OPENCL_LIBRARIES - link these to use OpenCL
#
# WIN32 should work, but is untested
FIND_PACKAGE( PackageHandleStandardArgs )
SET (OPENCL_VERSION_STRING "0.1.0")
SET (OPENCL_VERSION_MAJOR 0)
SET (OPENCL_VERSION_MINOR 1)
SET (OPENCL_VERSION_PATCH 0)
IF (APPLE)
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL DOC "OpenCL lib for OSX")
FIND_PATH(OPENCL_INCLUDE_DIRS OpenCL/cl.h DOC "Include for OpenCL on OSX")
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS OpenCL/cl.hpp DOC "Include for OpenCL CPP bindings on OSX")
ELSE (APPLE)
IF (WIN32)
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h)
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp)
# The AMD SDK currently installs both x86 and x86_64 libraries
# This is only a hack to find out architecture
IF( ${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64" )
SET(OPENCL_LIB_DIR "$ENV{ATISTREAMSDKROOT}/lib/x86_64")
SET(OPENCL_LIB_DIR "$ENV{ATIINTERNALSTREAMSDKROOT}/lib/x86_64")
ELSE (${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64")
SET(OPENCL_LIB_DIR "$ENV{ATISTREAMSDKROOT}/lib/x86")
SET(OPENCL_LIB_DIR "$ENV{ATIINTERNALSTREAMSDKROOT}/lib/x86")
ENDIF( ${CMAKE_SYSTEM_PROCESSOR} STREQUAL "AMD64" )
# find out if the user asked for a 64-bit build, and use the corresponding
# 64 or 32 bit NVIDIA library paths to the search:
STRING(REGEX MATCH "Win64" ISWIN64 ${CMAKE_GENERATOR})
IF("${ISWIN64}" STREQUAL "Win64")
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL.lib ${OPENCL_LIB_DIR} $ENV{CUDA_LIB_PATH} $ENV{CUDA_PATH}/lib/x64)
ELSE("${ISWIN64}" STREQUAL "Win64")
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL.lib ${OPENCL_LIB_DIR} $ENV{CUDA_LIB_PATH} $ENV{CUDA_PATH}/lib/Win32)
ENDIF("${ISWIN64}" STREQUAL "Win64")
GET_FILENAME_COMPONENT(_OPENCL_INC_CAND ${OPENCL_LIB_DIR}/../../include ABSOLUTE)
# On Win32 search relative to the library
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h PATHS "${_OPENCL_INC_CAND}" $ENV{CUDA_INC_PATH} $ENV{CUDA_PATH}/include)
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp PATHS "${_OPENCL_INC_CAND}" $ENV{CUDA_INC_PATH} $ENV{CUDA_PATH}/include)
ELSE (WIN32)
# Unix style platforms
FIND_LIBRARY(OPENCL_LIBRARIES OpenCL
ENV LD_LIBRARY_PATH
)
GET_FILENAME_COMPONENT(OPENCL_LIB_DIR ${OPENCL_LIBRARIES} PATH)
GET_FILENAME_COMPONENT(_OPENCL_INC_CAND ${OPENCL_LIB_DIR}/../../include ABSOLUTE)
# The AMD SDK currently does not place its headers
# in /usr/include, therefore also search relative
# to the library
FIND_PATH(OPENCL_INCLUDE_DIRS CL/cl.h PATHS ${_OPENCL_INC_CAND} "/usr/local/cuda/include")
FIND_PATH(_OPENCL_CPP_INCLUDE_DIRS CL/cl.hpp PATHS ${_OPENCL_INC_CAND} "/usr/local/cuda/include")
ENDIF (WIN32)
ENDIF (APPLE)
FIND_PACKAGE_HANDLE_STANDARD_ARGS( OpenCL DEFAULT_MSG OPENCL_LIBRARIES OPENCL_INCLUDE_DIRS )
IF( _OPENCL_CPP_INCLUDE_DIRS )
SET( OPENCL_HAS_CPP_BINDINGS TRUE )
LIST( APPEND OPENCL_INCLUDE_DIRS ${_OPENCL_CPP_INCLUDE_DIRS} )
# This is often the same, so clean up
LIST( REMOVE_DUPLICATES OPENCL_INCLUDE_DIRS )
ENDIF( _OPENCL_CPP_INCLUDE_DIRS )
MARK_AS_ADVANCED(
OPENCL_INCLUDE_DIRS
)

View File

@ -0,0 +1,13 @@
set(LIBRARY cryptopp)
include_directories(../../cryptopp)
# todo, subset
file(GLOB HEADERS "../../cryptopp/*.h")
file(GLOB SOURCE "../../cryptopp/*.cpp")
add_library(${LIBRARY} ${HEADERS} ${SOURCE})
set(CRYPTOPP_INCLUDE_DIRS "../.." PARENT_SCOPE)
set(CRYPTOPP_LIBRARIES ${LIBRARY} PARENT_SCOPE)
set(CRYPTOPP_FOUND TRUE PARENT_SCOPE)

View File

@ -0,0 +1,296 @@
package ethash
/*
#cgo CFLAGS: -std=gnu99 -Wall
#include "libethash/ethash.h"
#include "libethash/util.c"
#include "libethash/internal.c"
#include "libethash/sha3.c"
*/
import "C"
import (
"bytes"
"encoding/binary"
"log"
"math/big"
"math/rand"
"sync"
"time"
"unsafe"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/pow"
)
var powlogger = logger.NewLogger("POW")
type DAG struct {
SeedBlockNum uint64
dag unsafe.Pointer // full GB of memory for dag
}
type ParamsAndCache struct {
params *C.ethash_params
cache *C.ethash_cache
SeedBlockNum uint64
}
type Ethash struct {
turbo bool
HashRate int64
chainManager pow.ChainManager
dag *DAG
paramsAndCache *ParamsAndCache
nextdag unsafe.Pointer
ret *C.ethash_return_value
dagMutex *sync.Mutex
cacheMutex *sync.Mutex
}
func parseNonce(nonce []byte) (uint64, error) {
nonceBuf := bytes.NewBuffer(nonce)
nonceInt, err := binary.ReadUvarint(nonceBuf)
if err != nil {
return 0, err
}
return nonceInt, nil
}
const epochLength uint64 = 30000
func getSeedBlockNum(blockNum uint64) uint64 {
var seedBlockNum uint64 = 0
if blockNum >= 2*epochLength {
seedBlockNum = ((blockNum / epochLength) - 1) * epochLength
}
return seedBlockNum
}
func makeParamsAndCache(chainManager pow.ChainManager, blockNum uint64) *ParamsAndCache {
seedBlockNum := getSeedBlockNum(blockNum)
paramsAndCache := &ParamsAndCache{
params: new(C.ethash_params),
cache: new(C.ethash_cache),
SeedBlockNum: seedBlockNum,
}
C.ethash_params_init(paramsAndCache.params, C.uint32_t(seedBlockNum))
paramsAndCache.cache.mem = C.malloc(paramsAndCache.params.cache_size)
seedHash := chainManager.GetBlockByNumber(seedBlockNum).Header().Hash()
log.Println("Params", paramsAndCache.params)
log.Println("Making Cache")
start := time.Now()
C.ethash_mkcache(paramsAndCache.cache, paramsAndCache.params, (*C.uint8_t)((unsafe.Pointer)(&seedHash[0])))
log.Println("Took:", time.Since(start))
return paramsAndCache
}
func (pow *Ethash) updateCache() {
pow.cacheMutex.Lock()
seedNum := getSeedBlockNum(pow.chainManager.CurrentBlock().NumberU64())
if pow.paramsAndCache.SeedBlockNum != seedNum {
pow.paramsAndCache = makeParamsAndCache(pow.chainManager, pow.chainManager.CurrentBlock().NumberU64())
}
pow.cacheMutex.Unlock()
}
func makeDAG(p *ParamsAndCache) *DAG {
d := &DAG{
dag: C.malloc(p.params.full_size),
SeedBlockNum: p.SeedBlockNum,
}
C.ethash_compute_full_data(d.dag, p.params, p.cache)
return d
}
func (pow *Ethash) updateDAG() {
pow.cacheMutex.Lock()
pow.dagMutex.Lock()
seedNum := getSeedBlockNum(pow.chainManager.CurrentBlock().NumberU64())
if pow.dag == nil || pow.dag.SeedBlockNum != seedNum {
pow.dag = nil
log.Println("Making Dag")
start := time.Now()
pow.dag = makeDAG(pow.paramsAndCache)
log.Println("Took:", time.Since(start))
}
pow.dagMutex.Unlock()
pow.cacheMutex.Unlock()
}
func New(chainManager pow.ChainManager) *Ethash {
return &Ethash{
turbo: false,
paramsAndCache: makeParamsAndCache(chainManager, chainManager.CurrentBlock().NumberU64()),
chainManager: chainManager,
dag: nil,
ret: new(C.ethash_return_value),
cacheMutex: new(sync.Mutex),
dagMutex: new(sync.Mutex),
}
}
func (pow *Ethash) DAGSize() uint64 {
return uint64(pow.paramsAndCache.params.full_size)
}
func (pow *Ethash) CacheSize() uint64 {
return uint64(pow.paramsAndCache.params.cache_size)
}
func (pow *Ethash) GetSeedHash(blockNum uint64) []byte {
return pow.chainManager.GetBlockByNumber(getSeedBlockNum(blockNum)).Header().Hash()
}
func (pow *Ethash) Stop() {
pow.cacheMutex.Lock()
pow.dagMutex.Lock()
if pow.paramsAndCache.cache != nil {
C.free(pow.paramsAndCache.cache.mem)
}
if pow.dag != nil {
C.free(pow.dag.dag)
}
pow.dagMutex.Unlock()
pow.cacheMutex.Unlock()
}
func (pow *Ethash) Search(block pow.Block, stop <-chan struct{}) ([]byte, []byte, []byte) {
pow.updateDAG()
// Not very elegant, multiple mining instances are not supported
pow.dagMutex.Lock()
pow.cacheMutex.Lock()
defer pow.cacheMutex.Unlock()
defer pow.dagMutex.Unlock()
r := rand.New(rand.NewSource(time.Now().UnixNano()))
miningHash := block.HashNoNonce()
diff := block.Difficulty()
log.Println("difficulty", diff)
i := int64(0)
start := time.Now().UnixNano()
t := time.Now()
nonce := uint64(r.Int63())
for {
select {
case <-stop:
powlogger.Infoln("Breaking from mining")
pow.HashRate = 0
pow.dagMutex.Unlock()
return nil, nil, nil
default:
i++
if time.Since(t) > (1 * time.Second) {
elapsed := time.Now().UnixNano() - start
hashes := ((float64(1e9) / float64(elapsed)) * float64(i)) / 1000
pow.HashRate = int64(hashes)
powlogger.Infoln("Hashing @", pow.HashRate, "khash")
t = time.Now()
}
cMiningHash := (*C.uint8_t)(unsafe.Pointer(&miningHash))
cnonce := C.uint64_t(nonce)
log.Printf("seed hash, nonce: %x %x\n", miningHash, nonce)
// pow.hash is the output/return of ethash_full
C.ethash_full(pow.ret, pow.dag.dag, pow.paramsAndCache.params, cMiningHash, cnonce)
res := C.ethash_check_difficulty((*C.uint8_t)(&pow.ret.result[0]), (*C.uint8_t)(unsafe.Pointer(&diff.Bytes()[0])))
if res == 1 {
mixDigest := C.GoBytes(unsafe.Pointer(&pow.ret.mix_hash[0]), 32)
// We don't really nead 32 bytes here
buf := make([]byte, 32)
binary.PutUvarint(buf, nonce)
return buf, mixDigest, pow.GetSeedHash(block.NumberU64())
}
nonce += 1
}
if !pow.turbo {
time.Sleep(20 * time.Microsecond)
}
}
}
func (pow *Ethash) Verify(block pow.Block) bool {
// Make sure the SeedHash is set correctly
if bytes.Compare(block.SeedHash(), pow.GetSeedHash(block.NumberU64())) != 0 {
log.Println("Block had wrong SeedHash")
log.Println("Expected: ", pow.GetSeedHash(block.NumberU64()))
log.Println("Actual: ", block.SeedHash())
return false
}
nonceInt, err := parseNonce(block.Nonce())
if err != nil {
log.Println("nonce to int err:", err)
return false
}
return pow.verify(block.HashNoNonce(), block.MixDigest(), block.Difficulty(), block.NumberU64(), nonceInt)
}
func (pow *Ethash) verify(hash []byte, mixDigest []byte, difficulty *big.Int, blockNum uint64, nonce uint64) bool {
// First check: make sure header, mixDigest, nonce are correct without hitting the DAG
// This is to prevent DOS attacks
chash := (*C.uint8_t)(unsafe.Pointer(&hash))
cnonce := C.uint64_t(nonce)
cmixDigest := (*C.uint8_t)(unsafe.Pointer(&mixDigest))
cdifficulty := (*C.uint8_t)(unsafe.Pointer(&difficulty.Bytes()[0]))
if C.ethash_quick_check_difficulty(chash, cnonce, cmixDigest, cdifficulty) != 1 {
log.Println("Failed to pass quick check. Are you sure that the mix digest is correct?")
return false
}
var pAc *ParamsAndCache
// If its an old block (doesn't use the current cache)
// get the cache for it but don't update (so we don't need the mutex)
// Otherwise, it's the current block or a future.
// If current, updateCache will do nothing.
if getSeedBlockNum(blockNum) < pow.paramsAndCache.SeedBlockNum {
pAc = makeParamsAndCache(pow.chainManager, blockNum)
} else {
pow.updateCache()
pow.cacheMutex.Lock()
defer pow.cacheMutex.Unlock()
pAc = pow.paramsAndCache
}
C.ethash_light(pow.ret, pAc.cache, pAc.params, chash, cnonce)
res := C.ethash_check_difficulty((*C.uint8_t)(unsafe.Pointer(&pow.ret.result[0])), cdifficulty)
return res == 1
}
func (pow *Ethash) GetHashrate() int64 {
return pow.HashRate
}
func (pow *Ethash) Turbo(on bool) {
pow.turbo = on
}
func (pow *Ethash) FullHash(nonce uint64, miningHash []byte) []byte {
pow.updateDAG()
pow.dagMutex.Lock()
defer pow.dagMutex.Unlock()
cMiningHash := (*C.uint8_t)(unsafe.Pointer(&miningHash))
cnonce := C.uint64_t(nonce)
log.Println("seed hash, nonce:", miningHash, nonce)
// pow.hash is the output/return of ethash_full
C.ethash_full(pow.ret, pow.dag.dag, pow.paramsAndCache.params, cMiningHash, cnonce)
ghash_full := C.GoBytes(unsafe.Pointer(&pow.ret.result[0]), 32)
return ghash_full
}
func (pow *Ethash) LightHash(nonce uint64, miningHash []byte) []byte {
cMiningHash := (*C.uint8_t)(unsafe.Pointer(&miningHash))
cnonce := C.uint64_t(nonce)
C.ethash_light(pow.ret, pow.paramsAndCache.cache, pow.paramsAndCache.params, cMiningHash, cnonce)
ghash_light := C.GoBytes(unsafe.Pointer(&pow.ret.result[0]), 32)
return ghash_light
}

View File

@ -0,0 +1,12 @@
set(LIBRARY ethash-cl)
set(CMAKE_BUILD_TYPE Release)
if (NOT OPENCL_FOUND)
find_package(OpenCL)
endif()
if (OPENCL_FOUND)
include_directories(${OPENCL_INCLUDE_DIRS})
include_directories(..)
add_library(${LIBRARY} ethash_cl_miner.cpp ethash_cl_miner.h)
TARGET_LINK_LIBRARIES(${LIBRARY} ${OPENCL_LIBRARIES} ethash)
endif()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,754 @@
/*
This file is part of c-ethash.
c-ethash is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
c-ethash is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file ethash_cl_miner.cpp
* @author Tim Hughes <tim@twistedfury.com>
* @date 2015
*/
#define _CRT_SECURE_NO_WARNINGS
#include <assert.h>
#include <queue>
#include "ethash_cl_miner.h"
#include <libethash/util.h>
#undef min
#undef max
#define HASH_BYTES 32
static char const ethash_inner_code[] = R"(
// author Tim Hughes <tim@twistedfury.com>
// Tested on Radeon HD 7850
// Hashrate: 15940347 hashes/s
// Bandwidth: 124533 MB/s
// search kernel should fit in <= 84 VGPRS (3 wavefronts)
#define THREADS_PER_HASH (128 / 16)
#define HASHES_PER_LOOP (GROUP_SIZE / THREADS_PER_HASH)
#define FNV_PRIME 0x01000193
__constant uint2 const Keccak_f1600_RC[24] = {
(uint2)(0x00000001, 0x00000000),
(uint2)(0x00008082, 0x00000000),
(uint2)(0x0000808a, 0x80000000),
(uint2)(0x80008000, 0x80000000),
(uint2)(0x0000808b, 0x00000000),
(uint2)(0x80000001, 0x00000000),
(uint2)(0x80008081, 0x80000000),
(uint2)(0x00008009, 0x80000000),
(uint2)(0x0000008a, 0x00000000),
(uint2)(0x00000088, 0x00000000),
(uint2)(0x80008009, 0x00000000),
(uint2)(0x8000000a, 0x00000000),
(uint2)(0x8000808b, 0x00000000),
(uint2)(0x0000008b, 0x80000000),
(uint2)(0x00008089, 0x80000000),
(uint2)(0x00008003, 0x80000000),
(uint2)(0x00008002, 0x80000000),
(uint2)(0x00000080, 0x80000000),
(uint2)(0x0000800a, 0x00000000),
(uint2)(0x8000000a, 0x80000000),
(uint2)(0x80008081, 0x80000000),
(uint2)(0x00008080, 0x80000000),
(uint2)(0x80000001, 0x00000000),
(uint2)(0x80008008, 0x80000000),
};
void keccak_f1600_round(uint2* a, uint r, uint out_size)
{
#if !__ENDIAN_LITTLE__
for (uint i = 0; i != 25; ++i)
a[i] = a[i].yx;
#endif
uint2 b[25];
uint2 t;
// Theta
b[0] = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20];
b[1] = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21];
b[2] = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22];
b[3] = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23];
b[4] = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24];
t = b[4] ^ (uint2)(b[1].x << 1 | b[1].y >> 31, b[1].y << 1 | b[1].x >> 31);
a[0] ^= t;
a[5] ^= t;
a[10] ^= t;
a[15] ^= t;
a[20] ^= t;
t = b[0] ^ (uint2)(b[2].x << 1 | b[2].y >> 31, b[2].y << 1 | b[2].x >> 31);
a[1] ^= t;
a[6] ^= t;
a[11] ^= t;
a[16] ^= t;
a[21] ^= t;
t = b[1] ^ (uint2)(b[3].x << 1 | b[3].y >> 31, b[3].y << 1 | b[3].x >> 31);
a[2] ^= t;
a[7] ^= t;
a[12] ^= t;
a[17] ^= t;
a[22] ^= t;
t = b[2] ^ (uint2)(b[4].x << 1 | b[4].y >> 31, b[4].y << 1 | b[4].x >> 31);
a[3] ^= t;
a[8] ^= t;
a[13] ^= t;
a[18] ^= t;
a[23] ^= t;
t = b[3] ^ (uint2)(b[0].x << 1 | b[0].y >> 31, b[0].y << 1 | b[0].x >> 31);
a[4] ^= t;
a[9] ^= t;
a[14] ^= t;
a[19] ^= t;
a[24] ^= t;
// Rho Pi
b[0] = a[0];
b[10] = (uint2)(a[1].x << 1 | a[1].y >> 31, a[1].y << 1 | a[1].x >> 31);
b[7] = (uint2)(a[10].x << 3 | a[10].y >> 29, a[10].y << 3 | a[10].x >> 29);
b[11] = (uint2)(a[7].x << 6 | a[7].y >> 26, a[7].y << 6 | a[7].x >> 26);
b[17] = (uint2)(a[11].x << 10 | a[11].y >> 22, a[11].y << 10 | a[11].x >> 22);
b[18] = (uint2)(a[17].x << 15 | a[17].y >> 17, a[17].y << 15 | a[17].x >> 17);
b[3] = (uint2)(a[18].x << 21 | a[18].y >> 11, a[18].y << 21 | a[18].x >> 11);
b[5] = (uint2)(a[3].x << 28 | a[3].y >> 4, a[3].y << 28 | a[3].x >> 4);
b[16] = (uint2)(a[5].y << 4 | a[5].x >> 28, a[5].x << 4 | a[5].y >> 28);
b[8] = (uint2)(a[16].y << 13 | a[16].x >> 19, a[16].x << 13 | a[16].y >> 19);
b[21] = (uint2)(a[8].y << 23 | a[8].x >> 9, a[8].x << 23 | a[8].y >> 9);
b[24] = (uint2)(a[21].x << 2 | a[21].y >> 30, a[21].y << 2 | a[21].x >> 30);
b[4] = (uint2)(a[24].x << 14 | a[24].y >> 18, a[24].y << 14 | a[24].x >> 18);
b[15] = (uint2)(a[4].x << 27 | a[4].y >> 5, a[4].y << 27 | a[4].x >> 5);
b[23] = (uint2)(a[15].y << 9 | a[15].x >> 23, a[15].x << 9 | a[15].y >> 23);
b[19] = (uint2)(a[23].y << 24 | a[23].x >> 8, a[23].x << 24 | a[23].y >> 8);
b[13] = (uint2)(a[19].x << 8 | a[19].y >> 24, a[19].y << 8 | a[19].x >> 24);
b[12] = (uint2)(a[13].x << 25 | a[13].y >> 7, a[13].y << 25 | a[13].x >> 7);
b[2] = (uint2)(a[12].y << 11 | a[12].x >> 21, a[12].x << 11 | a[12].y >> 21);
b[20] = (uint2)(a[2].y << 30 | a[2].x >> 2, a[2].x << 30 | a[2].y >> 2);
b[14] = (uint2)(a[20].x << 18 | a[20].y >> 14, a[20].y << 18 | a[20].x >> 14);
b[22] = (uint2)(a[14].y << 7 | a[14].x >> 25, a[14].x << 7 | a[14].y >> 25);
b[9] = (uint2)(a[22].y << 29 | a[22].x >> 3, a[22].x << 29 | a[22].y >> 3);
b[6] = (uint2)(a[9].x << 20 | a[9].y >> 12, a[9].y << 20 | a[9].x >> 12);
b[1] = (uint2)(a[6].y << 12 | a[6].x >> 20, a[6].x << 12 | a[6].y >> 20);
// Chi
a[0] = bitselect(b[0] ^ b[2], b[0], b[1]);
a[1] = bitselect(b[1] ^ b[3], b[1], b[2]);
a[2] = bitselect(b[2] ^ b[4], b[2], b[3]);
a[3] = bitselect(b[3] ^ b[0], b[3], b[4]);
if (out_size >= 4)
{
a[4] = bitselect(b[4] ^ b[1], b[4], b[0]);
a[5] = bitselect(b[5] ^ b[7], b[5], b[6]);
a[6] = bitselect(b[6] ^ b[8], b[6], b[7]);
a[7] = bitselect(b[7] ^ b[9], b[7], b[8]);
a[8] = bitselect(b[8] ^ b[5], b[8], b[9]);
if (out_size >= 8)
{
a[9] = bitselect(b[9] ^ b[6], b[9], b[5]);
a[10] = bitselect(b[10] ^ b[12], b[10], b[11]);
a[11] = bitselect(b[11] ^ b[13], b[11], b[12]);
a[12] = bitselect(b[12] ^ b[14], b[12], b[13]);
a[13] = bitselect(b[13] ^ b[10], b[13], b[14]);
a[14] = bitselect(b[14] ^ b[11], b[14], b[10]);
a[15] = bitselect(b[15] ^ b[17], b[15], b[16]);
a[16] = bitselect(b[16] ^ b[18], b[16], b[17]);
a[17] = bitselect(b[17] ^ b[19], b[17], b[18]);
a[18] = bitselect(b[18] ^ b[15], b[18], b[19]);
a[19] = bitselect(b[19] ^ b[16], b[19], b[15]);
a[20] = bitselect(b[20] ^ b[22], b[20], b[21]);
a[21] = bitselect(b[21] ^ b[23], b[21], b[22]);
a[22] = bitselect(b[22] ^ b[24], b[22], b[23]);
a[23] = bitselect(b[23] ^ b[20], b[23], b[24]);
a[24] = bitselect(b[24] ^ b[21], b[24], b[20]);
}
}
// Iota
a[0] ^= Keccak_f1600_RC[r];
#if !__ENDIAN_LITTLE__
for (uint i = 0; i != 25; ++i)
a[i] = a[i].yx;
#endif
}
void keccak_f1600_no_absorb(ulong* a, uint in_size, uint out_size, uint isolate)
{
for (uint i = in_size; i != 25; ++i)
{
a[i] = 0;
}
#if __ENDIAN_LITTLE__
a[in_size] ^= 0x0000000000000001;
a[24-out_size*2] ^= 0x8000000000000000;
#else
a[in_size] ^= 0x0100000000000000;
a[24-out_size*2] ^= 0x0000000000000080;
#endif
// Originally I unrolled the first and last rounds to interface
// better with surrounding code, however I haven't done this
// without causing the AMD compiler to blow up the VGPR usage.
uint r = 0;
do
{
// This dynamic branch stops the AMD compiler unrolling the loop
// and additionally saves about 33% of the VGPRs, enough to gain another
// wavefront. Ideally we'd get 4 in flight, but 3 is the best I can
// massage out of the compiler. It doesn't really seem to matter how
// much we try and help the compiler save VGPRs because it seems to throw
// that information away, hence the implementation of keccak here
// doesn't bother.
if (isolate)
{
keccak_f1600_round((uint2*)a, r++, 25);
}
}
while (r < 23);
// final round optimised for digest size
keccak_f1600_round((uint2*)a, r++, out_size);
}
#define copy(dst, src, count) for (uint i = 0; i != count; ++i) { (dst)[i] = (src)[i]; }
#define countof(x) (sizeof(x) / sizeof(x[0]))
uint fnv(uint x, uint y)
{
return x * FNV_PRIME ^ y;
}
uint4 fnv4(uint4 x, uint4 y)
{
return x * FNV_PRIME ^ y;
}
uint fnv_reduce(uint4 v)
{
return fnv(fnv(fnv(v.x, v.y), v.z), v.w);
}
typedef union
{
ulong ulongs[32 / sizeof(ulong)];
uint uints[32 / sizeof(uint)];
} hash32_t;
typedef union
{
ulong ulongs[64 / sizeof(ulong)];
uint4 uint4s[64 / sizeof(uint4)];
} hash64_t;
typedef union
{
uint uints[128 / sizeof(uint)];
uint4 uint4s[128 / sizeof(uint4)];
} hash128_t;
hash64_t init_hash(__constant hash32_t const* header, ulong nonce, uint isolate)
{
hash64_t init;
uint const init_size = countof(init.ulongs);
uint const hash_size = countof(header->ulongs);
// sha3_512(header .. nonce)
ulong state[25];
copy(state, header->ulongs, hash_size);
state[hash_size] = nonce;
keccak_f1600_no_absorb(state, hash_size + 1, init_size, isolate);
copy(init.ulongs, state, init_size);
return init;
}
uint inner_loop(uint4 init, uint thread_id, __local uint* share, __global hash128_t const* g_dag, uint isolate)
{
uint4 mix = init;
// share init0
if (thread_id == 0)
*share = mix.x;
barrier(CLK_LOCAL_MEM_FENCE);
uint init0 = *share;
uint a = 0;
do
{
bool update_share = thread_id == (a/4) % THREADS_PER_HASH;
#pragma unroll
for (uint i = 0; i != 4; ++i)
{
if (update_share)
{
uint m[4] = { mix.x, mix.y, mix.z, mix.w };
*share = fnv(init0 ^ (a+i), m[i]) % DAG_SIZE;
}
barrier(CLK_LOCAL_MEM_FENCE);
mix = fnv4(mix, g_dag[*share].uint4s[thread_id]);
}
}
while ((a += 4) != (ACCESSES & isolate));
return fnv_reduce(mix);
}
hash32_t final_hash(hash64_t const* init, hash32_t const* mix, uint isolate)
{
ulong state[25];
hash32_t hash;
uint const hash_size = countof(hash.ulongs);
uint const init_size = countof(init->ulongs);
uint const mix_size = countof(mix->ulongs);
// keccak_256(keccak_512(header..nonce) .. mix);
copy(state, init->ulongs, init_size);
copy(state + init_size, mix->ulongs, mix_size);
keccak_f1600_no_absorb(state, init_size+mix_size, hash_size, isolate);
// copy out
copy(hash.ulongs, state, hash_size);
return hash;
}
hash32_t compute_hash_simple(
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong nonce,
uint isolate
)
{
hash64_t init = init_hash(g_header, nonce, isolate);
hash128_t mix;
for (uint i = 0; i != countof(mix.uint4s); ++i)
{
mix.uint4s[i] = init.uint4s[i % countof(init.uint4s)];
}
uint mix_val = mix.uints[0];
uint init0 = mix.uints[0];
uint a = 0;
do
{
uint pi = fnv(init0 ^ a, mix_val) % DAG_SIZE;
uint n = (a+1) % countof(mix.uints);
#pragma unroll
for (uint i = 0; i != countof(mix.uints); ++i)
{
mix.uints[i] = fnv(mix.uints[i], g_dag[pi].uints[i]);
mix_val = i == n ? mix.uints[i] : mix_val;
}
}
while (++a != (ACCESSES & isolate));
// reduce to output
hash32_t fnv_mix;
for (uint i = 0; i != countof(fnv_mix.uints); ++i)
{
fnv_mix.uints[i] = fnv_reduce(mix.uint4s[i]);
}
return final_hash(&init, &fnv_mix, isolate);
}
typedef union
{
struct
{
hash64_t init;
uint pad; // avoid lds bank conflicts
};
hash32_t mix;
} compute_hash_share;
hash32_t compute_hash(
__local compute_hash_share* share,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong nonce,
uint isolate
)
{
uint const gid = get_global_id(0);
// Compute one init hash per work item.
hash64_t init = init_hash(g_header, nonce, isolate);
// Threads work together in this phase in groups of 8.
uint const thread_id = gid % THREADS_PER_HASH;
uint const hash_id = (gid % GROUP_SIZE) / THREADS_PER_HASH;
hash32_t mix;
uint i = 0;
do
{
// share init with other threads
if (i == thread_id)
share[hash_id].init = init;
barrier(CLK_LOCAL_MEM_FENCE);
uint4 thread_init = share[hash_id].init.uint4s[thread_id % (64 / sizeof(uint4))];
barrier(CLK_LOCAL_MEM_FENCE);
uint thread_mix = inner_loop(thread_init, thread_id, share[hash_id].mix.uints, g_dag, isolate);
share[hash_id].mix.uints[thread_id] = thread_mix;
barrier(CLK_LOCAL_MEM_FENCE);
if (i == thread_id)
mix = share[hash_id].mix;
barrier(CLK_LOCAL_MEM_FENCE);
}
while (++i != (THREADS_PER_HASH & isolate));
return final_hash(&init, &mix, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_hash_simple(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
uint isolate
)
{
uint const gid = get_global_id(0);
g_hashes[gid] = compute_hash_simple(g_header, g_dag, start_nonce + gid, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_search_simple(
__global volatile uint* restrict g_output,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
ulong target,
uint isolate
)
{
uint const gid = get_global_id(0);
hash32_t hash = compute_hash_simple(g_header, g_dag, start_nonce + gid, isolate);
if (hash.ulongs[countof(hash.ulongs)-1] < target)
{
uint slot = min(MAX_OUTPUTS, atomic_inc(&g_output[0]) + 1);
g_output[slot] = gid;
}
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_hash(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
uint isolate
)
{
__local compute_hash_share share[HASHES_PER_LOOP];
uint const gid = get_global_id(0);
g_hashes[gid] = compute_hash(share, g_header, g_dag, start_nonce + gid, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_search(
__global volatile uint* restrict g_output,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
ulong target,
uint isolate
)
{
__local compute_hash_share share[HASHES_PER_LOOP];
uint const gid = get_global_id(0);
hash32_t hash = compute_hash(share, g_header, g_dag, start_nonce + gid, isolate);
if (hash.ulongs[countof(hash.ulongs)-1] < target)
{
uint slot = min(MAX_OUTPUTS, atomic_inc(&g_output[0]) + 1);
g_output[slot] = gid;
}
}
)";
static void add_definition(std::string& source, char const* id, unsigned value)
{
char buf[256];
sprintf(buf, "#define %s %uu\n", id, value);
source.insert(source.begin(), buf, buf + strlen(buf));
}
ethash_cl_miner::ethash_cl_miner()
{
}
bool ethash_cl_miner::init(ethash_params const& params, const uint8_t seed[32], unsigned workgroup_size)
{
// store params
m_params = params;
// get all platforms
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
if (platforms.empty())
{
debugf("No OpenCL platforms found.\n");
return false;
}
// use default platform
debugf("Using platform: %s\n", platforms[0].getInfo<CL_PLATFORM_NAME>().c_str());
// get GPU device of the default platform
std::vector<cl::Device> devices;
platforms[0].getDevices(CL_DEVICE_TYPE_ALL, &devices);
if (devices.empty())
{
debugf("No OpenCL devices found.\n");
return false;
}
// use default device
cl::Device& device = devices[0];
debugf("Using device: %s\n", device.getInfo<CL_DEVICE_NAME>().c_str());
// create context
m_context = cl::Context({device});
m_queue = cl::CommandQueue(m_context, device);
// use requested workgroup size, but we require multiple of 8
m_workgroup_size = ((workgroup_size + 7) / 8) * 8;
// patch source code
std::string code = ethash_inner_code;
add_definition(code, "GROUP_SIZE", m_workgroup_size);
add_definition(code, "DAG_SIZE", (unsigned)(params.full_size / MIX_BYTES));
add_definition(code, "ACCESSES", ACCESSES);
add_definition(code, "MAX_OUTPUTS", c_max_search_results);
//debugf("%s", code.c_str());
// create miner OpenCL program
cl::Program::Sources sources;
sources.push_back({code.c_str(), code.size()});
cl::Program program(m_context, sources);
try
{
program.build({device});
}
catch (cl::Error err)
{
debugf("%s\n", program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device).c_str());
return false;
}
m_hash_kernel = cl::Kernel(program, "ethash_hash");
m_search_kernel = cl::Kernel(program, "ethash_search");
// create buffer for dag
m_dag = cl::Buffer(m_context, CL_MEM_READ_ONLY, params.full_size);
// create buffer for header
m_header = cl::Buffer(m_context, CL_MEM_READ_ONLY, 32);
// compute dag on CPU
{
void* cache_mem = malloc(params.cache_size + 63);
ethash_cache cache;
cache.mem = (void*)(((uintptr_t)cache_mem + 63) & ~63);
ethash_mkcache(&cache, &params, seed);
// if this throws then it's because we probably need to subdivide the dag uploads for compatibility
void* dag_ptr = m_queue.enqueueMapBuffer(m_dag, true, CL_MAP_WRITE_INVALIDATE_REGION, 0, params.full_size);
ethash_compute_full_data(dag_ptr, &params, &cache);
m_queue.enqueueUnmapMemObject(m_dag, dag_ptr);
free(cache_mem);
}
// create mining buffers
for (unsigned i = 0; i != c_num_buffers; ++i)
{
m_hash_buf[i] = cl::Buffer(m_context, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY, 32*c_hash_batch_size);
m_search_buf[i] = cl::Buffer(m_context, CL_MEM_WRITE_ONLY, (c_max_search_results + 1) * sizeof(uint32_t));
}
return true;
}
void ethash_cl_miner::hash(uint8_t* ret, uint8_t const* header, uint64_t nonce, unsigned count)
{
struct pending_batch
{
unsigned base;
unsigned count;
unsigned buf;
};
std::queue<pending_batch> pending;
// update header constant buffer
m_queue.enqueueWriteBuffer(m_header, true, 0, 32, header);
/*
__kernel void ethash_combined_hash(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
uint isolate
)
*/
m_hash_kernel.setArg(1, m_header);
m_hash_kernel.setArg(2, m_dag);
m_hash_kernel.setArg(3, nonce);
m_hash_kernel.setArg(4, ~0u); // have to pass this to stop the compile unrolling the loop
unsigned buf = 0;
for (unsigned i = 0; i < count || !pending.empty(); )
{
// how many this batch
if (i < count)
{
unsigned const this_count = std::min(count - i, c_hash_batch_size);
unsigned const batch_count = std::max(this_count, m_workgroup_size);
// supply output hash buffer to kernel
m_hash_kernel.setArg(0, m_hash_buf[buf]);
// execute it!
clock_t start_time = clock();
m_queue.enqueueNDRangeKernel(
m_hash_kernel,
cl::NullRange,
cl::NDRange(batch_count),
cl::NDRange(m_workgroup_size)
);
m_queue.flush();
pending.push({i, this_count, buf});
i += this_count;
buf = (buf + 1) % c_num_buffers;
}
// read results
if (i == count || pending.size() == c_num_buffers)
{
pending_batch const& batch = pending.front();
// could use pinned host pointer instead, but this path isn't that important.
uint8_t* hashes = (uint8_t*)m_queue.enqueueMapBuffer(m_hash_buf[batch.buf], true, CL_MAP_READ, 0, batch.count * HASH_BYTES);
memcpy(ret + batch.base*HASH_BYTES, hashes, batch.count*HASH_BYTES);
m_queue.enqueueUnmapMemObject(m_hash_buf[batch.buf], hashes);
pending.pop();
}
}
}
void ethash_cl_miner::search(uint8_t const* header, uint64_t target, search_hook& hook)
{
struct pending_batch
{
uint64_t start_nonce;
unsigned buf;
};
std::queue<pending_batch> pending;
static uint32_t const c_zero = 0;
// update header constant buffer
m_queue.enqueueWriteBuffer(m_header, false, 0, 32, header);
for (unsigned i = 0; i != c_num_buffers; ++i)
{
m_queue.enqueueWriteBuffer(m_search_buf[i], false, 0, 4, &c_zero);
}
cl::Event pre_return_event;
m_queue.enqueueBarrierWithWaitList(NULL, &pre_return_event);
/*
__kernel void ethash_combined_search(
__global hash32_t* g_hashes, // 0
__constant hash32_t const* g_header, // 1
__global hash128_t const* g_dag, // 2
ulong start_nonce, // 3
ulong target, // 4
uint isolate // 5
)
*/
m_search_kernel.setArg(1, m_header);
m_search_kernel.setArg(2, m_dag);
// pass these to stop the compiler unrolling the loops
m_search_kernel.setArg(4, target);
m_search_kernel.setArg(5, ~0u);
unsigned buf = 0;
for (uint64_t start_nonce = 0; ; start_nonce += c_search_batch_size)
{
// supply output buffer to kernel
m_search_kernel.setArg(0, m_search_buf[buf]);
m_search_kernel.setArg(3, start_nonce);
// execute it!
m_queue.enqueueNDRangeKernel(m_search_kernel, cl::NullRange, c_search_batch_size, m_workgroup_size);
pending.push({start_nonce, buf});
buf = (buf + 1) % c_num_buffers;
// read results
if (pending.size() == c_num_buffers)
{
pending_batch const& batch = pending.front();
// could use pinned host pointer instead
uint32_t* results = (uint32_t*)m_queue.enqueueMapBuffer(m_search_buf[batch.buf], true, CL_MAP_READ, 0, (1+c_max_search_results) * sizeof(uint32_t));
unsigned num_found = std::min(results[0], c_max_search_results);
uint64_t nonces[c_max_search_results];
for (unsigned i = 0; i != num_found; ++i)
{
nonces[i] = batch.start_nonce + results[i+1];
}
m_queue.enqueueUnmapMemObject(m_search_buf[batch.buf], results);
bool exit = num_found && hook.found(nonces, num_found);
exit |= hook.searched(batch.start_nonce, c_search_batch_size); // always report searched before exit
if (exit)
break;
pending.pop();
}
}
// not safe to return until this is ready
pre_return_event.wait();
}

View File

@ -0,0 +1,43 @@
#pragma once
#define __CL_ENABLE_EXCEPTIONS
#define CL_USE_DEPRECATED_OPENCL_2_0_APIS
#include "cl.hpp"
#include <time.h>
#include <libethash/ethash.h>
class ethash_cl_miner
{
public:
struct search_hook
{
// reports progress, return true to abort
virtual bool found(uint64_t const* nonces, uint32_t count) = 0;
virtual bool searched(uint64_t start_nonce, uint32_t count) = 0;
};
public:
ethash_cl_miner();
bool init(ethash_params const& params, const uint8_t seed[32], unsigned workgroup_size = 64);
void hash(uint8_t* ret, uint8_t const* header, uint64_t nonce, unsigned count);
void search(uint8_t const* header, uint64_t target, search_hook& hook);
private:
static unsigned const c_max_search_results = 63;
static unsigned const c_num_buffers = 2;
static unsigned const c_hash_batch_size = 1024;
static unsigned const c_search_batch_size = 1024*256;
ethash_params m_params;
cl::Context m_context;
cl::CommandQueue m_queue;
cl::Kernel m_hash_kernel;
cl::Kernel m_search_kernel;
cl::Buffer m_dag;
cl::Buffer m_header;
cl::Buffer m_hash_buf[c_num_buffers];
cl::Buffer m_search_buf[c_num_buffers];
unsigned m_workgroup_size;
};

View File

@ -0,0 +1,15 @@
find_package(CUDA)
# Pass options to NVCC
if (CUDA_FOUND)
set(CUDA_NVCC_FLAGS " -gencode;arch=compute_30,code=sm_30;
-gencode;arch=compute_20,code=sm_20;
-gencode;arch=compute_11,code=sm_11;
-gencode;arch=compute_12,code=sm_12;
-gencode;arch=compute_13,code=sm_13;")
cuda_add_executable(
ethash-cuda
libethash.cu)
endif()

View File

@ -0,0 +1,879 @@
/*
Copyright 2009 NVIDIA Corporation. All rights reserved.
NOTICE TO LICENSEE:
This source code and/or documentation ("Licensed Deliverables") are subject
to NVIDIA intellectual property rights under U.S. and international Copyright
laws.
These Licensed Deliverables contained herein is PROPRIETARY and CONFIDENTIAL
to NVIDIA and is being provided under the terms and conditions of a form of
NVIDIA software license agreement by and between NVIDIA and Licensee ("License
Agreement") or electronically accepted by Licensee. Notwithstanding any terms
or conditions to the contrary in the License Agreement, reproduction or
disclosure of the Licensed Deliverables to any third party without the express
written consent of NVIDIA is prohibited.
NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE LICENSE AGREEMENT,
NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THESE LICENSED
DELIVERABLES FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED
WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE
LICENSED DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. NOTWITHSTANDING ANY
TERMS OR CONDITIONS TO THE CONTRARY IN THE LICENSE AGREEMENT, IN NO EVENT SHALL
NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THESE LICENSED DELIVERABLES.
U.S. Government End Users. These Licensed Deliverables are a "commercial item"
as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
"commercial computer software" and "commercial computer software documentation"
as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the
U.S. Government only as a commercial end item. Consistent with 48 C.F.R.12.212
and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all U.S. Government
End Users acquire the Licensed Deliverables with only those rights set forth
herein.
Any use of the Licensed Deliverables in individual and commercial software must
include, in the user documentation and internal comments to the code, the above
Disclaimer and U.S. Government End Users Notice.
*/
/*
* cuPrintf.cu
*
* This is a printf command callable from within a kernel. It is set
* up so that output is sent to a memory buffer, which is emptied from
* the host side - but only after a cudaThreadSynchronize() on the host.
*
* Currently, there is a limitation of around 200 characters of output
* and no more than 10 arguments to a single cuPrintf() call. Issue
* multiple calls if longer format strings are required.
*
* It requires minimal setup, and is *NOT* optimised for performance.
* For example, writes are not coalesced - this is because there is an
* assumption that people will not want to printf from every single one
* of thousands of threads, but only from individual threads at a time.
*
* Using this is simple - it requires one host-side call to initialise
* everything, and then kernels can call cuPrintf at will. Sample code
* is the easiest way to demonstrate:
*
#include "cuPrintf.cu"
__global__ void testKernel(int val)
{
cuPrintf("Value is: %d\n", val);
}
int main()
{
cudaPrintfInit();
testKernel<<< 2, 3 >>>(10);
cudaPrintfDisplay(stdout, true);
cudaPrintfEnd();
return 0;
}
*
* See the header file, "cuPrintf.cuh" for more info, especially
* arguments to cudaPrintfInit() and cudaPrintfDisplay();
*/
#ifndef CUPRINTF_CU
#define CUPRINTF_CU
#include "cuPrintf.cuh"
#if __CUDA_ARCH__ > 100 // Atomics only used with > sm_10 architecture
#include <sm_11_atomic_functions.h>
#endif
// This is the smallest amount of memory, per-thread, which is allowed.
// It is also the largest amount of space a single printf() can take up
const static int CUPRINTF_MAX_LEN = 256;
// This structure is used internally to track block/thread output restrictions.
typedef struct __align__(8) {
int threadid; // CUPRINTF_UNRESTRICTED for unrestricted
int blockid; // CUPRINTF_UNRESTRICTED for unrestricted
} cuPrintfRestriction;
// The main storage is in a global print buffer, which has a known
// start/end/length. These are atomically updated so it works as a
// circular buffer.
// Since the only control primitive that can be used is atomicAdd(),
// we cannot wrap the pointer as such. The actual address must be
// calculated from printfBufferPtr by mod-ing with printfBufferLength.
// For sm_10 architecture, we must subdivide the buffer per-thread
// since we do not even have an atomic primitive.
__constant__ static char *globalPrintfBuffer = NULL; // Start of circular buffer (set up by host)
__constant__ static int printfBufferLength = 0; // Size of circular buffer (set up by host)
__device__ static cuPrintfRestriction restrictRules; // Output restrictions
__device__ volatile static char *printfBufferPtr = NULL; // Current atomically-incremented non-wrapped offset
// This is the header preceeding all printf entries.
// NOTE: It *must* be size-aligned to the maximum entity size (size_t)
typedef struct __align__(8) {
unsigned short magic; // Magic number says we're valid
unsigned short fmtoffset; // Offset of fmt string into buffer
unsigned short blockid; // Block ID of author
unsigned short threadid; // Thread ID of author
} cuPrintfHeader;
// Special header for sm_10 architecture
#define CUPRINTF_SM10_MAGIC 0xC810 // Not a valid ascii character
typedef struct __align__(16) {
unsigned short magic; // sm_10 specific magic number
unsigned short unused;
unsigned int thread_index; // thread ID for this buffer
unsigned int thread_buf_len; // per-thread buffer length
unsigned int offset; // most recent printf's offset
} cuPrintfHeaderSM10;
// Because we can't write an element which is not aligned to its bit-size,
// we have to align all sizes and variables on maximum-size boundaries.
// That means sizeof(double) in this case, but we'll use (long long) for
// better arch<1.3 support
#define CUPRINTF_ALIGN_SIZE sizeof(long long)
// All our headers are prefixed with a magic number so we know they're ready
#define CUPRINTF_SM11_MAGIC (unsigned short)0xC811 // Not a valid ascii character
//
// getNextPrintfBufPtr
//
// Grabs a block of space in the general circular buffer, using an
// atomic function to ensure that it's ours. We handle wrapping
// around the circular buffer and return a pointer to a place which
// can be written to.
//
// Important notes:
// 1. We always grab CUPRINTF_MAX_LEN bytes
// 2. Because of 1, we never worry about wrapping around the end
// 3. Because of 1, printfBufferLength *must* be a factor of CUPRINTF_MAX_LEN
//
// This returns a pointer to the place where we own.
//
__device__ static char *getNextPrintfBufPtr()
{
// Initialisation check
if(!printfBufferPtr)
return NULL;
// Thread/block restriction check
if((restrictRules.blockid != CUPRINTF_UNRESTRICTED) && (restrictRules.blockid != (blockIdx.x + gridDim.x*blockIdx.y)))
return NULL;
if((restrictRules.threadid != CUPRINTF_UNRESTRICTED) && (restrictRules.threadid != (threadIdx.x + blockDim.x*threadIdx.y + blockDim.x*blockDim.y*threadIdx.z)))
return NULL;
// Conditional section, dependent on architecture
#if __CUDA_ARCH__ == 100
// For sm_10 architectures, we have no atomic add - this means we must split the
// entire available buffer into per-thread blocks. Inefficient, but what can you do.
int thread_count = (gridDim.x * gridDim.y) * (blockDim.x * blockDim.y * blockDim.z);
int thread_index = threadIdx.x + blockDim.x*threadIdx.y + blockDim.x*blockDim.y*threadIdx.z +
(blockIdx.x + gridDim.x*blockIdx.y) * (blockDim.x * blockDim.y * blockDim.z);
// Find our own block of data and go to it. Make sure the per-thread length
// is a precise multiple of CUPRINTF_MAX_LEN, otherwise we risk size and
// alignment issues! We must round down, of course.
unsigned int thread_buf_len = printfBufferLength / thread_count;
thread_buf_len &= ~(CUPRINTF_MAX_LEN-1);
// We *must* have a thread buffer length able to fit at least two printfs (one header, one real)
if(thread_buf_len < (CUPRINTF_MAX_LEN * 2))
return NULL;
// Now address our section of the buffer. The first item is a header.
char *myPrintfBuffer = globalPrintfBuffer + (thread_buf_len * thread_index);
cuPrintfHeaderSM10 hdr = *(cuPrintfHeaderSM10 *)(void *)myPrintfBuffer;
if(hdr.magic != CUPRINTF_SM10_MAGIC)
{
// If our header is not set up, initialise it
hdr.magic = CUPRINTF_SM10_MAGIC;
hdr.thread_index = thread_index;
hdr.thread_buf_len = thread_buf_len;
hdr.offset = 0; // Note we start at 0! We pre-increment below.
*(cuPrintfHeaderSM10 *)(void *)myPrintfBuffer = hdr; // Write back the header
// For initial setup purposes, we might need to init thread0's header too
// (so that cudaPrintfDisplay() below will work). This is only run once.
cuPrintfHeaderSM10 *tophdr = (cuPrintfHeaderSM10 *)(void *)globalPrintfBuffer;
tophdr->thread_buf_len = thread_buf_len;
}
// Adjust the offset by the right amount, and wrap it if need be
unsigned int offset = hdr.offset + CUPRINTF_MAX_LEN;
if(offset >= hdr.thread_buf_len)
offset = CUPRINTF_MAX_LEN;
// Write back the new offset for next time and return a pointer to it
((cuPrintfHeaderSM10 *)(void *)myPrintfBuffer)->offset = offset;
return myPrintfBuffer + offset;
#else
// Much easier with an atomic operation!
size_t offset = atomicAdd((unsigned int *)&printfBufferPtr, CUPRINTF_MAX_LEN) - (size_t)globalPrintfBuffer;
offset %= printfBufferLength;
return globalPrintfBuffer + offset;
#endif
}
//
// writePrintfHeader
//
// Inserts the header for containing our UID, fmt position and
// block/thread number. We generate it dynamically to avoid
// issues arising from requiring pre-initialisation.
//
__device__ static void writePrintfHeader(char *ptr, char *fmtptr)
{
if(ptr)
{
cuPrintfHeader header;
header.magic = CUPRINTF_SM11_MAGIC;
header.fmtoffset = (unsigned short)(fmtptr - ptr);
header.blockid = blockIdx.x + gridDim.x*blockIdx.y;
header.threadid = threadIdx.x + blockDim.x*threadIdx.y + blockDim.x*blockDim.y*threadIdx.z;
*(cuPrintfHeader *)(void *)ptr = header;
}
}
//
// cuPrintfStrncpy
//
// This special strncpy outputs an aligned length value, followed by the
// string. It then zero-pads the rest of the string until a 64-aligned
// boundary. The length *includes* the padding. A pointer to the byte
// just after the \0 is returned.
//
// This function could overflow CUPRINTF_MAX_LEN characters in our buffer.
// To avoid it, we must count as we output and truncate where necessary.
//
__device__ static char *cuPrintfStrncpy(char *dest, const char *src, int n, char *end)
{
// Initialisation and overflow check
if(!dest || !src || (dest >= end))
return NULL;
// Prepare to write the length specifier. We're guaranteed to have
// at least "CUPRINTF_ALIGN_SIZE" bytes left because we only write out in
// chunks that size, and CUPRINTF_MAX_LEN is aligned with CUPRINTF_ALIGN_SIZE.
int *lenptr = (int *)(void *)dest;
int len = 0;
dest += CUPRINTF_ALIGN_SIZE;
// Now copy the string
while(n--)
{
if(dest >= end) // Overflow check
break;
len++;
*dest++ = *src;
if(*src++ == '\0')
break;
}
// Now write out the padding bytes, and we have our length.
while((dest < end) && (((long)dest & (CUPRINTF_ALIGN_SIZE-1)) != 0))
{
len++;
*dest++ = 0;
}
*lenptr = len;
return (dest < end) ? dest : NULL; // Overflow means return NULL
}
//
// copyArg
//
// This copies a length specifier and then the argument out to the
// data buffer. Templates let the compiler figure all this out at
// compile-time, making life much simpler from the programming
// point of view. I'm assuimg all (const char *) is a string, and
// everything else is the variable it points at. I'd love to see
// a better way of doing it, but aside from parsing the format
// string I can't think of one.
//
// The length of the data type is inserted at the beginning (so that
// the display can distinguish between float and double), and the
// pointer to the end of the entry is returned.
//
__device__ static char *copyArg(char *ptr, const char *arg, char *end)
{
// Initialisation check
if(!ptr || !arg)
return NULL;
// strncpy does all our work. We just terminate.
if((ptr = cuPrintfStrncpy(ptr, arg, CUPRINTF_MAX_LEN, end)) != NULL)
*ptr = 0;
return ptr;
}
template <typename T>
__device__ static char *copyArg(char *ptr, T &arg, char *end)
{
// Initisalisation and overflow check. Alignment rules mean that
// we're at least CUPRINTF_ALIGN_SIZE away from "end", so we only need
// to check that one offset.
if(!ptr || ((ptr+CUPRINTF_ALIGN_SIZE) >= end))
return NULL;
// Write the length and argument
*(int *)(void *)ptr = sizeof(arg);
ptr += CUPRINTF_ALIGN_SIZE;
*(T *)(void *)ptr = arg;
ptr += CUPRINTF_ALIGN_SIZE;
*ptr = 0;
return ptr;
}
//
// cuPrintf
//
// Templated printf functions to handle multiple arguments.
// Note we return the total amount of data copied, not the number
// of characters output. But then again, who ever looks at the
// return from printf() anyway?
//
// The format is to grab a block of circular buffer space, the
// start of which will hold a header and a pointer to the format
// string. We then write in all the arguments, and finally the
// format string itself. This is to make it easy to prevent
// overflow of our buffer (we support up to 10 arguments, each of
// which can be 12 bytes in length - that means that only the
// format string (or a %s) can actually overflow; so the overflow
// check need only be in the strcpy function.
//
// The header is written at the very last because that's what
// makes it look like we're done.
//
// Errors, which are basically lack-of-initialisation, are ignored
// in the called functions because NULL pointers are passed around
//
// All printf variants basically do the same thing, setting up the
// buffer, writing all arguments, then finalising the header. For
// clarity, we'll pack the code into some big macros.
#define CUPRINTF_PREAMBLE \
char *start, *end, *bufptr, *fmtstart; \
if((start = getNextPrintfBufPtr()) == NULL) return 0; \
end = start + CUPRINTF_MAX_LEN; \
bufptr = start + sizeof(cuPrintfHeader);
// Posting an argument is easy
#define CUPRINTF_ARG(argname) \
bufptr = copyArg(bufptr, argname, end);
// After args are done, record start-of-fmt and write the fmt and header
#define CUPRINTF_POSTAMBLE \
fmtstart = bufptr; \
end = cuPrintfStrncpy(bufptr, fmt, CUPRINTF_MAX_LEN, end); \
writePrintfHeader(start, end ? fmtstart : NULL); \
return end ? (int)(end - start) : 0;
__device__ int cuPrintf(const char *fmt)
{
CUPRINTF_PREAMBLE;
CUPRINTF_POSTAMBLE;
}
template <typename T1> __device__ int cuPrintf(const char *fmt, T1 arg1)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2, typename T3> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_ARG(arg3);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2, typename T3, typename T4> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_ARG(arg3);
CUPRINTF_ARG(arg4);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2, typename T3, typename T4, typename T5> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_ARG(arg3);
CUPRINTF_ARG(arg4);
CUPRINTF_ARG(arg5);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_ARG(arg3);
CUPRINTF_ARG(arg4);
CUPRINTF_ARG(arg5);
CUPRINTF_ARG(arg6);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_ARG(arg3);
CUPRINTF_ARG(arg4);
CUPRINTF_ARG(arg5);
CUPRINTF_ARG(arg6);
CUPRINTF_ARG(arg7);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_ARG(arg3);
CUPRINTF_ARG(arg4);
CUPRINTF_ARG(arg5);
CUPRINTF_ARG(arg6);
CUPRINTF_ARG(arg7);
CUPRINTF_ARG(arg8);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_ARG(arg3);
CUPRINTF_ARG(arg4);
CUPRINTF_ARG(arg5);
CUPRINTF_ARG(arg6);
CUPRINTF_ARG(arg7);
CUPRINTF_ARG(arg8);
CUPRINTF_ARG(arg9);
CUPRINTF_POSTAMBLE;
}
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9, T10 arg10)
{
CUPRINTF_PREAMBLE;
CUPRINTF_ARG(arg1);
CUPRINTF_ARG(arg2);
CUPRINTF_ARG(arg3);
CUPRINTF_ARG(arg4);
CUPRINTF_ARG(arg5);
CUPRINTF_ARG(arg6);
CUPRINTF_ARG(arg7);
CUPRINTF_ARG(arg8);
CUPRINTF_ARG(arg9);
CUPRINTF_ARG(arg10);
CUPRINTF_POSTAMBLE;
}
#undef CUPRINTF_PREAMBLE
#undef CUPRINTF_ARG
#undef CUPRINTF_POSTAMBLE
//
// cuPrintfRestrict
//
// Called to restrict output to a given thread/block.
// We store the info in "restrictRules", which is set up at
// init time by the host. It's not the cleanest way to do this
// because it means restrictions will last between
// invocations, but given the output-pointer continuity,
// I feel this is reasonable.
//
__device__ void cuPrintfRestrict(int threadid, int blockid)
{
int thread_count = blockDim.x * blockDim.y * blockDim.z;
if(((threadid < thread_count) && (threadid >= 0)) || (threadid == CUPRINTF_UNRESTRICTED))
restrictRules.threadid = threadid;
int block_count = gridDim.x * gridDim.y;
if(((blockid < block_count) && (blockid >= 0)) || (blockid == CUPRINTF_UNRESTRICTED))
restrictRules.blockid = blockid;
}
///////////////////////////////////////////////////////////////////////////////
// HOST SIDE
#include <stdio.h>
static FILE *printf_fp;
static char *printfbuf_start=NULL;
static char *printfbuf_device=NULL;
static int printfbuf_len=0;
//
// outputPrintfData
//
// Our own internal function, which takes a pointer to a data buffer
// and passes it through libc's printf for output.
//
// We receive the formate string and a pointer to where the data is
// held. We then run through and print it out.
//
// Returns 0 on failure, 1 on success
//
static int outputPrintfData(char *fmt, char *data)
{
// Format string is prefixed by a length that we don't need
fmt += CUPRINTF_ALIGN_SIZE;
// Now run through it, printing everything we can. We must
// run to every % character, extract only that, and use printf
// to format it.
char *p = strchr(fmt, '%');
while(p != NULL)
{
// Print up to the % character
*p = '\0';
fputs(fmt, printf_fp);
*p = '%'; // Put back the %
// Now handle the format specifier
char *format = p++; // Points to the '%'
p += strcspn(p, "%cdiouxXeEfgGaAnps");
if(*p == '\0') // If no format specifier, print the whole thing
{
fmt = format;
break;
}
// Cut out the format bit and use printf to print it. It's prefixed
// by its length.
int arglen = *(int *)data;
if(arglen > CUPRINTF_MAX_LEN)
{
fputs("Corrupt printf buffer data - aborting\n", printf_fp);
return 0;
}
data += CUPRINTF_ALIGN_SIZE;
char specifier = *p++;
char c = *p; // Store for later
*p = '\0';
switch(specifier)
{
// These all take integer arguments
case 'c':
case 'd':
case 'i':
case 'o':
case 'u':
case 'x':
case 'X':
case 'p':
fprintf(printf_fp, format, *((int *)data));
break;
// These all take double arguments
case 'e':
case 'E':
case 'f':
case 'g':
case 'G':
case 'a':
case 'A':
if(arglen == 4) // Float vs. Double thing
fprintf(printf_fp, format, *((float *)data));
else
fprintf(printf_fp, format, *((double *)data));
break;
// Strings are handled in a special way
case 's':
fprintf(printf_fp, format, (char *)data);
break;
// % is special
case '%':
fprintf(printf_fp, "%%");
break;
// Everything else is just printed out as-is
default:
fprintf(printf_fp, format);
break;
}
data += CUPRINTF_ALIGN_SIZE; // Move on to next argument
*p = c; // Restore what we removed
fmt = p; // Adjust fmt string to be past the specifier
p = strchr(fmt, '%'); // and get the next specifier
}
// Print out the last of the string
fputs(fmt, printf_fp);
return 1;
}
//
// doPrintfDisplay
//
// This runs through the blocks of CUPRINTF_MAX_LEN-sized data, calling the
// print function above to display them. We've got this separate from
// cudaPrintfDisplay() below so we can handle the SM_10 architecture
// partitioning.
//
static int doPrintfDisplay(int headings, int clear, char *bufstart, char *bufend, char *bufptr, char *endptr)
{
// Grab, piece-by-piece, each output element until we catch
// up with the circular buffer end pointer
int printf_count=0;
char printfbuf_local[CUPRINTF_MAX_LEN+1];
printfbuf_local[CUPRINTF_MAX_LEN] = '\0';
while(bufptr != endptr)
{
// Wrap ourselves at the end-of-buffer
if(bufptr == bufend)
bufptr = bufstart;
// Adjust our start pointer to within the circular buffer and copy a block.
cudaMemcpy(printfbuf_local, bufptr, CUPRINTF_MAX_LEN, cudaMemcpyDeviceToHost);
// If the magic number isn't valid, then this write hasn't gone through
// yet and we'll wait until it does (or we're past the end for non-async printfs).
cuPrintfHeader *hdr = (cuPrintfHeader *)printfbuf_local;
if((hdr->magic != CUPRINTF_SM11_MAGIC) || (hdr->fmtoffset >= CUPRINTF_MAX_LEN))
{
//fprintf(printf_fp, "Bad magic number in printf header\n");
break;
}
// Extract all the info and get this printf done
if(headings)
fprintf(printf_fp, "[%d, %d]: ", hdr->blockid, hdr->threadid);
if(hdr->fmtoffset == 0)
fprintf(printf_fp, "printf buffer overflow\n");
else if(!outputPrintfData(printfbuf_local+hdr->fmtoffset, printfbuf_local+sizeof(cuPrintfHeader)))
break;
printf_count++;
// Clear if asked
if(clear)
cudaMemset(bufptr, 0, CUPRINTF_MAX_LEN);
// Now advance our start location, because we're done, and keep copying
bufptr += CUPRINTF_MAX_LEN;
}
return printf_count;
}
//
// cudaPrintfInit
//
// Takes a buffer length to allocate, creates the memory on the device and
// returns a pointer to it for when a kernel is called. It's up to the caller
// to free it.
//
extern "C" cudaError_t cudaPrintfInit(size_t bufferLen)
{
// Fix up bufferlen to be a multiple of CUPRINTF_MAX_LEN
bufferLen = (bufferLen < CUPRINTF_MAX_LEN) ? CUPRINTF_MAX_LEN : bufferLen;
if((bufferLen % CUPRINTF_MAX_LEN) > 0)
bufferLen += (CUPRINTF_MAX_LEN - (bufferLen % CUPRINTF_MAX_LEN));
printfbuf_len = (int)bufferLen;
// Allocate a print buffer on the device and zero it
if(cudaMalloc((void **)&printfbuf_device, printfbuf_len) != cudaSuccess)
return cudaErrorInitializationError;
cudaMemset(printfbuf_device, 0, printfbuf_len);
printfbuf_start = printfbuf_device; // Where we start reading from
// No restrictions to begin with
cuPrintfRestriction restrict;
restrict.threadid = restrict.blockid = CUPRINTF_UNRESTRICTED;
cudaMemcpyToSymbol(restrictRules, &restrict, sizeof(restrict));
// Initialise the buffer and the respective lengths/pointers.
cudaMemcpyToSymbol(globalPrintfBuffer, &printfbuf_device, sizeof(char *));
cudaMemcpyToSymbol(printfBufferPtr, &printfbuf_device, sizeof(char *));
cudaMemcpyToSymbol(printfBufferLength, &printfbuf_len, sizeof(printfbuf_len));
return cudaSuccess;
}
//
// cudaPrintfEnd
//
// Frees up the memory which we allocated
//
extern "C" void cudaPrintfEnd()
{
if(!printfbuf_start || !printfbuf_device)
return;
cudaFree(printfbuf_device);
printfbuf_start = printfbuf_device = NULL;
}
//
// cudaPrintfDisplay
//
// Each call to this function dumps the entire current contents
// of the printf buffer to the pre-specified FILE pointer. The
// circular "start" pointer is advanced so that subsequent calls
// dumps only new stuff.
//
// In the case of async memory access (via streams), call this
// repeatedly to keep trying to empty the buffer. If it's a sync
// access, then the whole buffer should empty in one go.
//
// Arguments:
// outputFP - File descriptor to output to (NULL => stdout)
// showThreadID - If true, prints [block,thread] before each line
//
extern "C" cudaError_t cudaPrintfDisplay(void *outputFP, bool showThreadID)
{
printf_fp = (FILE *)((outputFP == NULL) ? stdout : outputFP);
// For now, we force "synchronous" mode which means we're not concurrent
// with kernel execution. This also means we don't need clearOnPrint.
// If you're patching it for async operation, here's where you want it.
bool sync_printfs = true;
bool clearOnPrint = false;
// Initialisation check
if(!printfbuf_start || !printfbuf_device || !printf_fp)
return cudaErrorMissingConfiguration;
// To determine which architecture we're using, we read the
// first short from the buffer - it'll be the magic number
// relating to the version.
unsigned short magic;
cudaMemcpy(&magic, printfbuf_device, sizeof(unsigned short), cudaMemcpyDeviceToHost);
// For SM_10 architecture, we've split our buffer into one-per-thread.
// That means we must do each thread block separately. It'll require
// extra reading. We also, for now, don't support async printfs because
// that requires tracking one start pointer per thread.
if(magic == CUPRINTF_SM10_MAGIC)
{
sync_printfs = true;
clearOnPrint = false;
int blocklen = 0;
char *blockptr = printfbuf_device;
while(blockptr < (printfbuf_device + printfbuf_len))
{
cuPrintfHeaderSM10 hdr;
cudaMemcpy(&hdr, blockptr, sizeof(hdr), cudaMemcpyDeviceToHost);
// We get our block-size-step from the very first header
if(hdr.thread_buf_len != 0)
blocklen = hdr.thread_buf_len;
// No magic number means no printfs from this thread
if(hdr.magic != CUPRINTF_SM10_MAGIC)
{
if(blocklen == 0)
{
fprintf(printf_fp, "No printf headers found at all!\n");
break; // No valid headers!
}
blockptr += blocklen;
continue;
}
// "offset" is non-zero then we can print the block contents
if(hdr.offset > 0)
{
// For synchronous printfs, we must print from endptr->bufend, then from start->end
if(sync_printfs)
doPrintfDisplay(showThreadID, clearOnPrint, blockptr+CUPRINTF_MAX_LEN, blockptr+hdr.thread_buf_len, blockptr+hdr.offset+CUPRINTF_MAX_LEN, blockptr+hdr.thread_buf_len);
doPrintfDisplay(showThreadID, clearOnPrint, blockptr+CUPRINTF_MAX_LEN, blockptr+hdr.thread_buf_len, blockptr+CUPRINTF_MAX_LEN, blockptr+hdr.offset+CUPRINTF_MAX_LEN);
}
// Move on to the next block and loop again
blockptr += hdr.thread_buf_len;
}
}
// For SM_11 and up, everything is a single buffer and it's simple
else if(magic == CUPRINTF_SM11_MAGIC)
{
// Grab the current "end of circular buffer" pointer.
char *printfbuf_end = NULL;
cudaMemcpyFromSymbol(&printfbuf_end, printfBufferPtr, sizeof(char *));
// Adjust our starting and ending pointers to within the block
char *bufptr = ((printfbuf_start - printfbuf_device) % printfbuf_len) + printfbuf_device;
char *endptr = ((printfbuf_end - printfbuf_device) % printfbuf_len) + printfbuf_device;
// For synchronous (i.e. after-kernel-exit) printf display, we have to handle circular
// buffer wrap carefully because we could miss those past "end".
if(sync_printfs)
doPrintfDisplay(showThreadID, clearOnPrint, printfbuf_device, printfbuf_device+printfbuf_len, endptr, printfbuf_device+printfbuf_len);
doPrintfDisplay(showThreadID, clearOnPrint, printfbuf_device, printfbuf_device+printfbuf_len, bufptr, endptr);
printfbuf_start = printfbuf_end;
}
else
;//printf("Bad magic number in cuPrintf buffer header\n");
// If we were synchronous, then we must ensure that the memory is cleared on exit
// otherwise another kernel launch with a different grid size could conflict.
if(sync_printfs)
cudaMemset(printfbuf_device, 0, printfbuf_len);
return cudaSuccess;
}
// Cleanup
#undef CUPRINTF_MAX_LEN
#undef CUPRINTF_ALIGN_SIZE
#undef CUPRINTF_SM10_MAGIC
#undef CUPRINTF_SM11_MAGIC
#endif

View File

@ -0,0 +1,162 @@
/*
Copyright 2009 NVIDIA Corporation. All rights reserved.
NOTICE TO LICENSEE:
This source code and/or documentation ("Licensed Deliverables") are subject
to NVIDIA intellectual property rights under U.S. and international Copyright
laws.
These Licensed Deliverables contained herein is PROPRIETARY and CONFIDENTIAL
to NVIDIA and is being provided under the terms and conditions of a form of
NVIDIA software license agreement by and between NVIDIA and Licensee ("License
Agreement") or electronically accepted by Licensee. Notwithstanding any terms
or conditions to the contrary in the License Agreement, reproduction or
disclosure of the Licensed Deliverables to any third party without the express
written consent of NVIDIA is prohibited.
NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE LICENSE AGREEMENT,
NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THESE LICENSED
DELIVERABLES FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED
WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE
LICENSED DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. NOTWITHSTANDING ANY
TERMS OR CONDITIONS TO THE CONTRARY IN THE LICENSE AGREEMENT, IN NO EVENT SHALL
NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THESE LICENSED DELIVERABLES.
U.S. Government End Users. These Licensed Deliverables are a "commercial item"
as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
"commercial computer software" and "commercial computer software documentation"
as such terms are used in 48 C.F.R. 12.212 (SEPT 1995) and is provided to the
U.S. Government only as a commercial end item. Consistent with 48 C.F.R.12.212
and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all U.S. Government
End Users acquire the Licensed Deliverables with only those rights set forth
herein.
Any use of the Licensed Deliverables in individual and commercial software must
include, in the user documentation and internal comments to the code, the above
Disclaimer and U.S. Government End Users Notice.
*/
#ifndef CUPRINTF_H
#define CUPRINTF_H
/*
* This is the header file supporting cuPrintf.cu and defining both
* the host and device-side interfaces. See that file for some more
* explanation and sample use code. See also below for details of the
* host-side interfaces.
*
* Quick sample code:
*
#include "cuPrintf.cu"
__global__ void testKernel(int val)
{
cuPrintf("Value is: %d\n", val);
}
int main()
{
cudaPrintfInit();
testKernel<<< 2, 3 >>>(10);
cudaPrintfDisplay(stdout, true);
cudaPrintfEnd();
return 0;
}
*/
///////////////////////////////////////////////////////////////////////////////
// DEVICE SIDE
// External function definitions for device-side code
// Abuse of templates to simulate varargs
__device__ int cuPrintf(const char *fmt);
template <typename T1> __device__ int cuPrintf(const char *fmt, T1 arg1);
template <typename T1, typename T2> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2);
template <typename T1, typename T2, typename T3> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3);
template <typename T1, typename T2, typename T3, typename T4> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4);
template <typename T1, typename T2, typename T3, typename T4, typename T5> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5);
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6);
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7);
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8);
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9);
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10> __device__ int cuPrintf(const char *fmt, T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9, T10 arg10);
//
// cuPrintfRestrict
//
// Called to restrict output to a given thread/block. Pass
// the constant CUPRINTF_UNRESTRICTED to unrestrict output
// for thread/block IDs. Note you can therefore allow
// "all printfs from block 3" or "printfs from thread 2
// on all blocks", or "printfs only from block 1, thread 5".
//
// Arguments:
// threadid - Thread ID to allow printfs from
// blockid - Block ID to allow printfs from
//
// NOTE: Restrictions last between invocations of
// kernels unless cudaPrintfInit() is called again.
//
#define CUPRINTF_UNRESTRICTED -1
__device__ void cuPrintfRestrict(int threadid, int blockid);
///////////////////////////////////////////////////////////////////////////////
// HOST SIDE
// External function definitions for host-side code
//
// cudaPrintfInit
//
// Call this once to initialise the printf system. If the output
// file or buffer size needs to be changed, call cudaPrintfEnd()
// before re-calling cudaPrintfInit().
//
// The default size for the buffer is 1 megabyte. For CUDA
// architecture 1.1 and above, the buffer is filled linearly and
// is completely used; however for architecture 1.0, the buffer
// is divided into as many segments are there are threads, even
// if some threads do not call cuPrintf().
//
// Arguments:
// bufferLen - Length, in bytes, of total space to reserve
// (in device global memory) for output.
//
// Returns:
// cudaSuccess if all is well.
//
extern "C" cudaError_t cudaPrintfInit(size_t bufferLen=1048576); // 1-meg - that's enough for 4096 printfs by all threads put together
//
// cudaPrintfEnd
//
// Cleans up all memories allocated by cudaPrintfInit().
// Call this at exit, or before calling cudaPrintfInit() again.
//
extern "C" void cudaPrintfEnd();
//
// cudaPrintfDisplay
//
// Dumps the contents of the output buffer to the specified
// file pointer. If the output pointer is not specified,
// the default "stdout" is used.
//
// Arguments:
// outputFP - A file pointer to an output stream.
// showThreadID - If "true", output strings are prefixed
// by "[blockid, threadid] " at output.
//
// Returns:
// cudaSuccess if all is well.
//
extern "C" cudaError_t cudaPrintfDisplay(void *outputFP=NULL, bool showThreadID=false);
#endif // CUPRINTF_H

View File

@ -0,0 +1,27 @@
#include "cuPrintf.cu"
#include <stdio.h>
__global__ void device_greetings(void)
{
cuPrintf("Hello, world from the device!\n");
}
int main(void)
{
// greet from the host
printf("Hello, world from the host!\n");
// initialize cuPrintf
cudaPrintfInit();
// launch a kernel with a single thread to greet from the device
device_greetings<<<1,1>>>();
// display the device's greeting
cudaPrintfDisplay();
// clean up after cuPrintf
cudaPrintfEnd();
return 0;
}

View File

@ -0,0 +1,33 @@
set(LIBRARY ethash)
set(CMAKE_BUILD_TYPE Release)
if (NOT MSVC)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -std=gnu99")
endif()
set(FILES util.c
util.h
internal.c
ethash.h
endian.h
compiler.h
fnv.h
data_sizes.h)
if (NOT CRYPTOPP_FOUND)
find_package(CryptoPP 5.6.2)
endif()
if (CRYPTOPP_FOUND)
add_definitions(-DWITH_CRYPTOPP)
include_directories( ${CRYPTOPP_INCLUDE_DIRS} )
list(APPEND FILES sha3_cryptopp.cpp sha3_cryptopp.h)
else()
list(APPEND FILES sha3.c sha3.h)
endif()
add_library(${LIBRARY} ${FILES})
if (CRYPTOPP_FOUND)
TARGET_LINK_LIBRARIES(${LIBRARY} ${CRYPTOPP_LIBRARIES})
endif()

View File

@ -0,0 +1,33 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file compiler.h
* @date 2014
*/
#pragma once
// Visual Studio doesn't support the inline keyword in C mode
#if defined(_MSC_VER) && !defined(__cplusplus)
#define inline __inline
#endif
// pretend restrict is a standard keyword
#if defined(_MSC_VER)
#define restrict __restrict
#else
#define restrict __restrict__
#endif

View File

@ -0,0 +1,248 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software FoundationUUU,either version 3 of the LicenseUUU,or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be usefulU,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If notUUU,see <http://www.gnu.org/licenses/>.
*/
/** @file nth_prime.h
* @author Matthew Wampler-Doty <negacthulhu@gmail.com>
* @date 2015
*/
// TODO: Update this after ~7 years
#pragma once
#include <stdint.h>
//#include <Security/Security.h>
#include "compiler.h"
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
// 500 Epochs worth of tabulated DAG sizes (~3.5 Years)
// Generated with the following Mathematica Code:
// GetDataSizes[n_] := Module[{
// DAGSizeBytesInit = 2^30,
// MixBytes = 128,
// DAGGrowth = 113000000,
// j = 0},
// Reap[
// While[j < n,
// Module[{i =
// Floor[(DAGSizeBytesInit + DAGGrowth * j) / MixBytes]},
// While[! PrimeQ[i], i--];
// Sow[i*MixBytes]; j++]]]][[2]][[1]]
static const size_t dag_sizes[] = {
1073739904U, 1186739584U, 1299741568U, 1412741248U, 1525741696U,
1638736768U, 1751741312U, 1864740736U, 1977740672U, 2090740864U,
2203740544U, 2316741248U, 2429739392U, 2542740352U, 2655741824U,
2768739712U, 2881740416U, 2994741632U, 3107740544U, 3220741504U,
3333738112U, 3446741632U, 3559741312U, 3672740224U, 3785740928U,
3898738304U, 4011741824U, 4124739712U, 4237735808U, 4350740864U,
4463741824U, 4576741504U, 4689741184U, 4802739328U, 4915741568U,
5028740224U, 5141740672U, 5254738304U, 5367741824U, 5480737664U,
5593738112U, 5706741632U, 5819740544U, 5932734592U, 6045739904U,
6158740096U, 6271740032U, 6384731776U, 6497732992U, 6610740352U,
6723741056U, 6836741504U, 6949740416U, 7062740096U, 7175741824U,
7288740224U, 7401741184U, 7514741632U, 7627741568U, 7740739712U,
7853739136U, 7966740352U, 8079741568U, 8192739712U, 8305738624U,
8418740864U, 8531740288U, 8644740736U, 8757735808U, 8870738816U,
8983739264U, 9096740992U, 9209740928U, 9322739584U, 9435741824U,
9548741504U, 9661739392U, 9774738304U, 9887741312U, 10000738688U,
10113739136U, 10226741632U, 10339739776U, 10452741248U, 10565740928U,
10678736512U, 10791734656U, 10904741248U, 11017738112U, 11130741632U,
11243741312U, 11356739456U, 11469740416U, 11582734976U, 11695739008U,
11808741248U, 11921734784U, 12034739072U, 12147741568U, 12260737408U,
12373741696U, 12486738304U, 12599740544U, 12712740224U, 12825741184U,
12938736256U, 13051741312U, 13164737408U, 13277738368U, 13390738048U,
13503741824U, 13616741504U, 13729737088U, 13842740096U, 13955741312U,
14068741504U, 14181740416U, 14294741632U, 14407739776U, 14520740224U,
14633740928U, 14746736512U, 14859741824U, 14972740736U, 15085740928U,
15198738304U, 15311732096U, 15424740736U, 15537739904U, 15650741632U,
15763741568U, 15876737152U, 15989741696U, 16102740608U, 16215741056U,
16328741248U, 16441740416U, 16554737792U, 16667740288U, 16780740992U,
16893738112U, 17006741632U, 17119739008U, 17232735616U, 17345739392U,
17458740352U, 17571736192U, 17684739712U, 17797739392U, 17910740096U,
18023741312U, 18136740736U, 18249738112U, 18362738816U, 18475735424U,
18588740224U, 18701738368U, 18814736768U, 18927737216U, 19040739968U,
19153739648U, 19266736768U, 19379737984U, 19492739456U, 19605738368U,
19718740352U, 19831741312U, 19944736384U, 20057741696U, 20170741376U,
20283741824U, 20396737408U, 20509741696U, 20622741376U, 20735739008U,
20848741504U, 20961740672U, 21074739328U, 21187740032U, 21300739456U,
21413741696U, 21526740608U, 21639741824U, 21752737408U, 21865741696U,
21978741376U, 22091741824U, 22204738432U, 22317740672U, 22430740096U,
22543736704U, 22656741248U, 22769739904U, 22882739584U, 22995740288U,
23108740736U, 23221740928U, 23334741376U, 23447737216U, 23560740992U,
23673741184U, 23786740864U, 23899737728U, 24012741248U, 24125734784U,
24238736512U, 24351741824U, 24464740736U, 24577737088U, 24690741632U,
24803739776U, 24916740736U, 25029740416U, 25142740864U, 25255741568U,
25368741248U, 25481740672U, 25594741376U, 25707741568U, 25820741504U,
25933730432U, 26046739072U, 26159741824U, 26272741504U, 26385740672U,
26498740096U, 26611741568U, 26724740992U, 26837739904U, 26950735232U,
27063738496U, 27176741248U, 27289741184U, 27402740864U, 27515740544U,
27628737152U, 27741740672U, 27854741632U, 27967740544U, 28080739712U,
28193738368U, 28306741376U, 28419737728U, 28532739968U, 28645739648U,
28758740096U, 28871741312U, 28984739456U, 29097740416U, 29210740864U,
29323741312U, 29436740224U, 29549741696U, 29662738304U, 29775741568U,
29888741504U, 30001740928U, 30114737024U, 30227735168U, 30340737664U,
30453738368U, 30566737024U, 30679733632U, 30792740224U, 30905740928U,
31018740352U, 31131740032U, 31244738944U, 31357737344U, 31470741376U,
31583740544U, 31696740224U, 31809738112U, 31922739328U, 32035737472U,
32148740992U, 32261741696U, 32374740352U, 32487741824U, 32600740736U,
32713739648U, 32826740608U, 32939729792U, 33052740992U, 33165740672U,
33278739584U, 33391741312U, 33504739712U, 33617740928U, 33730740608U,
33843738496U, 33956739968U, 34069741696U, 34182739328U, 34295741824U,
34408739968U, 34521740672U, 34634736512U, 34747741568U, 34860741248U,
34973739392U, 35086738304U, 35199741056U, 35312736896U, 35425741184U,
35538741376U, 35651740288U, 35764737152U, 35877741184U, 35990739584U,
36103740544U, 36216740992U, 36329739392U, 36442737536U, 36555741568U,
36668740736U, 36781741184U, 36894737024U, 37007741312U, 37120739456U,
37233741184U, 37346736256U, 37459736192U, 37572734336U, 37685739904U,
37798740352U, 37911737728U, 38024741504U, 38137739648U, 38250740608U,
38363741824U, 38476740992U, 38589741184U, 38702740096U, 38815741312U,
38928741248U, 39041738368U, 39154739584U, 39267741824U, 39380739712U,
39493735808U, 39606741632U, 39719741312U, 39832741504U, 39945739648U,
40058740352U, 40171740032U, 40284740992U, 40397740672U, 40510740352U,
40623740288U, 40736738176U, 40849737856U, 40962741376U, 41075739776U,
41188737664U, 41301735808U, 41414738048U, 41527741312U, 41640740992U,
41753739904U, 41866739072U, 41979738496U, 42092740736U, 42205739648U,
42318740608U, 42431741312U, 42544738688U, 42657741184U, 42770738048U,
42883741568U, 42996741248U, 43109740928U, 43222736512U, 43335741056U,
43448730496U, 43561740416U, 43674741632U, 43787740544U, 43900741504U,
44013739648U, 44126740864U, 44239740544U, 44352741248U, 44465738368U,
44578735232U, 44691739264U, 44804741504U, 44917741696U, 45030741376U,
45143741824U, 45256740992U, 45369739136U, 45482740096U, 45595739776U,
45708739712U, 45821740672U, 45934741376U, 46047741056U, 46160741248U,
46273737088U, 46386740864U, 46499739008U, 46612739968U, 46725735296U,
46838740864U, 46951741568U, 47064737152U, 47177741696U, 47290741376U,
47403738752U, 47516741248U, 47629739648U, 47742741632U, 47855737984U,
47968740224U, 48081738368U, 48194741632U, 48307739264U, 48420739712U,
48533739136U, 48646738304U, 48759741824U, 48872741504U, 48985739392U,
49098741376U, 49211741056U, 49324740992U, 49437738368U, 49550740864U,
49663735424U, 49776737408U, 49889740672U, 50002738816U, 50115738752U,
50228739712U, 50341741696U, 50454736768U, 50567738752U, 50680739968U,
50793736832U, 50906734976U, 51019741568U, 51132739456U, 51245741696U,
51358741376U, 51471741056U, 51584738944U, 51697734272U, 51810739072U,
51923736448U, 52036740736U, 52149741184U, 52262737024U, 52375738496U,
52488740992U, 52601739136U, 52714740352U, 52827736448U, 52940738176U,
53053741696U, 53166740864U, 53279741824U, 53392741504U, 53505739136U,
53618739584U, 53731741312U, 53844741248U, 53957741696U, 54070741376U,
54183740288U, 54296741504U, 54409741696U, 54522739072U, 54635737472U,
54748741504U, 54861736064U, 54974740096U, 55087741568U, 55200733568U,
55313741696U, 55426734464U, 55539741056U, 55652741504U, 55765741184U,
55878741376U, 55991730304U, 56104740992U, 56217740672U, 56330731648U,
56443737472U, 56556724352U, 56669740672U, 56782739072U, 56895740032U,
57008741248U, 57121741696U, 57234740096U, 57347741312U, 57460741504U
};
// 500 Epochs worth of tabulated DAG sizes (~3.5 Years)
// Generated with the following Mathematica Code:
// GetCacheSizes[n_] := Module[{
// DAGSizeBytesInit = 2^30,
// MixBytes = 128,
// DAGGrowth = 113000000,
// HashBytes = 64,
// DAGParents = 1024,
// j = 0},
// Reap[
// While[j < n,
// Module[{i = Floor[(DAGSizeBytesInit + DAGGrowth * j) / (DAGParents * HashBytes)]},
// While[! PrimeQ[i], i--];
// Sow[i*HashBytes]; j++]]]][[2]][[1]]
const size_t cache_sizes[] = {
1048384U, 1158208U, 1268416U, 1377856U, 1489856U, 1599296U, 1710656U,
1820608U, 1930816U, 2041024U, 2151872U, 2261696U, 2371904U, 2482624U,
2593216U, 2703296U, 2814016U, 2924224U, 3034816U, 3144896U, 3255488U,
3365312U, 3475904U, 3586624U, 3696064U, 3806272U, 3917504U, 4027456U,
4138304U, 4248512U, 4359104U, 4469312U, 4579264U, 4689728U, 4797376U,
4909888U, 5020096U, 5131328U, 5241664U, 5351744U, 5461312U, 5572544U,
5683264U, 5793472U, 5903552U, 6014144U, 6121664U, 6235072U, 6344896U,
6454592U, 6565952U, 6675904U, 6786112U, 6896704U, 7006784U, 7117888U,
7228096U, 7338304U, 7448768U, 7557952U, 7669184U, 7779776U, 7889216U,
8000192U, 8110912U, 8220736U, 8331712U, 8441536U, 8552384U, 8662592U,
8772928U, 8883136U, 8993728U, 9103168U, 9214528U, 9323968U, 9434816U,
9545152U, 9655616U, 9766336U, 9876544U, 9986624U, 10097344U, 10207424U,
10316864U, 10427968U, 10538432U, 10649152U, 10758976U, 10869568U, 10979776U,
11089472U, 11200832U, 11309632U, 11420608U, 11531584U, 11641792U, 11751104U,
11862976U, 11973184U, 12083264U, 12193856U, 12304064U, 12414656U, 12524608U,
12635072U, 12745792U, 12855616U, 12965824U, 13076416U, 13187008U, 13297216U,
13407808U, 13518016U, 13627072U, 13738688U, 13848256U, 13959488U, 14069696U,
14180288U, 14290624U, 14399552U, 14511424U, 14621504U, 14732096U, 14841664U,
14951744U, 15062336U, 15172672U, 15283264U, 15393088U, 15504448U, 15614272U,
15723712U, 15834944U, 15945152U, 16055744U, 16165696U, 16277056U, 16387136U,
16494784U, 16607936U, 16718272U, 16828736U, 16938176U, 17048384U, 17159872U,
17266624U, 17380544U, 17490496U, 17600192U, 17711296U, 17821376U, 17931968U,
18041152U, 18152896U, 18261952U, 18373568U, 18483392U, 18594112U, 18703936U,
18814912U, 18924992U, 19034944U, 19145408U, 19256128U, 19366208U, 19477184U,
19587136U, 19696576U, 19808192U, 19916992U, 20028352U, 20137664U, 20249024U,
20358848U, 20470336U, 20580544U, 20689472U, 20801344U, 20911424U, 21020096U,
21130688U, 21242176U, 21352384U, 21462208U, 21573824U, 21683392U, 21794624U,
21904448U, 22013632U, 22125248U, 22235968U, 22344512U, 22456768U, 22566848U,
22677056U, 22786496U, 22897984U, 23008064U, 23118272U, 23228992U, 23338816U,
23449408U, 23560256U, 23670464U, 23780672U, 23891264U, 24001216U, 24110656U,
24221888U, 24332608U, 24442688U, 24552512U, 24662464U, 24773696U, 24884032U,
24994496U, 25105216U, 25215296U, 25324864U, 25435712U, 25546432U, 25655744U,
25767232U, 25876672U, 25986368U, 26098112U, 26207936U, 26318912U, 26428736U,
26539712U, 26650048U, 26760256U, 26869184U, 26979776U, 27091136U, 27201728U,
27311552U, 27422272U, 27532352U, 27642304U, 27752896U, 27863744U, 27973952U,
28082752U, 28194752U, 28305344U, 28415168U, 28524992U, 28636352U, 28746304U,
28857152U, 28967104U, 29077184U, 29187904U, 29298496U, 29408576U, 29518912U,
29628992U, 29739968U, 29850176U, 29960512U, 30070336U, 30180544U, 30290752U,
30398912U, 30512192U, 30622784U, 30732992U, 30842176U, 30953536U, 31063744U,
31174336U, 31284544U, 31395136U, 31504448U, 31615552U, 31725632U, 31835072U,
31946176U, 32057024U, 32167232U, 32277568U, 32387008U, 32497984U, 32608832U,
32719168U, 32829376U, 32939584U, 33050048U, 33160768U, 33271232U, 33381184U,
33491648U, 33601856U, 33712576U, 33822016U, 33932992U, 34042816U, 34153024U,
34263104U, 34373824U, 34485056U, 34594624U, 34704832U, 34816064U, 34926272U,
35036224U, 35146816U, 35255104U, 35367104U, 35478208U, 35588416U, 35698496U,
35808832U, 35918656U, 36029888U, 36139456U, 36250688U, 36360512U, 36471104U,
36581696U, 36691136U, 36802112U, 36912448U, 37022912U, 37132864U, 37242944U,
37354048U, 37464512U, 37574848U, 37684928U, 37794752U, 37904704U, 38015552U,
38125888U, 38236864U, 38345792U, 38457152U, 38567744U, 38678336U, 38787776U,
38897216U, 39009088U, 39117632U, 39230144U, 39340352U, 39450304U, 39560384U,
39671488U, 39781312U, 39891392U, 40002112U, 40112704U, 40223168U, 40332608U,
40443968U, 40553792U, 40664768U, 40774208U, 40884416U, 40993984U, 41105984U,
41215424U, 41326528U, 41436992U, 41546048U, 41655872U, 41768128U, 41878336U,
41988928U, 42098752U, 42209344U, 42319168U, 42429248U, 42540352U, 42649792U,
42761024U, 42871616U, 42981824U, 43092032U, 43201856U, 43312832U, 43423552U,
43533632U, 43643584U, 43753792U, 43864384U, 43974976U, 44084032U, 44195392U,
44306368U, 44415296U, 44526016U, 44637248U, 44746816U, 44858048U, 44967872U,
45078848U, 45188288U, 45299264U, 45409216U, 45518272U, 45630272U, 45740224U,
45850432U, 45960896U, 46069696U, 46182208U, 46292416U, 46402624U, 46512064U,
46623296U, 46733888U, 46843712U, 46953664U, 47065024U, 47175104U, 47285696U,
47395904U, 47506496U, 47615296U, 47726912U, 47837632U, 47947712U, 48055232U,
48168128U, 48277952U, 48387392U, 48499648U, 48609472U, 48720064U, 48830272U,
48940096U, 49050944U, 49160896U, 49271744U, 49381568U, 49492288U, 49602752U,
49712576U, 49822016U, 49934272U, 50042816U, 50154304U, 50264128U, 50374336U,
50484416U, 50596288U, 50706752U, 50816704U, 50927168U, 51035456U, 51146944U,
51258176U, 51366976U, 51477824U, 51589568U, 51699776U, 51809728U, 51920576U,
52030016U, 52140736U, 52251328U, 52361152U, 52470592U, 52582592U, 52691776U,
52803136U, 52912576U, 53020736U, 53132224U, 53242688U, 53354816U, 53465536U,
53575232U, 53685568U, 53796544U, 53906752U, 54016832U, 54126656U, 54236992U,
54347456U, 54457408U, 54569024U, 54679232U, 54789184U, 54899776U, 55008832U,
55119296U, 55231168U, 55341248U, 55451584U, 55562048U, 55672256U, 55782208U,
55893184U, 56002112U, 56113216U
};
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,74 @@
#pragma once
#include <stdint.h>
#include "compiler.h"
static const uint8_t BitReverseTable256[] =
{
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
static inline uint32_t bitfn_swap32(uint32_t a) {
return (BitReverseTable256[a & 0xff] << 24) |
(BitReverseTable256[(a >> 8) & 0xff] << 16) |
(BitReverseTable256[(a >> 16) & 0xff] << 8) |
(BitReverseTable256[(a >> 24) & 0xff]);
}
static inline uint64_t bitfn_swap64(uint64_t a) {
return ((uint64_t) bitfn_swap32((uint32_t) (a >> 32))) |
(((uint64_t) bitfn_swap32((uint32_t) a)) << 32);
}
#if defined(__MINGW32__) || defined(_WIN32)
# define LITTLE_ENDIAN 1234
# define BYTE_ORDER LITTLE_ENDIAN
#elif defined(__FreeBSD__) || defined(__DragonFly__) || defined(__NetBSD__)
# include <sys/endian.h>
#elif defined(__OpenBSD__) || defined(__SVR4)
# include <sys/types.h>
#elif defined(__APPLE__)
# include <machine/endian.h>
#elif defined( BSD ) && (BSD >= 199103)
# include <machine/endian.h>
#elif defined( __QNXNTO__ ) && defined( __LITTLEENDIAN__ )
# define LITTLE_ENDIAN 1234
# define BYTE_ORDER LITTLE_ENDIAN
#elif defined( __QNXNTO__ ) && defined( __BIGENDIAN__ )
# define BIG_ENDIAN 1234
# define BYTE_ORDER BIG_ENDIAN
#else
# include <endian.h>
#endif
#if LITTLE_ENDIAN == BYTE_ORDER
#define fix_endian32(x) (x)
#define fix_endian64(x) (x)
#elif BIG_ENDIAN == BYTE_ORDER
#define fix_endian32(x) bitfn_swap32(x)
#define fix_endian64(x) bitfn_swap64(x)
#else
# error "endian not supported"
#endif // BYTE_ORDER

View File

@ -0,0 +1,88 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file ethash.h
* @date 2015
*/
#pragma once
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stddef.h>
#include "compiler.h"
#define REVISION 18
#define DAGSIZE_BYTES_INIT 1073741824U
#define DAG_GROWTH 113000000U
#define EPOCH_LENGTH 30000U
#define MIX_BYTES 128
#define DAG_PARENTS 256
#define CACHE_ROUNDS 3
#define ACCESSES 64
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ethash_params {
size_t full_size; // Size of full data set (in bytes, multiple of mix size (128)).
size_t cache_size; // Size of compute cache (in bytes, multiple of node size (64)).
} ethash_params;
typedef struct ethash_return_value {
uint8_t result[32];
uint8_t mix_hash[32];
} ethash_return_value;
size_t const ethash_get_datasize(const uint32_t block_number);
size_t const ethash_get_cachesize(const uint32_t block_number);
// initialize the parameters
static inline void ethash_params_init(ethash_params *params, const uint32_t block_number) {
params->full_size = ethash_get_datasize(block_number);
params->cache_size = ethash_get_cachesize(block_number);
}
typedef struct ethash_cache {
void *mem;
} ethash_cache;
void ethash_mkcache(ethash_cache *cache, ethash_params const *params, const uint8_t seed[32]);
void ethash_compute_full_data(void *mem, ethash_params const *params, ethash_cache const *cache);
void ethash_full(ethash_return_value *ret, void const *full_mem, ethash_params const *params, const uint8_t header_hash[32], const uint64_t nonce);
void ethash_light(ethash_return_value *ret, ethash_cache const *cache, ethash_params const *params, const uint8_t header_hash[32], const uint64_t nonce);
static inline int ethash_check_difficulty(
const uint8_t hash[32],
const uint8_t difficulty[32]) {
// Difficulty is big endian
for (int i = 0; i < 32; i++) {
if (hash[i] == difficulty[i]) continue;
return hash[i] < difficulty[i];
}
return 0;
}
int ethash_quick_check_difficulty(
const uint8_t header_hash[32],
const uint64_t nonce,
const uint8_t mix_hash[32],
const uint8_t difficulty[32]);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,38 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file fnv.h
* @author Matthew Wampler-Doty <negacthulhu@gmail.com>
* @date 2015
*/
#pragma once
#include <stdint.h>
#include "compiler.h"
#ifdef __cplusplus
extern "C" {
#endif
#define FNV_PRIME 0x01000193
static inline uint32_t fnv_hash(const uint32_t x, const uint32_t y) {
return x*FNV_PRIME ^ y;
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,297 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file dash.cpp
* @author Tim Hughes <tim@twistedfury.com>
* @author Matthew Wampler-Doty
* @date 2015
*/
#include <assert.h>
#include <inttypes.h>
#include <stddef.h>
#include "ethash.h"
#include "fnv.h"
#include "endian.h"
#include "internal.h"
#include "data_sizes.h"
#ifdef WITH_CRYPTOPP
#include "SHA3_cryptopp.h"
#else
#include "sha3.h"
#endif // WITH_CRYPTOPP
size_t const ethash_get_datasize(const uint32_t block_number) {
assert(block_number / EPOCH_LENGTH < 500);
return dag_sizes[block_number / EPOCH_LENGTH];
}
size_t const ethash_get_cachesize(const uint32_t block_number) {
assert(block_number / EPOCH_LENGTH < 500);
return cache_sizes[block_number / EPOCH_LENGTH];
}
// Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014)
// https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
// SeqMemoHash(s, R, N)
void static ethash_compute_cache_nodes(
node *const nodes,
ethash_params const *params,
const uint8_t seed[32]) {
assert((params->cache_size % sizeof(node)) == 0);
uint32_t const num_nodes = (uint32_t)(params->cache_size / sizeof(node));
SHA3_512(nodes[0].bytes, seed, 32);
for (unsigned i = 1; i != num_nodes; ++i) {
SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64);
}
for (unsigned j = 0; j != CACHE_ROUNDS; j++) {
for (unsigned i = 0; i != num_nodes; i++) {
uint32_t const idx = nodes[i].words[0] % num_nodes;
node data;
data = nodes[(num_nodes - 1 + i) % num_nodes];
for (unsigned w = 0; w != NODE_WORDS; ++w)
{
data.words[w] ^= nodes[idx].words[w];
}
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data));
}
}
// now perform endian conversion
#if BYTE_ORDER != LITTLE_ENDIAN
for (unsigned w = 0; w != (num_nodes*NODE_WORDS); ++w)
{
nodes->words[w] = fix_endian32(nodes->words[w]);
}
#endif
}
void ethash_mkcache(
ethash_cache *cache,
ethash_params const *params,
const uint8_t seed[32]) {
node *nodes = (node *) cache->mem;
ethash_compute_cache_nodes(nodes, params, seed);
}
void ethash_calculate_dag_item(
node *const ret,
const unsigned node_index,
const struct ethash_params *params,
const struct ethash_cache *cache) {
uint32_t num_parent_nodes = (uint32_t)(params->cache_size / sizeof(node));
node const *cache_nodes = (node const *) cache->mem;
node const *init = &cache_nodes[node_index % num_parent_nodes];
memcpy(ret, init, sizeof(node));
ret->words[0] ^= node_index;
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
#if defined(_M_X64) && ENABLE_SSE
__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME);
__m128i xmm0 = ret->xmm[0];
__m128i xmm1 = ret->xmm[1];
__m128i xmm2 = ret->xmm[2];
__m128i xmm3 = ret->xmm[3];
#endif
for (unsigned i = 0; i != DAG_PARENTS; ++i)
{
uint32_t parent_index = ((node_index ^ i)*FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes;
node const *parent = &cache_nodes[parent_index];
#if defined(_M_X64) && ENABLE_SSE
{
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime);
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime);
xmm2 = _mm_mullo_epi32(xmm2, fnv_prime);
xmm3 = _mm_mullo_epi32(xmm3, fnv_prime);
xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]);
xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]);
xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]);
xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]);
// have to write to ret as values are used to compute index
ret->xmm[0] = xmm0;
ret->xmm[1] = xmm1;
ret->xmm[2] = xmm2;
ret->xmm[3] = xmm3;
}
#else
{
for (unsigned w = 0; w != NODE_WORDS; ++w) {
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]);
}
}
#endif
}
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
}
void ethash_compute_full_data(
void *mem,
ethash_params const *params,
ethash_cache const *cache) {
assert((params->full_size % (sizeof(uint32_t) * MIX_WORDS)) == 0);
assert((params->full_size % sizeof(node)) == 0);
node *full_nodes = mem;
// now compute full nodes
for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) {
ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache);
}
}
static void ethash_hash(
ethash_return_value * ret,
node const *full_nodes,
ethash_cache const *cache,
ethash_params const *params,
const uint8_t header_hash[32],
const uint64_t nonce) {
assert((params->full_size % MIX_WORDS) == 0);
// pack hash and nonce together into first 40 bytes of s_mix
assert(sizeof(node)*8 == 512);
node s_mix[MIX_NODES + 1];
memcpy(s_mix[0].bytes, header_hash, 32);
#if BYTE_ORDER != LITTLE_ENDIAN
s_mix[0].double_words[4] = fix_endian64(nonce);
#else
s_mix[0].double_words[4] = nonce;
#endif
// compute sha3-512 hash and replicate across mix
SHA3_512(s_mix->bytes, s_mix->bytes, 40);
#if BYTE_ORDER != LITTLE_ENDIAN
for (unsigned w = 0; w != 16; ++w) {
s_mix[0].words[w] = fix_endian32(s_mix[0].words[w]);
}
#endif
node* const mix = s_mix + 1;
for (unsigned w = 0; w != MIX_WORDS; ++w) {
mix->words[w] = s_mix[0].words[w % NODE_WORDS];
}
unsigned const
page_size = sizeof(uint32_t) * MIX_WORDS,
num_full_pages = (unsigned)(params->full_size / page_size);
for (unsigned i = 0; i != ACCESSES; ++i)
{
uint32_t const index = ((s_mix->words[0] ^ i)*FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages;
for (unsigned n = 0; n != MIX_NODES; ++n)
{
const node * dag_node = &full_nodes[MIX_NODES * index + n];
if (!full_nodes) {
node tmp_node;
ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, params, cache);
dag_node = &tmp_node;
}
#if defined(_M_X64) && ENABLE_SSE
{
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]);
__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]);
__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]);
mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]);
mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]);
mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]);
mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]);
}
#else
{
for (unsigned w = 0; w != NODE_WORDS; ++w) {
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
}
}
#endif
}
}
// compress mix
for (unsigned w = 0; w != MIX_WORDS; w += 4)
{
uint32_t reduction = mix->words[w+0];
reduction = reduction*FNV_PRIME ^ mix->words[w+1];
reduction = reduction*FNV_PRIME ^ mix->words[w+2];
reduction = reduction*FNV_PRIME ^ mix->words[w+3];
mix->words[w/4] = reduction;
}
#if BYTE_ORDER != LITTLE_ENDIAN
for (unsigned w = 0; w != MIX_WORDS/4; ++w) {
mix->words[w] = fix_endian32(mix->words[w]);
}
#endif
memcpy(ret->mix_hash, mix->bytes, 32);
// final Keccak hash
SHA3_256(ret->result, s_mix->bytes, 64+32); // Keccak-256(s + compressed_mix)
}
void ethash_quick_hash(
uint8_t return_hash[32],
const uint8_t header_hash[32],
const uint64_t nonce,
const uint8_t mix_hash[32]) {
uint8_t buf[64+32];
memcpy(buf, header_hash, 32);
#if BYTE_ORDER != LITTLE_ENDIAN
nonce = fix_endian64(nonce);
#endif
memcpy(&(buf[32]), &nonce, 8);
SHA3_512(buf, buf, 40);
memcpy(&(buf[64]), mix_hash, 32);
SHA3_256(return_hash, buf, 64+32);
}
int ethash_quick_check_difficulty(
const uint8_t header_hash[32],
const uint64_t nonce,
const uint8_t mix_hash[32],
const uint8_t difficulty[32]) {
uint8_t return_hash[32];
ethash_quick_hash(return_hash, header_hash, nonce, mix_hash);
return ethash_check_difficulty(return_hash, difficulty);
}
void ethash_full(ethash_return_value * ret, void const *full_mem, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) {
ethash_hash(ret, (node const *) full_mem, NULL, params, previous_hash, nonce);
}
void ethash_light(ethash_return_value * ret, ethash_cache const *cache, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) {
ethash_hash(ret, NULL, cache, params, previous_hash, nonce);
}

View File

@ -0,0 +1,48 @@
#pragma once
#include "compiler.h"
#include "endian.h"
#include "ethash.h"
#define ENABLE_SSE 1
#if defined(_M_X64) && ENABLE_SSE
#include <smmintrin.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
// compile time settings
#define NODE_WORDS (64/4)
#define MIX_WORDS (MIX_BYTES/4)
#define MIX_NODES (MIX_WORDS / NODE_WORDS)
#include <stdint.h>
typedef union node {
uint8_t bytes[NODE_WORDS * 4];
uint32_t words[NODE_WORDS];
uint64_t double_words[NODE_WORDS / 2];
#if defined(_M_X64) && ENABLE_SSE
__m128i xmm[NODE_WORDS/4];
#endif
} node;
void ethash_calculate_dag_item(
node *const ret,
const unsigned node_index,
ethash_params const *params,
ethash_cache const *cache
);
void ethash_quick_hash(
uint8_t return_hash[32],
const uint8_t header_hash[32],
const uint64_t nonce,
const uint8_t mix_hash[32]);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,151 @@
/** libkeccak-tiny
*
* A single-file implementation of SHA-3 and SHAKE.
*
* Implementor: David Leon Gil
* License: CC0, attribution kindly requested. Blame taken too,
* but not liability.
*/
#include "sha3.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/******** The Keccak-f[1600] permutation ********/
/*** Constants. ***/
static const uint8_t rho[24] = \
{ 1, 3, 6, 10, 15, 21,
28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43,
62, 18, 39, 61, 20, 44};
static const uint8_t pi[24] = \
{10, 7, 11, 17, 18, 3,
5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2,
20, 14, 22, 9, 6, 1};
static const uint64_t RC[24] = \
{1ULL, 0x8082ULL, 0x800000000000808aULL, 0x8000000080008000ULL,
0x808bULL, 0x80000001ULL, 0x8000000080008081ULL, 0x8000000000008009ULL,
0x8aULL, 0x88ULL, 0x80008009ULL, 0x8000000aULL,
0x8000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL, 0x800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL, 0x80000001ULL, 0x8000000080008008ULL};
/*** Helper macros to unroll the permutation. ***/
#define rol(x, s) (((x) << s) | ((x) >> (64 - s)))
#define REPEAT6(e) e e e e e e
#define REPEAT24(e) REPEAT6(e e e e)
#define REPEAT5(e) e e e e e
#define FOR5(v, s, e) \
v = 0; \
REPEAT5(e; v += s;)
/*** Keccak-f[1600] ***/
static inline void keccakf(void* state) {
uint64_t* a = (uint64_t*)state;
uint64_t b[5] = {0};
uint64_t t = 0;
uint8_t x, y;
for (int i = 0; i < 24; i++) {
// Theta
FOR5(x, 1,
b[x] = 0;
FOR5(y, 5,
b[x] ^= a[x + y]; ))
FOR5(x, 1,
FOR5(y, 5,
a[y + x] ^= b[(x + 4) % 5] ^ rol(b[(x + 1) % 5], 1); ))
// Rho and pi
t = a[1];
x = 0;
REPEAT24(b[0] = a[pi[x]];
a[pi[x]] = rol(t, rho[x]);
t = b[0];
x++; )
// Chi
FOR5(y,
5,
FOR5(x, 1,
b[x] = a[y + x];)
FOR5(x, 1,
a[y + x] = b[x] ^ ((~b[(x + 1) % 5]) & b[(x + 2) % 5]); ))
// Iota
a[0] ^= RC[i];
}
}
/******** The FIPS202-defined functions. ********/
/*** Some helper macros. ***/
#define _(S) do { S } while (0)
#define FOR(i, ST, L, S) \
_(for (size_t i = 0; i < L; i += ST) { S; })
#define mkapply_ds(NAME, S) \
static inline void NAME(uint8_t* dst, \
const uint8_t* src, \
size_t len) { \
FOR(i, 1, len, S); \
}
#define mkapply_sd(NAME, S) \
static inline void NAME(const uint8_t* src, \
uint8_t* dst, \
size_t len) { \
FOR(i, 1, len, S); \
}
mkapply_ds(xorin, dst[i] ^= src[i]) // xorin
mkapply_sd(setout, dst[i] = src[i]) // setout
#define P keccakf
#define Plen 200
// Fold P*F over the full blocks of an input.
#define foldP(I, L, F) \
while (L >= rate) { \
F(a, I, rate); \
P(a); \
I += rate; \
L -= rate; \
}
/** The sponge-based hash construction. **/
static inline int hash(uint8_t* out, size_t outlen,
const uint8_t* in, size_t inlen,
size_t rate, uint8_t delim) {
if ((out == NULL) || ((in == NULL) && inlen != 0) || (rate >= Plen)) {
return -1;
}
uint8_t a[Plen] = {0};
// Absorb input.
foldP(in, inlen, xorin);
// Xor in the DS and pad frame.
a[inlen] ^= delim;
a[rate - 1] ^= 0x80;
// Xor in the last block.
xorin(a, in, inlen);
// Apply P
P(a);
// Squeeze output.
foldP(out, outlen, setout);
setout(a, out, outlen);
memset(a, 0, 200);
return 0;
}
#define defsha3(bits) \
int sha3_##bits(uint8_t* out, size_t outlen, \
const uint8_t* in, size_t inlen) { \
if (outlen > (bits/8)) { \
return -1; \
} \
return hash(out, outlen, in, inlen, 200 - (bits / 4), 0x01); \
}
/*** FIPS202 SHA3 FOFs ***/
defsha3(256)
defsha3(512)

View File

@ -0,0 +1,27 @@
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include "compiler.h"
#include <stdint.h>
#include <stdlib.h>
#define decsha3(bits) \
int sha3_##bits(uint8_t*, size_t, const uint8_t*, size_t);
decsha3(256)
decsha3(512)
static inline void SHA3_256(uint8_t * const ret, uint8_t const *data, const size_t size) {
sha3_256(ret, 32, data, size);
}
static inline void SHA3_512(uint8_t * const ret, uint8_t const *data, const size_t size) {
sha3_512(ret, 64, data, size);
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,34 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file sha3.cpp
* @author Tim Hughes <tim@twistedfury.com>
* @date 2015
*/
#include <stdint.h>
#include <cryptopp/sha3.h>
extern "C" {
void SHA3_256(uint8_t *const ret, const uint8_t *data, size_t size) {
CryptoPP::SHA3_256().CalculateDigest(ret, data, size);
}
void SHA3_512(uint8_t *const ret, const uint8_t *data, size_t size) {
CryptoPP::SHA3_512().CalculateDigest(ret, data, size);
}
}

View File

@ -0,0 +1,15 @@
#pragma once
#include "compiler.h"
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
void SHA3_256(uint8_t *const ret, const uint8_t *data, size_t size);
void SHA3_512(uint8_t *const ret, const uint8_t *data, size_t size);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,41 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file util.c
* @author Tim Hughes <tim@twistedfury.com>
* @date 2015
*/
#include <stdarg.h>
#include <stdio.h>
#include "util.h"
#ifdef _MSC_VER
// foward declare without all of Windows.h
__declspec(dllimport) void __stdcall OutputDebugStringA(const char* lpOutputString);
void debugf(const char *str, ...)
{
va_list args;
va_start(args, str);
char buf[1<<16];
_vsnprintf_s(buf, sizeof(buf), sizeof(buf), str, args);
buf[sizeof(buf)-1] = '\0';
OutputDebugStringA(buf);
}
#endif

View File

@ -0,0 +1,47 @@
/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file util.h
* @author Tim Hughes <tim@twistedfury.com>
* @date 2015
*/
#pragma once
#include <stdint.h>
#include "compiler.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef _MSC_VER
void debugf(const char *str, ...);
#else
#define debugf printf
#endif
static inline uint32_t min_u32(uint32_t a, uint32_t b)
{
return a < b ? a : b;
}
static inline uint32_t clamp_u32(uint32_t x, uint32_t min_, uint32_t max_)
{
return x < min_ ? min_ : (x > max_ ? max_ : x);
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,29 @@
{
"targets":
[{
"target_name": "ethash",
"sources": [
'./ethash.cc',
'../libethash/ethash.h',
'../libethash/util.c',
'../libethash/util.h',
'../libethash/blum_blum_shub.h',
'../libethash/blum_blum_shub.c',
'../libethash/sha3.h',
'../libethash/sha3.c',
'../libethash/internal.h',
'../libethash/internal.c'
],
"include_dirs": [
"../",
"<!(node -e \"require('nan')\")"
],
"cflags": [
"-Wall",
"-Wno-maybe-uninitialized",
"-Wno-uninitialized",
"-Wno-unused-function",
"-Wextra"
]
}]
}

View File

@ -0,0 +1,587 @@
#include <nan.h>
#include <iostream>
#include <node.h>
#include <stdint.h>
#include <stdlib.h>
#include "../libethash/ethash.h"
using namespace v8;
class EthashValidator : public NanAsyncWorker {
public:
// Constructor
EthashValidator(NanCallback *callback, const unsigned blocknumber, const unsigned char * seed)
: NanAsyncWorker(callback), blocknumber(blocknumber), seed(seed) {}
// Destructor
~EthashValidator() {
free(this->cache);
free(this->params);
}
// Executed inside the worker-thread.
// It is not safe to access V8, or V8 data structures
// here, so everything we need for input and output
// should go on `this`.
void Execute () {
/* this->result = secp256k1_ecdsa_sign(this->msg, this->sig , &this->sig_len, this->pk, NULL, NULL); */
}
// Executed when the async work is complete
// this function will be run inside the main event loop
// so it is safe to use V8 again
void HandleOKCallback () {
NanScope();
Handle<Value> argv[] = {
NanNew<Number>(this->result)
};
callback->Call(2, argv);
}
protected:
const unsigned blocknumber;
const unsigned char * seed;
ethash_params * params;
ethash_cache * cache;
bool result;
bool ready = 0;
};
/* class CompactSignWorker : public SignWorker { */
/* public: */
/* CompactSignWorker(NanCallback *callback, const unsigned char *msg, const unsigned char *pk ) */
/* : SignWorker(callback, msg, pk){} */
/* void Execute () { */
/* this->result = secp256k1_ecdsa_sign_compact(this->msg, this->sig , this->pk, NULL, NULL, &this->sig_len); */
/* } */
/* void HandleOKCallback () { */
/* NanScope(); */
/* Handle<Value> argv[] = { */
/* NanNew<Number>(this->result), */
/* NanNewBufferHandle((char *)this->sig, 64), */
/* NanNew<Number>(this->sig_len) */
/* }; */
/* callback->Call(3, argv); */
/* } */
/* }; */
/* class RecoverWorker : public NanAsyncWorker { */
/* public: */
/* // Constructor */
/* RecoverWorker(NanCallback *callback, const unsigned char *msg, const unsigned char *sig, int compressed, int rec_id) */
/* : NanAsyncWorker(callback), msg(msg), sig(sig), compressed(compressed), rec_id(rec_id) {} */
/* // Destructor */
/* ~RecoverWorker() {} */
/* void Execute () { */
/* if(this->compressed == 1){ */
/* this->pubkey = new unsigned char[33]; */
/* }else{ */
/* this->pubkey = new unsigned char[65]; */
/* } */
/* this->result = secp256k1_ecdsa_recover_compact(this->msg, this->sig, this->pubkey, &this->pubkey_len, this->compressed, this->rec_id); */
/* } */
/* void HandleOKCallback () { */
/* NanScope(); */
/* Handle<Value> argv[] = { */
/* NanNew<Number>(this->result), */
/* NanNewBufferHandle((char *)this->pubkey, this->pubkey_len) */
/* }; */
/* callback->Call(2, argv); */
/* } */
/* protected: */
/* const unsigned char * msg; */
/* const unsigned char * sig; */
/* int compressed; */
/* int rec_id; */
/* int result; */
/* unsigned char * pubkey; */
/* int pubkey_len; */
/* }; */
/* class VerifyWorker : public NanAsyncWorker { */
/* public: */
/* // Constructor */
/* VerifyWorker(NanCallback *callback, const unsigned char *msg, const unsigned char *sig, int sig_len, const unsigned char *pub_key, int pub_key_len) */
/* : NanAsyncWorker(callback), msg(msg), sig(sig), sig_len(sig_len), pub_key(pub_key), pub_key_len(pub_key_len) {} */
/* // Destructor */
/* ~VerifyWorker() {} */
/* void Execute () { */
/* this->result = secp256k1_ecdsa_verify(this->msg, this->sig, this->sig_len, this->pub_key, this->pub_key_len); */
/* } */
/* void HandleOKCallback () { */
/* NanScope(); */
/* Handle<Value> argv[] = { */
/* NanNew<Number>(this->result), */
/* }; */
/* callback->Call(1, argv); */
/* } */
/* protected: */
/* int result; */
/* const unsigned char * msg; */
/* const unsigned char * sig; */
/* int sig_len; */
/* const unsigned char * pub_key; */
/* int pub_key_len; */
/* }; */
/* NAN_METHOD(Verify){ */
/* NanScope(); */
/* Local<Object> pub_buf = args[0].As<Object>(); */
/* const unsigned char *pub_data = (unsigned char *) node::Buffer::Data(pub_buf); */
/* int pub_len = node::Buffer::Length(args[0]); */
/* Local<Object> msg_buf = args[1].As<Object>(); */
/* const unsigned char *msg_data = (unsigned char *) node::Buffer::Data(msg_buf); */
/* Local<Object> sig_buf = args[2].As<Object>(); */
/* const unsigned char *sig_data = (unsigned char *) node::Buffer::Data(sig_buf); */
/* int sig_len = node::Buffer::Length(args[2]); */
/* int result = secp256k1_ecdsa_verify(msg_data, sig_data, sig_len, pub_data, pub_len ); */
/* NanReturnValue(NanNew<Number>(result)); */
/* } */
/* NAN_METHOD(Verify_Async){ */
/* NanScope(); */
/* Local<Object> pub_buf = args[0].As<Object>(); */
/* const unsigned char *pub_data = (unsigned char *) node::Buffer::Data(pub_buf); */
/* int pub_len = node::Buffer::Length(args[0]); */
/* Local<Object> msg_buf = args[1].As<Object>(); */
/* const unsigned char *msg_data = (unsigned char *) node::Buffer::Data(msg_buf); */
/* Local<Object> sig_buf = args[2].As<Object>(); */
/* const unsigned char *sig_data = (unsigned char *) node::Buffer::Data(sig_buf); */
/* int sig_len = node::Buffer::Length(args[2]); */
/* Local<Function> callback = args[3].As<Function>(); */
/* NanCallback* nanCallback = new NanCallback(callback); */
/* VerifyWorker* worker = new VerifyWorker(nanCallback, msg_data, sig_data, sig_len, pub_data, pub_len); */
/* NanAsyncQueueWorker(worker); */
/* NanReturnUndefined(); */
/* } */
/* NAN_METHOD(Sign){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Local<Object> pk_buf = args[0].As<Object>(); */
/* const unsigned char *pk_data = (unsigned char *) node::Buffer::Data(pk_buf); */
/* int sec_len = node::Buffer::Length(args[0]); */
/* //the second argument is the message that we are signing */
/* Local<Object> msg_buf = args[1].As<Object>(); */
/* const unsigned char *msg_data = (unsigned char *) node::Buffer::Data(msg_buf); */
/* unsigned char sig[72]; */
/* int sig_len = 72; */
/* int msg_len = node::Buffer::Length(args[1]); */
/* if(sec_len != 32){ */
/* return NanThrowError("the secret key needs tobe 32 bytes"); */
/* } */
/* if(msg_len == 0){ */
/* return NanThrowError("messgae cannot be null"); */
/* } */
/* int result = secp256k1_ecdsa_sign(msg_data, sig , &sig_len, pk_data, NULL, NULL); */
/* if(result == 1){ */
/* NanReturnValue(NanNewBufferHandle((char *)sig, sig_len)); */
/* }else{ */
/* return NanThrowError("nonce invalid, try another one"); */
/* } */
/* } */
/* NAN_METHOD(Sign_Async){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Local<Object> sec_buf = args[0].As<Object>(); */
/* const unsigned char *sec_data = (unsigned char *) node::Buffer::Data(sec_buf); */
/* int sec_len = node::Buffer::Length(args[0]); */
/* //the second argument is the message that we are signing */
/* Local<Object> msg_buf = args[1].As<Object>(); */
/* const unsigned char *msg_data = (unsigned char *) node::Buffer::Data(msg_buf); */
/* Local<Function> callback = args[2].As<Function>(); */
/* NanCallback* nanCallback = new NanCallback(callback); */
/* int msg_len = node::Buffer::Length(args[1]); */
/* if(sec_len != 32){ */
/* return NanThrowError("the secret key needs tobe 32 bytes"); */
/* } */
/* if(msg_len == 0){ */
/* return NanThrowError("messgae cannot be null"); */
/* } */
/* SignWorker* worker = new SignWorker(nanCallback, msg_data, sec_data); */
/* NanAsyncQueueWorker(worker); */
/* NanReturnUndefined(); */
/* } */
/* NAN_METHOD(Sign_Compact){ */
/* NanScope(); */
/* Local<Object> seckey_buf = args[0].As<Object>(); */
/* const unsigned char *seckey_data = (unsigned char *) node::Buffer::Data(seckey_buf); */
/* int sec_len = node::Buffer::Length(args[0]); */
/* Local<Object> msg_buf = args[1].As<Object>(); */
/* const unsigned char *msg_data = (unsigned char *) node::Buffer::Data(msg_buf); */
/* int msg_len = node::Buffer::Length(args[1]); */
/* if(sec_len != 32){ */
/* return NanThrowError("the secret key needs tobe 32 bytes"); */
/* } */
/* if(msg_len == 0){ */
/* return NanThrowError("messgae cannot be null"); */
/* } */
/* unsigned char sig[64]; */
/* int rec_id; */
/* //TODO: change the nonce */
/* int valid_nonce = secp256k1_ecdsa_sign_compact(msg_data, sig, seckey_data, NULL, NULL, &rec_id ); */
/* Local<Array> array = NanNew<Array>(3); */
/* array->Set(0, NanNew<Integer>(valid_nonce)); */
/* array->Set(1, NanNew<Integer>(rec_id)); */
/* array->Set(2, NanNewBufferHandle((char *)sig, 64)); */
/* NanReturnValue(array); */
/* } */
/* NAN_METHOD(Sign_Compact_Async){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Local<Object> sec_buf = args[0].As<Object>(); */
/* const unsigned char *sec_data = (unsigned char *) node::Buffer::Data(sec_buf); */
/* int sec_len = node::Buffer::Length(args[0]); */
/* //the second argument is the message that we are signing */
/* Local<Object> msg_buf = args[1].As<Object>(); */
/* const unsigned char *msg_data = (unsigned char *) node::Buffer::Data(msg_buf); */
/* Local<Function> callback = args[2].As<Function>(); */
/* NanCallback* nanCallback = new NanCallback(callback); */
/* int msg_len = node::Buffer::Length(args[1]); */
/* if(sec_len != 32){ */
/* return NanThrowError("the secret key needs tobe 32 bytes"); */
/* } */
/* if(msg_len == 0){ */
/* return NanThrowError("messgae cannot be null"); */
/* } */
/* CompactSignWorker* worker = new CompactSignWorker(nanCallback, msg_data, sec_data); */
/* NanAsyncQueueWorker(worker); */
/* NanReturnUndefined(); */
/* } */
/* NAN_METHOD(Recover_Compact){ */
/* NanScope(); */
/* Local<Object> msg_buf = args[0].As<Object>(); */
/* const unsigned char *msg = (unsigned char *) node::Buffer::Data(msg_buf); */
/* int msg_len = node::Buffer::Length(args[0]); */
/* Local<Object> sig_buf = args[1].As<Object>(); */
/* const unsigned char *sig = (unsigned char *) node::Buffer::Data(sig_buf); */
/* Local<Number> compressed = args[2].As<Number>(); */
/* int int_compressed = compressed->IntegerValue(); */
/* Local<Number> rec_id = args[3].As<Number>(); */
/* int int_rec_id = rec_id->IntegerValue(); */
/* if(msg_len == 0){ */
/* return NanThrowError("messgae cannot be null"); */
/* } */
/* unsigned char pubKey[65]; */
/* int pubKeyLen; */
/* int result = secp256k1_ecdsa_recover_compact(msg, sig, pubKey, &pubKeyLen, int_compressed, int_rec_id); */
/* if(result == 1){ */
/* NanReturnValue(NanNewBufferHandle((char *)pubKey, pubKeyLen)); */
/* }else{ */
/* NanReturnValue(NanFalse()); */
/* } */
/* } */
/* NAN_METHOD(Recover_Compact_Async){ */
/* NanScope(); */
/* //the message */
/* Local<Object> msg_buf = args[0].As<Object>(); */
/* const unsigned char *msg = (unsigned char *) node::Buffer::Data(msg_buf); */
/* int msg_len = node::Buffer::Length(args[0]); */
/* //the signature length */
/* Local<Object> sig_buf = args[1].As<Object>(); */
/* const unsigned char *sig = (unsigned char *) node::Buffer::Data(sig_buf); */
/* //todo sig len needs tobe 64 */
/* int sig_len = node::Buffer::Length(args[1]); */
/* //to compress or not? */
/* Local<Number> compressed = args[2].As<Number>(); */
/* int int_compressed = compressed->IntegerValue(); */
/* //the rec_id */
/* Local<Number> rec_id = args[3].As<Number>(); */
/* int int_rec_id = rec_id->IntegerValue(); */
/* //the callback */
/* Local<Function> callback = args[4].As<Function>(); */
/* NanCallback* nanCallback = new NanCallback(callback); */
/* if(sig_len != 64){ */
/* return NanThrowError("the signature needs to be 64 bytes"); */
/* } */
/* if(msg_len == 0){ */
/* return NanThrowError("messgae cannot be null"); */
/* } */
/* RecoverWorker* worker = new RecoverWorker(nanCallback, msg, sig, int_compressed, int_rec_id); */
/* NanAsyncQueueWorker(worker); */
/* NanReturnUndefined(); */
/* } */
/* NAN_METHOD(Seckey_Verify){ */
/* NanScope(); */
/* const unsigned char *data = (const unsigned char*) node::Buffer::Data(args[0]); */
/* int result = secp256k1_ec_seckey_verify(data); */
/* NanReturnValue(NanNew<Number>(result)); */
/* } */
/* NAN_METHOD(Pubkey_Verify){ */
/* NanScope(); */
/* Local<Object> pub_buf = args[0].As<Object>(); */
/* const unsigned char *pub_key = (unsigned char *) node::Buffer::Data(pub_buf); */
/* int pub_key_len = node::Buffer::Length(args[0]); */
/* int result = secp256k1_ec_pubkey_verify(pub_key, pub_key_len); */
/* NanReturnValue(NanNew<Number>(result)); */
/* } */
/* NAN_METHOD(Pubkey_Create){ */
/* NanScope(); */
/* Handle<Object> pk_buf = args[0].As<Object>(); */
/* const unsigned char *pk_data = (unsigned char *) node::Buffer::Data(pk_buf); */
/* int pk_len = node::Buffer::Length(args[0]); */
/* Local<Number> l_compact = args[1].As<Number>(); */
/* int compact = l_compact->IntegerValue(); */
/* int pubKeyLen; */
/* if(pk_len != 32){ */
/* return NanThrowError("the secert key need to be 32 bytes"); */
/* } */
/* unsigned char *pubKey; */
/* if(compact == 1){ */
/* pubKey = new unsigned char[33]; */
/* }else{ */
/* pubKey = new unsigned char[65]; */
/* } */
/* int results = secp256k1_ec_pubkey_create(pubKey,&pubKeyLen, pk_data, compact ); */
/* if(results == 0){ */
/* return NanThrowError("secret was invalid, try again."); */
/* }else{ */
/* NanReturnValue(NanNewBufferHandle((char *)pubKey, pubKeyLen)); */
/* } */
/* } */
/* NAN_METHOD(Pubkey_Decompress){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Local<Object> pk_buf = args[0].As<Object>(); */
/* unsigned char *pk_data = (unsigned char *) node::Buffer::Data(pk_buf); */
/* int pk_len = node::Buffer::Length(args[0]); */
/* int results = secp256k1_ec_pubkey_decompress(pk_data, &pk_len); */
/* if(results == 0){ */
/* return NanThrowError("invalid public key"); */
/* }else{ */
/* NanReturnValue(NanNewBufferHandle((char *)pk_data, pk_len)); */
/* } */
/* } */
/* NAN_METHOD(Privkey_Import){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Handle<Object> pk_buf = args[0].As<Object>(); */
/* const unsigned char *pk_data = (unsigned char *) node::Buffer::Data(pk_buf); */
/* int pk_len = node::Buffer::Length(args[0]); */
/* unsigned char sec_key[32]; */
/* int results = secp256k1_ec_privkey_import(sec_key, pk_data, pk_len); */
/* if(results == 0){ */
/* return NanThrowError("invalid private key"); */
/* }else{ */
/* NanReturnValue(NanNewBufferHandle((char *)sec_key, 32)); */
/* } */
/* } */
/* NAN_METHOD(Privkey_Export){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Handle<Object> sk_buf = args[0].As<Object>(); */
/* const unsigned char *sk_data = (unsigned char *) node::Buffer::Data(sk_buf); */
/* Local<Number> l_compressed = args[1].As<Number>(); */
/* int compressed = l_compressed->IntegerValue(); */
/* unsigned char *privKey; */
/* int pk_len; */
/* int results = secp256k1_ec_privkey_export(sk_data, privKey, &pk_len, compressed); */
/* if(results == 0){ */
/* return NanThrowError("invalid private key"); */
/* }else{ */
/* NanReturnValue(NanNewBufferHandle((char *)privKey, pk_len)); */
/* } */
/* } */
/* NAN_METHOD(Privkey_Tweak_Add){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Handle<Object> sk_buf = args[0].As<Object>(); */
/* unsigned char *sk = (unsigned char *) node::Buffer::Data(sk_buf); */
/* Handle<Object> tweak_buf = args[1].As<Object>(); */
/* const unsigned char *tweak= (unsigned char *) node::Buffer::Data(tweak_buf); */
/* int results = secp256k1_ec_privkey_tweak_add(sk, tweak); */
/* if(results == 0){ */
/* return NanThrowError("invalid key"); */
/* }else{ */
/* NanReturnValue(NanNewBufferHandle((char *)sk, 32)); */
/* } */
/* } */
/* NAN_METHOD(Privkey_Tweak_Mul){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Handle<Object> sk_buf = args[0].As<Object>(); */
/* unsigned char *sk = (unsigned char *) node::Buffer::Data(sk_buf); */
/* Handle<Object> tweak_buf = args[1].As<Object>(); */
/* const unsigned char *tweak= (unsigned char *) node::Buffer::Data(tweak_buf); */
/* int results = secp256k1_ec_privkey_tweak_mul(sk, tweak); */
/* if(results == 0){ */
/* return NanThrowError("invalid key"); */
/* }else{ */
/* NanReturnValue(NanNewBufferHandle((char *)sk, 32)); */
/* } */
/* } */
/* NAN_METHOD(Pubkey_Tweak_Add){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Handle<Object> pk_buf = args[0].As<Object>(); */
/* unsigned char *pk = (unsigned char *) node::Buffer::Data(pk_buf); */
/* int pk_len = node::Buffer::Length(args[0]); */
/* Handle<Object> tweak_buf = args[1].As<Object>(); */
/* const unsigned char *tweak= (unsigned char *) node::Buffer::Data(tweak_buf); */
/* int results = secp256k1_ec_pubkey_tweak_add(pk, pk_len, tweak); */
/* if(results == 0){ */
/* return NanThrowError("invalid key"); */
/* }else{ */
/* NanReturnValue(NanNewBufferHandle((char *)pk, pk_len)); */
/* } */
/* } */
/* NAN_METHOD(Pubkey_Tweak_Mul){ */
/* NanScope(); */
/* //the first argument should be the private key as a buffer */
/* Handle<Object> pk_buf = args[0].As<Object>(); */
/* unsigned char *pk = (unsigned char *) node::Buffer::Data(pk_buf); */
/* int pk_len = node::Buffer::Length(args[0]); */
/* Handle<Object> tweak_buf = args[1].As<Object>(); */
/* const unsigned char *tweak= (unsigned char *) node::Buffer::Data(tweak_buf); */
/* int results = secp256k1_ec_pubkey_tweak_mul(pk, pk_len, tweak); */
/* if(results == 0){ */
/* return NanThrowError("invalid key"); */
/* }else{ */
/* NanReturnValue(NanNewBufferHandle((char *)pk, pk_len)); */
/* } */
/* } */
void Init(Handle<Object> exports) {
/* secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY); */
/* exports->Set(NanNew("seckeyVerify"), NanNew<FunctionTemplate>(Seckey_Verify)->GetFunction()); */
/* exports->Set(NanNew("sign"), NanNew<FunctionTemplate>(Sign)->GetFunction()); */
/* exports->Set(NanNew("signAsync"), NanNew<FunctionTemplate>(Sign_Async)->GetFunction()); */
/* exports->Set(NanNew("signCompact"), NanNew<FunctionTemplate>(Sign_Compact)->GetFunction()); */
/* exports->Set(NanNew("signCompactAsync"), NanNew<FunctionTemplate>(Sign_Compact_Async)->GetFunction()); */
/* exports->Set(NanNew("recoverCompact"), NanNew<FunctionTemplate>(Recover_Compact)->GetFunction()); */
/* exports->Set(NanNew("recoverCompactAsync"), NanNew<FunctionTemplate>(Recover_Compact_Async)->GetFunction()); */
/* exports->Set(NanNew("verify"), NanNew<FunctionTemplate>(Verify)->GetFunction()); */
/* exports->Set(NanNew("verifyAsync"), NanNew<FunctionTemplate>(Verify_Async)->GetFunction()); */
/* exports->Set(NanNew("secKeyVerify"), NanNew<FunctionTemplate>(Seckey_Verify)->GetFunction()); */
/* exports->Set(NanNew("pubKeyVerify"), NanNew<FunctionTemplate>(Pubkey_Verify)->GetFunction()); */
/* exports->Set(NanNew("pubKeyCreate"), NanNew<FunctionTemplate>(Pubkey_Create)->GetFunction()); */
/* exports->Set(NanNew("pubKeyDecompress"), NanNew<FunctionTemplate>(Pubkey_Decompress)->GetFunction()); */
/* exports->Set(NanNew("privKeyExport"), NanNew<FunctionTemplate>(Privkey_Export)->GetFunction()); */
/* exports->Set(NanNew("privKeyImport"), NanNew<FunctionTemplate>(Privkey_Import)->GetFunction()); */
/* exports->Set(NanNew("privKeyTweakAdd"), NanNew<FunctionTemplate>(Privkey_Tweak_Add)->GetFunction()); */
/* exports->Set(NanNew("privKeyTweakMul"), NanNew<FunctionTemplate>(Privkey_Tweak_Mul)->GetFunction()); */
/* exports->Set(NanNew("pubKeyTweakAdd"), NanNew<FunctionTemplate>(Privkey_Tweak_Add)->GetFunction()); */
/* exports->Set(NanNew("pubKeyTweakMul"), NanNew<FunctionTemplate>(Privkey_Tweak_Mul)->GetFunction()); */
}
NODE_MODULE(secp256k1, Init)

View File

@ -0,0 +1,13 @@
{
"name": "node-ethash",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"install": "node-gyp rebuild"
},
"author": "",
"license": "ISC",
"gypfile": true
}

View File

@ -0,0 +1,12 @@
# To Develop
`npm install -g node-gyp`
`npm install .`
# To rebuild
`node-gyp rebuild`
# notes
nan is good https://github.com/rvagg/nan

View File

@ -0,0 +1,30 @@
IF( NOT Boost_FOUND )
find_package(Boost COMPONENTS unit_test_framework)
ENDIF()
IF( Boost_FOUND )
include_directories( ${Boost_INCLUDE_DIR} )
include_directories(..)
link_directories ( ${Boost_LIBRARY_DIRS} )
file(GLOB HEADERS "*.h")
ADD_DEFINITIONS(-DBOOST_TEST_DYN_LINK)
if (NOT CRYPTOPP_FOUND)
find_package (CryptoPP)
endif()
if (CRYPTOPP_FOUND)
add_definitions(-DWITH_CRYPTOPP)
endif()
add_executable (Test test.cpp ${HEADERS})
target_link_libraries (Test ${Boost_UNIT_TEST_FRAMEWORK_LIBRARY} ${ETHHASH_LIBS})
if (CRYPTOPP_FOUND)
TARGET_LINK_LIBRARIES(Test ${CRYPTOPP_LIBRARIES})
endif()
enable_testing ()
add_test(NAME ethash COMMAND Test)
ENDIF()

View File

@ -0,0 +1,54 @@
package ethashTest
import (
"bytes"
"crypto/rand"
"log"
"math/big"
"testing"
"github.com/ethereum/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/ethdb"
)
func TestEthash(t *testing.T) {
seedHash := make([]byte, 32)
_, err := rand.Read(seedHash)
if err != nil {
panic(err)
}
db, err := ethdb.NewMemDatabase()
if err != nil {
panic(err)
}
blockProcessor, err := core.NewCanonical(5, db)
if err != nil {
panic(err)
}
log.Println("Block Number: ", blockProcessor.ChainManager().CurrentBlock().Number())
e := ethash.New(blockProcessor.ChainManager())
miningHash := make([]byte, 32)
if _, err := rand.Read(miningHash); err != nil {
panic(err)
}
diff := big.NewInt(10000)
log.Println("difficulty", diff)
nonce := uint64(0)
ghash_full := e.FullHash(nonce, miningHash)
log.Printf("ethash full (on nonce): %x %x\n", ghash_full, nonce)
ghash_light := e.LightHash(nonce, miningHash)
log.Printf("ethash light (on nonce): %x %x\n", ghash_light, nonce)
if bytes.Compare(ghash_full, ghash_light) != 0 {
t.Errorf("full: %x, light: %x", ghash_full, ghash_light)
}
}

View File

@ -0,0 +1,233 @@
#include <iomanip>
#include <libethash/fnv.h>
#include <libethash/ethash.h>
#include <libethash/internal.h>
#ifdef WITH_CRYPTOPP
#include <libethash/sha3_cryptopp.h>
#else
#include <libethash/sha3.h>
#endif // WITH_CRYPTOPP
#define BOOST_TEST_MODULE Daggerhashimoto
#define BOOST_TEST_MAIN
#include <boost/test/unit_test.hpp>
#include <libethash/ethash.h>
#include <iostream>
std::string bytesToHexString(const uint8_t *str, const size_t s) {
std::ostringstream ret;
for (int i = 0; i < s; ++i)
ret << std::hex << std::setfill('0') << std::setw(2) << std::nouppercase << (int) str[i];
return ret.str();
}
BOOST_AUTO_TEST_CASE(fnv_hash_check) {
uint32_t x = 1235U;
const uint32_t
y = 9999999U,
expected = (FNV_PRIME * x) ^ y;
x = fnv_hash(x, y);
BOOST_REQUIRE_MESSAGE(x == expected,
"\nexpected: " << expected << "\n"
<< "actual: " << x << "\n");
}
BOOST_AUTO_TEST_CASE(SHA256_check) {
uint8_t input[32], out[32];
memcpy(input, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~", 32);
SHA3_256(out, input, 32);
const std::string
expected = "2b5ddf6f4d21c23de216f44d5e4bdc68e044b71897837ea74c83908be7037cd7",
actual = bytesToHexString(out, 32);
BOOST_REQUIRE_MESSAGE(expected == actual,
"\nexpected: " << expected.c_str() << "\n"
<< "actual: " << actual.c_str() << "\n");
}
BOOST_AUTO_TEST_CASE(SHA512_check) {
uint8_t input[64], out[64];
memcpy(input, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~", 64);
SHA3_512(out, input, 64);
const std::string
expected = "0be8a1d334b4655fe58c6b38789f984bb13225684e86b20517a55ab2386c7b61c306f25e0627c60064cecd6d80cd67a82b3890bd1289b7ceb473aad56a359405",
actual = bytesToHexString(out, 64);
BOOST_REQUIRE_MESSAGE(expected == actual,
"\nexpected: " << expected.c_str() << "\n"
<< "actual: " << actual.c_str() << "\n");
}
BOOST_AUTO_TEST_CASE(ethash_params_init_genesis_check) {
ethash_params params;
ethash_params_init(&params, 0);
BOOST_REQUIRE_MESSAGE(params.full_size < DAGSIZE_BYTES_INIT,
"\nfull size: " << params.full_size << "\n"
<< "should be less than or equal to: " << DAGSIZE_BYTES_INIT << "\n");
BOOST_REQUIRE_MESSAGE(params.full_size + 20*MIX_BYTES >= DAGSIZE_BYTES_INIT,
"\nfull size + 20*MIX_BYTES: " << params.full_size + 20*MIX_BYTES << "\n"
<< "should be greater than or equal to: " << DAGSIZE_BYTES_INIT << "\n");
BOOST_REQUIRE_MESSAGE(params.cache_size < DAGSIZE_BYTES_INIT / 32,
"\ncache size: " << params.cache_size << "\n"
<< "should be less than or equal to: " << DAGSIZE_BYTES_INIT / 32 << "\n");
}
BOOST_AUTO_TEST_CASE(ethash_params_init_genesis_calcifide_check) {
ethash_params params;
ethash_params_init(&params, 0);
const uint32_t expected_full_size = 1073739904;
const uint32_t expected_cache_size = 1048384;
BOOST_REQUIRE_MESSAGE(params.full_size == expected_full_size,
"\nexpected: " << expected_cache_size << "\n"
<< "actual: " << params.full_size << "\n");
BOOST_REQUIRE_MESSAGE(params.cache_size == expected_cache_size,
"\nexpected: " << expected_cache_size << "\n"
<< "actual: " << params.cache_size << "\n");
}
BOOST_AUTO_TEST_CASE(ethash_params_init_check) {
ethash_params params;
ethash_params_init(&params, 1971000);
const uint64_t nine_month_size = (uint64_t) 8*DAGSIZE_BYTES_INIT;
BOOST_REQUIRE_MESSAGE(params.full_size < nine_month_size,
"\nfull size: " << params.full_size << "\n"
<< "should be less than or equal to: " << nine_month_size << "\n");
BOOST_REQUIRE_MESSAGE(params.full_size + DAGSIZE_BYTES_INIT / 4 > nine_month_size,
"\nfull size + DAGSIZE_BYTES_INIT / 4: " << params.full_size + DAGSIZE_BYTES_INIT / 4 << "\n"
<< "should be greater than or equal to: " << nine_month_size << "\n");
BOOST_REQUIRE_MESSAGE(params.cache_size < nine_month_size / 1024,
"\nactual cache size: " << params.cache_size << "\n"
<< "expected: " << nine_month_size / 1024 << "\n");
BOOST_REQUIRE_MESSAGE(params.cache_size + DAGSIZE_BYTES_INIT / 4 / 1024 > nine_month_size / 1024 ,
"\ncache size + DAGSIZE_BYTES_INIT / 4 / 1024: " << params.cache_size + DAGSIZE_BYTES_INIT / 4 / 1024 << "\n"
<< "actual: " << nine_month_size / 32 << "\n");
}
BOOST_AUTO_TEST_CASE(light_and_full_client_checks) {
ethash_params params;
uint8_t seed[32], hash[32];
ethash_return_value light_out, full_out;
memcpy(seed, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~", 32);
memcpy(hash, "~~~X~~~~~~~~~~~~~~~~~~~~~~~~~~~~", 32);
ethash_params_init(&params, 0);
params.cache_size = 1024;
params.full_size = 1024 * 32;
ethash_cache cache;
cache.mem = alloca(params.cache_size);
ethash_mkcache(&cache, &params, seed);
node * full_mem = (node *) alloca(params.full_size);
ethash_compute_full_data(full_mem, &params, &cache);
{
const std::string
expected = "2da2b506f21070e1143d908e867962486d6b0a02e31d468fd5e3a7143aafa76a14201f63374314e2a6aaf84ad2eb57105dea3378378965a1b3873453bb2b78f9a8620b2ebeca41fbc773bb837b5e724d6eb2de570d99858df0d7d97067fb8103b21757873b735097b35d3bea8fd1c359a9e8a63c1540c76c9784cf8d975e995ca8620b2ebeca41fbc773bb837b5e724d6eb2de570d99858df0d7d97067fb8103b21757873b735097b35d3bea8fd1c359a9e8a63c1540c76c9784cf8d975e995ca8620b2ebeca41fbc773bb837b5e724d6eb2de570d99858df0d7d97067fb8103b21757873b735097b35d3bea8fd1c359a9e8a63c1540c76c9784cf8d975e995c259440b89fa3481c2c33171477c305c8e1e421f8d8f6d59585449d0034f3e421808d8da6bbd0b6378f567647cc6c4ba6c434592b198ad444e7284905b7c6adaf70bf43ec2daa7bd5e8951aa609ab472c124cf9eba3d38cff5091dc3f58409edcc386c743c3bd66f92408796ee1e82dd149eaefbf52b00ce33014a6eb3e50625413b072a58bc01da28262f42cbe4f87d4abc2bf287d15618405a1fe4e386fcdafbb171064bd99901d8f81dd6789396ce5e364ac944bbbd75a7827291c70b42d26385910cd53ca535ab29433dd5c5714d26e0dce95514c5ef866329c12e958097e84462197c2b32087849dab33e88b11da61d52f9dbc0b92cc61f742c07dbbf751c49d7678624ee60dfbe62e5e8c47a03d8247643f3d16ad8c8e663953bcda1f59d7e2d4a9bf0768e789432212621967a8f41121ad1df6ae1fa78782530695414c6213942865b2730375019105cae91a4c17a558d4b63059661d9f108362143107babe0b848de412e4da59168cce82bfbff3c99e022dd6ac1e559db991f2e3f7bb910cefd173e65ed00a8d5d416534e2c8416ff23977dbf3eb7180b75c71580d08ce95efeb9b0afe904ea12285a392aff0c8561ff79fca67f694a62b9e52377485c57cc3598d84cac0a9d27960de0cc31ff9bbfe455acaa62c8aa5d2cce96f345da9afe843d258a99c4eaf3650fc62efd81c7b81cd0d534d2d71eeda7a6e315d540b4473c80f8730037dc2ae3e47b986240cfc65ccc565f0d8cde0bc68a57e39a271dda57440b3598bee19f799611d25731a96b5dbbbefdff6f4f656161462633030d62560ea4e9c161cf78fc96a2ca5aaa32453a6c5dea206f766244e8c9d9a8dc61185ce37f1fc804459c5f07434f8ecb34141b8dcae7eae704c950b55556c5f40140c3714b45eddb02637513268778cbf937a33e4e33183685f9deb31ef54e90161e76d969587dd782eaa94e289420e7c2ee908517f5893a26fdb5873d68f92d118d4bcf98d7a4916794d6ab290045e30f9ea00ca547c584b8482b0331ba1539a0f2714fddc3a0b06b0cfbb6a607b8339c39bcfd6640b1f653e9d70ef6c985b",
actual = bytesToHexString((uint8_t const *) cache.mem, params.cache_size);
BOOST_REQUIRE_MESSAGE(expected == actual,
"\nexpected: " << expected.c_str() << "\n"
<< "actual: " << actual.c_str() << "\n");
}
{
node node;
ethash_calculate_dag_item(&node, 0, &params, &cache);
const std::string
actual = bytesToHexString((uint8_t const *) &node, sizeof(node)),
expected = "b1698f829f90b35455804e5185d78f549fcb1bdce2bee006d4d7e68eb154b596be1427769eb1c3c3e93180c760af75f81d1023da6a0ffbe321c153a7c0103597";
BOOST_REQUIRE_MESSAGE(actual == expected,
"\n" << "expected: " << expected.c_str() << "\n"
<< "actual: " << actual.c_str() << "\n");
}
{
for (int i = 0 ; i < params.full_size / sizeof(node) ; ++i ) {
for (uint32_t j = 0; j < 32; ++j) {
node expected_node;
ethash_calculate_dag_item(&expected_node, j, &params, &cache);
const std::string
actual = bytesToHexString((uint8_t const *) &(full_mem[j]), sizeof(node)),
expected = bytesToHexString((uint8_t const *) &expected_node, sizeof(node));
BOOST_REQUIRE_MESSAGE(actual == expected,
"\ni: " << j << "\n"
<< "expected: " << expected.c_str() << "\n"
<< "actual: " << actual.c_str() << "\n");
}
}
}
{
uint64_t nonce = 0x7c7c597c;
ethash_full(&full_out, full_mem, &params, hash, nonce);
ethash_light(&light_out, &cache, &params, hash, nonce);
const std::string
light_result_string = bytesToHexString(light_out.result, 32),
full_result_string = bytesToHexString(full_out.result, 32);
BOOST_REQUIRE_MESSAGE(light_result_string == full_result_string,
"\nlight result: " << light_result_string.c_str() << "\n"
<< "full result: " << full_result_string.c_str() << "\n");
const std::string
light_mix_hash_string = bytesToHexString(light_out.mix_hash, 32),
full_mix_hash_string = bytesToHexString(full_out.mix_hash, 32);
BOOST_REQUIRE_MESSAGE(full_mix_hash_string == light_mix_hash_string,
"\nlight mix hash: " << light_mix_hash_string.c_str() << "\n"
<< "full mix hash: " << full_mix_hash_string.c_str() << "\n");
uint8_t check_hash[32];
ethash_quick_hash(check_hash, hash, nonce, full_out.mix_hash);
const std::string check_hash_string = bytesToHexString(check_hash, 32);
BOOST_REQUIRE_MESSAGE(check_hash_string == full_result_string,
"\ncheck hash string: " << check_hash_string.c_str() << "\n"
<< "full result: " << full_result_string.c_str() << "\n");
}
{
ethash_full(&full_out, full_mem, &params, hash, 5);
std::string
light_result_string = bytesToHexString(light_out.result, 32),
full_result_string = bytesToHexString(full_out.result, 32);
BOOST_REQUIRE_MESSAGE(light_result_string != full_result_string,
"\nlight result and full result should differ: " << light_result_string.c_str() << "\n");
ethash_light(&light_out, &cache, &params, hash, 5);
light_result_string = bytesToHexString(light_out.result, 32);
BOOST_REQUIRE_MESSAGE(light_result_string == full_result_string,
"\nlight result and full result should be the same\n"
<< "light result: " << light_result_string.c_str() << "\n"
<< "full result: " << full_result_string.c_str() << "\n");
std::string
light_mix_hash_string = bytesToHexString(light_out.mix_hash, 32),
full_mix_hash_string = bytesToHexString(full_out.mix_hash, 32);
BOOST_REQUIRE_MESSAGE(full_mix_hash_string == light_mix_hash_string,
"\nlight mix hash: " << light_mix_hash_string.c_str() << "\n"
<< "full mix hash: " << full_mix_hash_string.c_str() << "\n");
}
}
BOOST_AUTO_TEST_CASE(ethash_check_difficulty_check) {
uint8_t hash[32], target[32];
memset(hash, 0, 32);
memset(target, 0, 32);
memcpy(hash, "11111111111111111111111111111111", 32);
memcpy(target, "22222222222222222222222222222222", 32);
BOOST_REQUIRE_MESSAGE(
ethash_check_difficulty(hash, target),
"\nexpected \"" << hash << "\" to have less difficulty than \"" << target << "\"\n");
BOOST_REQUIRE_MESSAGE(
!ethash_check_difficulty(hash, hash),
"\nexpected \"" << hash << "\" to have the same difficulty as \"" << hash << "\"\n");
memcpy(target, "11111111111111111111111111111112", 32);
BOOST_REQUIRE_MESSAGE(
ethash_check_difficulty(hash, target),
"\nexpected \"" << hash << "\" to have less difficulty than \"" << target << "\"\n");
memcpy(target, "11111111111111111111111111111110", 32);
BOOST_REQUIRE_MESSAGE(
!ethash_check_difficulty(hash, target),
"\nexpected \"" << hash << "\" to have more difficulty than \"" << target << "\"\n");
}

View File

@ -7,12 +7,12 @@ import (
"sync"
"time"
"github.com/ethereum/ethash"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/pow"
"github.com/ethereum/go-ethereum/pow/ezp"
"github.com/ethereum/go-ethereum/state"
"gopkg.in/fatih/set.v0"
)
@ -50,7 +50,7 @@ func NewBlockProcessor(db ethutil.Database, txpool *TxPool, chainManager *ChainM
sm := &BlockProcessor{
db: db,
mem: make(map[string]*big.Int),
Pow: ezp.New(),
Pow: ethash.New(chainManager),
bc: chainManager,
eventMux: eventMux,
txpool: txpool,
@ -255,6 +255,7 @@ func (sm *BlockProcessor) ValidateBlock(block, parent *types.Block) error {
return fmt.Errorf("GasLimit check failed for block %v, %v", block.Header().GasLimit, expl)
}
// There can be at most one uncle
if len(block.Uncles()) > 1 {
return ValidationError("Block can only contain one uncle (contained %v)", len(block.Uncles()))
}

View File

@ -13,21 +13,31 @@ import (
// So we can generate blocks easily
type FakePow struct{}
func (f FakePow) Search(block pow.Block, stop <-chan struct{}) []byte { return nil }
func (f FakePow) Verify(block pow.Block) bool { return true }
func (f FakePow) GetHashrate() int64 { return 0 }
func (f FakePow) Turbo(bool) {}
func (f FakePow) Search(block pow.Block, stop <-chan struct{}) ([]byte, []byte, []byte) {
return nil, nil, nil
}
func (f FakePow) Verify(block pow.Block) bool { return true }
func (f FakePow) GetHashrate() int64 { return 0 }
func (f FakePow) Turbo(bool) {}
// So we can deterministically seed different blockchains
var (
CanonicalSeed = 1
ForkSeed = 2
)
// Utility functions for making chains on the fly
// Exposed for sake of testing from other packages (eg. go-ethash)
func NewBlockFromParent(addr []byte, parent *types.Block) *types.Block {
return newBlockFromParent(addr, parent)
}
func MakeBlock(bman *BlockProcessor, parent *types.Block, i int, db ethutil.Database) *types.Block {
return makeBlock(bman, parent, i, db)
func MakeBlock(bman *BlockProcessor, parent *types.Block, i int, db ethutil.Database, seed int) *types.Block {
return makeBlock(bman, parent, i, db, seed)
}
func MakeChain(bman *BlockProcessor, parent *types.Block, max int, db ethutil.Database) types.Blocks {
return makeChain(bman, parent, max, db)
func MakeChain(bman *BlockProcessor, parent *types.Block, max int, db ethutil.Database, seed int) types.Blocks {
return makeChain(bman, parent, max, db, seed)
}
func NewChainMan(block *types.Block, eventMux *event.TypeMux, db ethutil.Database) *ChainManager {
@ -42,9 +52,9 @@ func NewCanonical(n int, db ethutil.Database) (*BlockProcessor, error) {
return newCanonical(n, db)
}
// block time is fixed at 10 seconds
func newBlockFromParent(addr []byte, parent *types.Block) *types.Block {
block := types.NewBlock(parent.Hash(), addr, parent.Root(), ethutil.BigPow(2, 32), nil, "")
block.SetUncles(nil)
block.SetTransactions(nil)
block.SetReceipts(nil)
@ -52,6 +62,7 @@ func newBlockFromParent(addr []byte, parent *types.Block) *types.Block {
header := block.Header()
header.Difficulty = CalcDifficulty(block, parent)
header.Number = new(big.Int).Add(parent.Header().Number, ethutil.Big1)
header.Time = parent.Header().Time + 10
header.GasLimit = CalcGasLimit(parent, block)
block.Td = parent.Td
@ -60,8 +71,10 @@ func newBlockFromParent(addr []byte, parent *types.Block) *types.Block {
}
// Actually make a block by simulating what miner would do
func makeBlock(bman *BlockProcessor, parent *types.Block, i int, db ethutil.Database) *types.Block {
// we seed chains by the first byte of the coinbase
func makeBlock(bman *BlockProcessor, parent *types.Block, i int, db ethutil.Database, seed int) *types.Block {
addr := ethutil.LeftPadBytes([]byte{byte(i)}, 20)
addr[0] = byte(seed)
block := newBlockFromParent(addr, parent)
state := state.New(block.Root(), db)
cbase := state.GetOrNewStateObject(addr)
@ -74,11 +87,11 @@ func makeBlock(bman *BlockProcessor, parent *types.Block, i int, db ethutil.Data
// Make a chain with real blocks
// Runs ProcessWithParent to get proper state roots
func makeChain(bman *BlockProcessor, parent *types.Block, max int, db ethutil.Database) types.Blocks {
func makeChain(bman *BlockProcessor, parent *types.Block, max int, db ethutil.Database, seed int) types.Blocks {
bman.bc.currentBlock = parent
blocks := make(types.Blocks, max)
for i := 0; i < max; i++ {
block := makeBlock(bman, parent, i, db)
block := makeBlock(bman, parent, i, db, seed)
td, err := bman.processWithParent(block, parent)
if err != nil {
fmt.Println("process with parent failed", err)
@ -87,9 +100,7 @@ func makeChain(bman *BlockProcessor, parent *types.Block, max int, db ethutil.Da
block.Td = td
blocks[i] = block
parent = block
fmt.Printf("New Block: %x\n", block.Hash())
}
fmt.Println("Done making chain")
return blocks
}
@ -113,7 +124,7 @@ func newBlockProcessor(db ethutil.Database, txpool *TxPool, cman *ChainManager,
return bman
}
// Make a new canonical chain by running InsertChain
// Make a new, deterministic canonical chain by running InsertChain
// on result of makeChain
func newCanonical(n int, db ethutil.Database) (*BlockProcessor, error) {
eventMux := &event.TypeMux{}
@ -125,7 +136,7 @@ func newCanonical(n int, db ethutil.Database) (*BlockProcessor, error) {
if n == 0 {
return bman, nil
}
lchain := makeChain(bman, parent, n, db)
bman.bc.InsertChain(lchain)
return bman, nil
lchain := makeChain(bman, parent, n, db, CanonicalSeed)
err := bman.bc.InsertChain(lchain)
return bman, err
}

View File

@ -24,12 +24,6 @@ func init() {
// Test fork of length N starting from block i
func testFork(t *testing.T, bman *BlockProcessor, i, N int, f func(td1, td2 *big.Int)) {
fmt.Println("Testing Fork!")
var b *types.Block = nil
if i > 0 {
b = bman.bc.GetBlockByNumber(uint64(i))
}
_ = b
// switch databases to process the new chain
db, err := ethdb.NewMemDatabase()
if err != nil {
@ -40,13 +34,25 @@ func testFork(t *testing.T, bman *BlockProcessor, i, N int, f func(td1, td2 *big
if err != nil {
t.Fatal("could not make new canonical in testFork", err)
}
// asert the bmans have the same block at i
bi1 := bman.bc.GetBlockByNumber(uint64(i)).Hash()
bi2 := bman2.bc.GetBlockByNumber(uint64(i)).Hash()
if bytes.Compare(bi1, bi2) != 0 {
t.Fatal("chains do not have the same hash at height", i)
}
bman2.bc.SetProcessor(bman2)
// extend the fork
parent := bman2.bc.CurrentBlock()
chainB := makeChain(bman2, parent, N, db)
bman2.bc.InsertChain(chainB)
chainB := makeChain(bman2, parent, N, db, ForkSeed)
err = bman2.bc.InsertChain(chainB)
if err != nil {
t.Fatal("Insert chain error for fork:", err)
}
tdpre := bman.bc.Td()
// Test the fork's blocks on the original chain
td, err := testChain(chainB, bman)
if err != nil {
t.Fatal("expected chainB not to give errors:", err)
@ -55,6 +61,14 @@ func testFork(t *testing.T, bman *BlockProcessor, i, N int, f func(td1, td2 *big
f(tdpre, td)
}
func printChain(bc *ChainManager) {
for i := bc.CurrentBlock().Number().Uint64(); i > 0; i-- {
b := bc.GetBlockByNumber(uint64(i))
fmt.Printf("\t%x\n", b.Hash())
}
}
// process blocks against a chain
func testChain(chainB types.Blocks, bman *BlockProcessor) (*big.Int, error) {
td := new(big.Int)
for _, block := range chainB {
@ -102,12 +116,13 @@ func insertChain(done chan bool, chainMan *ChainManager, chain types.Blocks, t *
}
func TestExtendCanonical(t *testing.T) {
CanonicalLength := 5
db, err := ethdb.NewMemDatabase()
if err != nil {
t.Fatal("Failed to create db:", err)
}
// make first chain starting from genesis
bman, err := newCanonical(5, db)
bman, err := newCanonical(CanonicalLength, db)
if err != nil {
t.Fatal("Could not make new canonical chain:", err)
}
@ -116,11 +131,11 @@ func TestExtendCanonical(t *testing.T) {
t.Error("expected chainB to have higher difficulty. Got", td2, "expected more than", td1)
}
}
// Start fork from current height (5)
testFork(t, bman, 5, 1, f)
testFork(t, bman, 5, 2, f)
testFork(t, bman, 5, 5, f)
testFork(t, bman, 5, 10, f)
// Start fork from current height (CanonicalLength)
testFork(t, bman, CanonicalLength, 1, f)
testFork(t, bman, CanonicalLength, 2, f)
testFork(t, bman, CanonicalLength, 5, f)
testFork(t, bman, CanonicalLength, 10, f)
}
func TestShorterFork(t *testing.T) {
@ -189,6 +204,7 @@ func TestEqualFork(t *testing.T) {
}
// Sum of numbers must be equal to 10
// for this to be an equal fork
testFork(t, bman, 0, 10, f)
testFork(t, bman, 1, 9, f)
testFork(t, bman, 2, 8, f)
testFork(t, bman, 5, 5, f)
@ -215,7 +231,7 @@ func TestBrokenChain(t *testing.T) {
}
bman2.bc.SetProcessor(bman2)
parent := bman2.bc.CurrentBlock()
chainB := makeChain(bman2, parent, 5, db2)
chainB := makeChain(bman2, parent, 5, db2, ForkSeed)
chainB = chainB[1:]
_, err = testChain(chainB, bman)
if err == nil {

View File

@ -121,7 +121,7 @@ func (self *TxPool) add(tx *types.Transaction) error {
if len(tx.From()) > 0 {
from = ethutil.Bytes2Hex(tx.From()[:4])
} else {
from = "INVALID"
return errors.New(fmt.Sprintf("FROM ADDRESS MUST BE POSITIVE (was %v)", tx.From()))
}
txplogger.Debugf("(t) %x => %s (%v) %x\n", from, to, tx.Value, tx.Hash())

View File

@ -48,7 +48,20 @@ type Header struct {
}
func (self *Header) rlpData(withNonce bool) []interface{} {
fields := []interface{}{self.ParentHash, self.UncleHash, self.Coinbase, self.Root, self.TxHash, self.ReceiptHash, self.Bloom, self.Difficulty, self.Number, self.GasLimit, self.GasUsed, self.Time, self.Extra}
fields := []interface{}{
self.ParentHash,
self.UncleHash,
self.Coinbase,
self.Root,
self.TxHash,
self.ReceiptHash,
self.Bloom,
self.Difficulty,
self.Number,
self.GasLimit,
self.GasUsed,
self.Time,
self.Extra}
if withNonce {
fields = append(fields, self.Nonce, self.MixDigest, self.SeedHash)
}

View File

@ -69,8 +69,8 @@ done:
func (self *CpuMiner) mine(block *types.Block) {
minerlogger.Infof("(re)started agent[%d]. mining...\n", self.index)
nonce := self.pow.Search(block, self.quitCurrentOp)
nonce, mixDigest, seedHash := self.pow.Search(block, self.quitCurrentOp)
if nonce != nil {
self.returnCh <- Work{block.Number().Uint64(), nonce}
self.returnCh <- Work{block.Number().Uint64(), nonce, mixDigest, seedHash}
}
}

View File

@ -42,8 +42,10 @@ func env(block *types.Block, eth core.Backend) *environment {
}
type Work struct {
Number uint64
Nonce []byte
Number uint64
Nonce []byte
MixDigest []byte
SeedHash []byte
}
type Agent interface {
@ -138,9 +140,12 @@ out:
func (self *worker) wait() {
for {
for work := range self.recv {
// Someone Successfully Mined!
block := self.current.block
if block.Number().Uint64() == work.Number && block.Nonce() == nil {
self.current.block.Header().Nonce = work.Nonce
self.current.block.Header().MixDigest = work.MixDigest
self.current.block.Header().SeedHash = work.SeedHash
if err := self.chain.InsertChain(types.Blocks{self.current.block}); err == nil {
self.mux.Post(core.NewMinedBlockEvent{self.current.block})

View File

@ -1,12 +1,20 @@
package pow
import "math/big"
import (
"github.com/ethereum/go-ethereum/core/types"
"math/big"
)
type Block interface {
Difficulty() *big.Int
HashNoNonce() []byte
Nonce() []byte
Number() *big.Int
MixDigest() []byte
SeedHash() []byte
NumberU64() uint64
}
type ChainManager interface {
GetBlockByNumber(uint64) *types.Block
CurrentBlock() *types.Block
}

View File

@ -44,7 +44,7 @@ func (dag *Dagger) Find(obj *big.Int, resChan chan int64) {
resChan <- 0
}
func (dag *Dagger) Search(hash, diff *big.Int) *big.Int {
func (dag *Dagger) Search(hash, diff *big.Int) ([]byte, []byte, []byte) {
// TODO fix multi threading. Somehow it results in the wrong nonce
amountOfRoutines := 1
@ -69,7 +69,7 @@ func (dag *Dagger) Search(hash, diff *big.Int) *big.Int {
}
}
return big.NewInt(res)
return big.NewInt(res).Bytes(), nil, nil
}
func (dag *Dagger) Verify(hash, diff, nonce *big.Int) bool {

View File

@ -1,5 +0,0 @@
extern char *Sha3(char *, int);
char *sha3_cgo(char *data, int l)
{
return Sha3(data, l);
}

View File

@ -1,14 +0,0 @@
package dash
/*
char *sha3_cgo(char *, int); // Forward declaration
*/
import "C"
import (
"github.com/ethereum/go-ethereum/crypto"
)
//export Sha3
func Sha3(data []byte, l int) []byte {
return crypto.Sha3(data)
}

View File

@ -32,7 +32,7 @@ func (pow *EasyPow) Turbo(on bool) {
pow.turbo = on
}
func (pow *EasyPow) Search(block pow.Block, stop <-chan struct{}) []byte {
func (pow *EasyPow) Search(block pow.Block, stop <-chan struct{}) ([]byte, []byte, []byte) {
r := rand.New(rand.NewSource(time.Now().UnixNano()))
hash := block.HashNoNonce()
diff := block.Difficulty()
@ -57,7 +57,7 @@ empty:
for {
select {
case <-stop:
return nil
return nil, nil, nil
default:
i++
@ -67,7 +67,7 @@ empty:
sha := crypto.Sha3(big.NewInt(r.Int63()).Bytes())
if verify(hash, diff, sha) {
return sha
return sha, nil, nil
}
}
@ -75,8 +75,6 @@ empty:
time.Sleep(20 * time.Microsecond)
}
}
return nil
}
func (pow *EasyPow) Verify(block pow.Block) bool {

View File

@ -1,7 +1,7 @@
package pow
type PoW interface {
Search(block Block, stop <-chan struct{}) []byte
Search(block Block, stop <-chan struct{}) ([]byte, []byte, []byte)
Verify(block Block) bool
GetHashrate() int64
Turbo(bool)