Merge pull request #1314 from karalabe/handle-fetcher-attacks-2

eth/fetcher: handle and test various DOS attacks
This commit is contained in:
Jeffrey Wilcke 2015-06-23 10:04:44 -07:00
commit d21c2bfb68
2 changed files with 264 additions and 60 deletions

View File

@ -20,6 +20,8 @@ const (
fetchTimeout = 5 * time.Second // Maximum alloted time to return an explicitly requested block fetchTimeout = 5 * time.Second // Maximum alloted time to return an explicitly requested block
maxUncleDist = 7 // Maximum allowed backward distance from the chain head maxUncleDist = 7 // Maximum allowed backward distance from the chain head
maxQueueDist = 32 // Maximum allowed distance from the chain head to queue maxQueueDist = 32 // Maximum allowed distance from the chain head to queue
hashLimit = 256 // Maximum number of unique blocks a peer may have announced
blockLimit = 64 // Maximum number of unique blocks a per may have delivered
) )
var ( var (
@ -74,12 +76,14 @@ type Fetcher struct {
quit chan struct{} quit chan struct{}
// Announce states // Announce states
announces map[string]int // Per peer announce counts to prevent memory exhaustion
announced map[common.Hash][]*announce // Announced blocks, scheduled for fetching announced map[common.Hash][]*announce // Announced blocks, scheduled for fetching
fetching map[common.Hash]*announce // Announced blocks, currently fetching fetching map[common.Hash]*announce // Announced blocks, currently fetching
// Block cache // Block cache
queue *prque.Prque // Queue containing the import operations (block number sorted) queue *prque.Prque // Queue containing the import operations (block number sorted)
queued map[common.Hash]struct{} // Presence set of already queued blocks (to dedup imports) queues map[string]int // Per peer block counts to prevent memory exhaustion
queued map[common.Hash]*inject // Set of already queued blocks (to dedup imports)
// Callbacks // Callbacks
getBlock blockRetrievalFn // Retrieves a block from the local chain getBlock blockRetrievalFn // Retrieves a block from the local chain
@ -88,6 +92,10 @@ type Fetcher struct {
chainHeight chainHeightFn // Retrieves the current chain's height chainHeight chainHeightFn // Retrieves the current chain's height
insertChain chainInsertFn // Injects a batch of blocks into the chain insertChain chainInsertFn // Injects a batch of blocks into the chain
dropPeer peerDropFn // Drops a peer for misbehaving dropPeer peerDropFn // Drops a peer for misbehaving
// Testing hooks
fetchingHook func([]common.Hash) // Method to call upon starting a block fetch
importedHook func(*types.Block) // Method to call upon successful block import
} }
// New creates a block fetcher to retrieve blocks based on hash announcements. // New creates a block fetcher to retrieve blocks based on hash announcements.
@ -98,10 +106,12 @@ func New(getBlock blockRetrievalFn, validateBlock blockValidatorFn, broadcastBlo
filter: make(chan chan []*types.Block), filter: make(chan chan []*types.Block),
done: make(chan common.Hash), done: make(chan common.Hash),
quit: make(chan struct{}), quit: make(chan struct{}),
announces: make(map[string]int),
announced: make(map[common.Hash][]*announce), announced: make(map[common.Hash][]*announce),
fetching: make(map[common.Hash]*announce), fetching: make(map[common.Hash]*announce),
queue: prque.New(), queue: prque.New(),
queued: make(map[common.Hash]struct{}), queues: make(map[string]int),
queued: make(map[common.Hash]*inject),
getBlock: getBlock, getBlock: getBlock,
validateBlock: validateBlock, validateBlock: validateBlock,
broadcastBlock: broadcastBlock, broadcastBlock: broadcastBlock,
@ -189,23 +199,24 @@ func (f *Fetcher) loop() {
// Clean up any expired block fetches // Clean up any expired block fetches
for hash, announce := range f.fetching { for hash, announce := range f.fetching {
if time.Since(announce.time) > fetchTimeout { if time.Since(announce.time) > fetchTimeout {
delete(f.announced, hash) f.forgetHash(hash)
delete(f.fetching, hash)
} }
} }
// Import any queued blocks that could potentially fit // Import any queued blocks that could potentially fit
height := f.chainHeight() height := f.chainHeight()
for !f.queue.Empty() { for !f.queue.Empty() {
op := f.queue.PopItem().(*inject) op := f.queue.PopItem().(*inject)
number := op.block.NumberU64()
// If too high up the chain or phase, continue later // If too high up the chain or phase, continue later
number := op.block.NumberU64()
if number > height+1 { if number > height+1 {
f.queue.Push(op, -float32(op.block.NumberU64())) f.queue.Push(op, -float32(op.block.NumberU64()))
break break
} }
// Otherwise if fresh and still unknown, try and import // Otherwise if fresh and still unknown, try and import
if number+maxUncleDist < height || f.getBlock(op.block.Hash()) != nil { hash := op.block.Hash()
if number+maxUncleDist < height || f.getBlock(hash) != nil {
f.forgetBlock(hash)
continue continue
} }
f.insert(op.origin, op.block) f.insert(op.origin, op.block)
@ -217,10 +228,17 @@ func (f *Fetcher) loop() {
return return
case notification := <-f.notify: case notification := <-f.notify:
// A block was announced, schedule if it's not yet downloading // A block was announced, make sure the peer isn't DOSing us
count := f.announces[notification.origin] + 1
if count > hashLimit {
glog.V(logger.Debug).Infof("Peer %s: exceeded outstanding announces (%d)", notification.origin, hashLimit)
break
}
// All is well, schedule the announce if block's not yet downloading
if _, ok := f.fetching[notification.hash]; ok { if _, ok := f.fetching[notification.hash]; ok {
break break
} }
f.announces[notification.origin] = count
f.announced[notification.hash] = append(f.announced[notification.hash], notification) f.announced[notification.hash] = append(f.announced[notification.hash], notification)
if len(f.announced) == 1 { if len(f.announced) == 1 {
f.reschedule(fetch) f.reschedule(fetch)
@ -232,9 +250,8 @@ func (f *Fetcher) loop() {
case hash := <-f.done: case hash := <-f.done:
// A pending import finished, remove all traces of the notification // A pending import finished, remove all traces of the notification
delete(f.announced, hash) f.forgetHash(hash)
delete(f.fetching, hash) f.forgetBlock(hash)
delete(f.queued, hash)
case <-fetch.C: case <-fetch.C:
// At least one block's timer ran out, check for needing retrieval // At least one block's timer ran out, check for needing retrieval
@ -242,12 +259,15 @@ func (f *Fetcher) loop() {
for hash, announces := range f.announced { for hash, announces := range f.announced {
if time.Since(announces[0].time) > arriveTimeout-gatherSlack { if time.Since(announces[0].time) > arriveTimeout-gatherSlack {
// Pick a random peer to retrieve from, reset all others
announce := announces[rand.Intn(len(announces))] announce := announces[rand.Intn(len(announces))]
f.forgetHash(hash)
// If the block still didn't arrive, queue for fetching
if f.getBlock(hash) == nil { if f.getBlock(hash) == nil {
request[announce.origin] = append(request[announce.origin], hash) request[announce.origin] = append(request[announce.origin], hash)
f.fetching[hash] = announce f.fetching[hash] = announce
} }
delete(f.announced, hash)
} }
} }
// Send out all block requests // Send out all block requests
@ -261,7 +281,14 @@ func (f *Fetcher) loop() {
glog.V(logger.Detail).Infof("Peer %s: fetching %s", peer, list) glog.V(logger.Detail).Infof("Peer %s: fetching %s", peer, list)
} }
go f.fetching[hashes[0]].fetch(hashes) // Create a closure of the fetch and schedule in on a new thread
fetcher, hashes := f.fetching[hashes[0]].fetch, hashes
go func() {
if f.fetchingHook != nil {
f.fetchingHook(hashes)
}
fetcher(hashes)
}()
} }
// Schedule the next fetch if blocks are still pending // Schedule the next fetch if blocks are still pending
f.reschedule(fetch) f.reschedule(fetch)
@ -285,7 +312,7 @@ func (f *Fetcher) loop() {
if f.getBlock(hash) == nil { if f.getBlock(hash) == nil {
explicit = append(explicit, block) explicit = append(explicit, block)
} else { } else {
delete(f.fetching, hash) f.forgetHash(hash)
} }
} else { } else {
download = append(download, block) download = append(download, block)
@ -328,6 +355,12 @@ func (f *Fetcher) reschedule(fetch *time.Timer) {
func (f *Fetcher) enqueue(peer string, block *types.Block) { func (f *Fetcher) enqueue(peer string, block *types.Block) {
hash := block.Hash() hash := block.Hash()
// Ensure the peer isn't DOSing us
count := f.queues[peer] + 1
if count > blockLimit {
glog.V(logger.Debug).Infof("Peer %s: discarded block #%d [%x], exceeded allowance (%d)", peer, block.NumberU64(), hash.Bytes()[:4], blockLimit)
return
}
// Discard any past or too distant blocks // Discard any past or too distant blocks
if dist := int64(block.NumberU64()) - int64(f.chainHeight()); dist < -maxUncleDist || dist > maxQueueDist { if dist := int64(block.NumberU64()) - int64(f.chainHeight()); dist < -maxUncleDist || dist > maxQueueDist {
glog.V(logger.Debug).Infof("Peer %s: discarded block #%d [%x], distance %d", peer, block.NumberU64(), hash.Bytes()[:4], dist) glog.V(logger.Debug).Infof("Peer %s: discarded block #%d [%x], distance %d", peer, block.NumberU64(), hash.Bytes()[:4], dist)
@ -335,8 +368,13 @@ func (f *Fetcher) enqueue(peer string, block *types.Block) {
} }
// Schedule the block for future importing // Schedule the block for future importing
if _, ok := f.queued[hash]; !ok { if _, ok := f.queued[hash]; !ok {
f.queued[hash] = struct{}{} op := &inject{
f.queue.Push(&inject{origin: peer, block: block}, -float32(block.NumberU64())) origin: peer,
block: block,
}
f.queues[peer] = count
f.queued[hash] = op
f.queue.Push(op, -float32(block.NumberU64()))
if glog.V(logger.Debug) { if glog.V(logger.Debug) {
glog.Infof("Peer %s: queued block #%d [%x], total %v", peer, block.NumberU64(), hash.Bytes()[:4], f.queue.Size()) glog.Infof("Peer %s: queued block #%d [%x], total %v", peer, block.NumberU64(), hash.Bytes()[:4], f.queue.Size())
@ -375,5 +413,44 @@ func (f *Fetcher) insert(peer string, block *types.Block) {
} }
// If import succeeded, broadcast the block // If import succeeded, broadcast the block
go f.broadcastBlock(block, false) go f.broadcastBlock(block, false)
// Invoke the testing hook if needed
if f.importedHook != nil {
f.importedHook(block)
}
}() }()
} }
// forgetHash removes all traces of a block announcement from the fetcher's
// internal state.
func (f *Fetcher) forgetHash(hash common.Hash) {
// Remove all pending announces and decrement DOS counters
for _, announce := range f.announced[hash] {
f.announces[announce.origin]--
if f.announces[announce.origin] == 0 {
delete(f.announces, announce.origin)
}
}
delete(f.announced, hash)
// Remove any pending fetches and decrement the DOS counters
if announce := f.fetching[hash]; announce != nil {
f.announces[announce.origin]--
if f.announces[announce.origin] == 0 {
delete(f.announces, announce.origin)
}
delete(f.fetching, hash)
}
}
// forgetBlock removes all traces of a queued block frmo the fetcher's internal
// state.
func (f *Fetcher) forgetBlock(hash common.Hash) {
if insert := f.queued[hash]; insert != nil {
f.queues[insert.origin]--
if f.queues[insert.origin] == 0 {
delete(f.queues, insert.origin)
}
delete(f.queued, hash)
}
}

View File

@ -159,11 +159,42 @@ func (f *fetcherTester) makeFetcher(blocks map[common.Hash]*types.Block) blockRe
} }
} }
// verifyImportEvent verifies that one single event arrive on an import channel.
func verifyImportEvent(t *testing.T, imported chan *types.Block) {
select {
case <-imported:
case <-time.After(time.Second):
t.Fatalf("import timeout")
}
}
// verifyImportCount verifies that exactly count number of events arrive on an
// import hook channel.
func verifyImportCount(t *testing.T, imported chan *types.Block, count int) {
for i := 0; i < count; i++ {
select {
case <-imported:
case <-time.After(time.Second):
t.Fatalf("block %d: import timeout", i)
}
}
verifyImportDone(t, imported)
}
// verifyImportDone verifies that no more events are arriving on an import channel.
func verifyImportDone(t *testing.T, imported chan *types.Block) {
select {
case <-imported:
t.Fatalf("extra block imported")
case <-time.After(50 * time.Millisecond):
}
}
// Tests that a fetcher accepts block announcements and initiates retrievals for // Tests that a fetcher accepts block announcements and initiates retrievals for
// them, successfully importing into the local chain. // them, successfully importing into the local chain.
func TestSequentialAnnouncements(t *testing.T) { func TestSequentialAnnouncements(t *testing.T) {
// Create a chain of blocks to import // Create a chain of blocks to import
targetBlocks := 24 targetBlocks := 4 * hashLimit
hashes := createHashes(targetBlocks, knownHash) hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes) blocks := createBlocksFromHashes(hashes)
@ -171,20 +202,21 @@ func TestSequentialAnnouncements(t *testing.T) {
fetcher := tester.makeFetcher(blocks) fetcher := tester.makeFetcher(blocks)
// Iteratively announce blocks until all are imported // Iteratively announce blocks until all are imported
for i := len(hashes) - 1; i >= 0; i-- { imported := make(chan *types.Block)
tester.fetcher.importedHook = func(block *types.Block) { imported <- block }
for i := len(hashes) - 2; i >= 0; i-- {
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher) tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond) verifyImportEvent(t, imported)
}
if imported := len(tester.blocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
} }
verifyImportDone(t, imported)
} }
// Tests that if blocks are announced by multiple peers (or even the same buggy // Tests that if blocks are announced by multiple peers (or even the same buggy
// peer), they will only get downloaded at most once. // peer), they will only get downloaded at most once.
func TestConcurrentAnnouncements(t *testing.T) { func TestConcurrentAnnouncements(t *testing.T) {
// Create a chain of blocks to import // Create a chain of blocks to import
targetBlocks := 24 targetBlocks := 4 * hashLimit
hashes := createHashes(targetBlocks, knownHash) hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes) blocks := createBlocksFromHashes(hashes)
@ -198,16 +230,18 @@ func TestConcurrentAnnouncements(t *testing.T) {
return fetcher(hashes) return fetcher(hashes)
} }
// Iteratively announce blocks until all are imported // Iteratively announce blocks until all are imported
for i := len(hashes) - 1; i >= 0; i-- { imported := make(chan *types.Block)
tester.fetcher.importedHook = func(block *types.Block) { imported <- block }
for i := len(hashes) - 2; i >= 0; i-- {
tester.fetcher.Notify("first", hashes[i], time.Now().Add(-arriveTimeout), wrapper) tester.fetcher.Notify("first", hashes[i], time.Now().Add(-arriveTimeout), wrapper)
tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout+time.Millisecond), wrapper) tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout+time.Millisecond), wrapper)
tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout-time.Millisecond), wrapper) tester.fetcher.Notify("second", hashes[i], time.Now().Add(-arriveTimeout-time.Millisecond), wrapper)
time.Sleep(50 * time.Millisecond) verifyImportEvent(t, imported)
}
if imported := len(tester.blocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
} }
verifyImportDone(t, imported)
// Make sure no blocks were retrieved twice // Make sure no blocks were retrieved twice
if int(counter) != targetBlocks { if int(counter) != targetBlocks {
t.Fatalf("retrieval count mismatch: have %v, want %v", counter, targetBlocks) t.Fatalf("retrieval count mismatch: have %v, want %v", counter, targetBlocks)
@ -218,7 +252,7 @@ func TestConcurrentAnnouncements(t *testing.T) {
// results in a valid import. // results in a valid import.
func TestOverlappingAnnouncements(t *testing.T) { func TestOverlappingAnnouncements(t *testing.T) {
// Create a chain of blocks to import // Create a chain of blocks to import
targetBlocks := 24 targetBlocks := 4 * hashLimit
hashes := createHashes(targetBlocks, knownHash) hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes) blocks := createBlocksFromHashes(hashes)
@ -226,16 +260,21 @@ func TestOverlappingAnnouncements(t *testing.T) {
fetcher := tester.makeFetcher(blocks) fetcher := tester.makeFetcher(blocks)
// Iteratively announce blocks, but overlap them continuously // Iteratively announce blocks, but overlap them continuously
delay, overlap := 50*time.Millisecond, time.Duration(5) fetching := make(chan []common.Hash)
for i := len(hashes) - 1; i >= 0; i-- { imported := make(chan *types.Block, len(hashes)-1)
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout+overlap*delay), fetcher) tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- hashes }
time.Sleep(delay) tester.fetcher.importedHook = func(block *types.Block) { imported <- block }
}
time.Sleep(overlap * delay)
if imported := len(tester.blocks); imported != targetBlocks+1 { for i := len(hashes) - 2; i >= 0; i-- {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1) tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
select {
case <-fetching:
case <-time.After(time.Second):
t.Fatalf("hash %d: announce timeout", len(hashes)-i)
} }
}
// Wait for all the imports to complete and check count
verifyImportCount(t, imported, len(hashes)-1)
} }
// Tests that announces already being retrieved will not be duplicated. // Tests that announces already being retrieved will not be duplicated.
@ -280,56 +319,52 @@ func TestPendingDeduplication(t *testing.T) {
// imported when all the gaps are filled in. // imported when all the gaps are filled in.
func TestRandomArrivalImport(t *testing.T) { func TestRandomArrivalImport(t *testing.T) {
// Create a chain of blocks to import, and choose one to delay // Create a chain of blocks to import, and choose one to delay
targetBlocks := 24 hashes := createHashes(maxQueueDist, knownHash)
hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes) blocks := createBlocksFromHashes(hashes)
skip := targetBlocks / 2 skip := maxQueueDist / 2
tester := newTester() tester := newTester()
fetcher := tester.makeFetcher(blocks) fetcher := tester.makeFetcher(blocks)
// Iteratively announce blocks, skipping one entry // Iteratively announce blocks, skipping one entry
imported := make(chan *types.Block, len(hashes)-1)
tester.fetcher.importedHook = func(block *types.Block) { imported <- block }
for i := len(hashes) - 1; i >= 0; i-- { for i := len(hashes) - 1; i >= 0; i-- {
if i != skip { if i != skip {
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher) tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond) time.Sleep(time.Millisecond)
} }
} }
// Finally announce the skipped entry and check full import // Finally announce the skipped entry and check full import
tester.fetcher.Notify("valid", hashes[skip], time.Now().Add(-arriveTimeout), fetcher) tester.fetcher.Notify("valid", hashes[skip], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond) verifyImportCount(t, imported, len(hashes)-1)
if imported := len(tester.blocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
} }
// Tests that direct block enqueues (due to block propagation vs. hash announce) // Tests that direct block enqueues (due to block propagation vs. hash announce)
// are correctly schedule, filling and import queue gaps. // are correctly schedule, filling and import queue gaps.
func TestQueueGapFill(t *testing.T) { func TestQueueGapFill(t *testing.T) {
// Create a chain of blocks to import, and choose one to not announce at all // Create a chain of blocks to import, and choose one to not announce at all
targetBlocks := 24 hashes := createHashes(maxQueueDist, knownHash)
hashes := createHashes(targetBlocks, knownHash)
blocks := createBlocksFromHashes(hashes) blocks := createBlocksFromHashes(hashes)
skip := targetBlocks / 2 skip := maxQueueDist / 2
tester := newTester() tester := newTester()
fetcher := tester.makeFetcher(blocks) fetcher := tester.makeFetcher(blocks)
// Iteratively announce blocks, skipping one entry // Iteratively announce blocks, skipping one entry
imported := make(chan *types.Block, len(hashes)-1)
tester.fetcher.importedHook = func(block *types.Block) { imported <- block }
for i := len(hashes) - 1; i >= 0; i-- { for i := len(hashes) - 1; i >= 0; i-- {
if i != skip { if i != skip {
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher) tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond) time.Sleep(time.Millisecond)
} }
} }
// Fill the missing block directly as if propagated // Fill the missing block directly as if propagated
tester.fetcher.Enqueue("valid", blocks[hashes[skip]]) tester.fetcher.Enqueue("valid", blocks[hashes[skip]])
time.Sleep(50 * time.Millisecond) verifyImportCount(t, imported, len(hashes)-1)
if imported := len(tester.blocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
} }
// Tests that blocks arriving from various sources (multiple propagations, hash // Tests that blocks arriving from various sources (multiple propagations, hash
@ -348,9 +383,15 @@ func TestImportDeduplication(t *testing.T) {
atomic.AddUint32(&counter, uint32(len(blocks))) atomic.AddUint32(&counter, uint32(len(blocks)))
return tester.insertChain(blocks) return tester.insertChain(blocks)
} }
// Instrument the fetching and imported events
fetching := make(chan []common.Hash)
imported := make(chan *types.Block, len(hashes)-1)
tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- hashes }
tester.fetcher.importedHook = func(block *types.Block) { imported <- block }
// Announce the duplicating block, wait for retrieval, and also propagate directly // Announce the duplicating block, wait for retrieval, and also propagate directly
tester.fetcher.Notify("valid", hashes[0], time.Now().Add(-arriveTimeout), fetcher) tester.fetcher.Notify("valid", hashes[0], time.Now().Add(-arriveTimeout), fetcher)
time.Sleep(50 * time.Millisecond) <-fetching
tester.fetcher.Enqueue("valid", blocks[hashes[0]]) tester.fetcher.Enqueue("valid", blocks[hashes[0]])
tester.fetcher.Enqueue("valid", blocks[hashes[0]]) tester.fetcher.Enqueue("valid", blocks[hashes[0]])
@ -358,11 +399,8 @@ func TestImportDeduplication(t *testing.T) {
// Fill the missing block directly as if propagated, and check import uniqueness // Fill the missing block directly as if propagated, and check import uniqueness
tester.fetcher.Enqueue("valid", blocks[hashes[1]]) tester.fetcher.Enqueue("valid", blocks[hashes[1]])
time.Sleep(50 * time.Millisecond) verifyImportCount(t, imported, 2)
if imported := len(tester.blocks); imported != 3 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, 3)
}
if counter != 2 { if counter != 2 {
t.Fatalf("import invocation count mismatch: have %v, want %v", counter, 2) t.Fatalf("import invocation count mismatch: have %v, want %v", counter, 2)
} }
@ -395,3 +433,92 @@ func TestDistantDiscarding(t *testing.T) {
t.Fatalf("fetcher queued future block") t.Fatalf("fetcher queued future block")
} }
} }
// Tests that a peer is unable to use unbounded memory with sending infinite
// block announcements to a node, but that even in the face of such an attack,
// the fetcher remains operational.
func TestHashMemoryExhaustionAttack(t *testing.T) {
// Create a tester with instrumented import hooks
tester := newTester()
imported := make(chan *types.Block)
tester.fetcher.importedHook = func(block *types.Block) { imported <- block }
// Create a valid chain and an infinite junk chain
hashes := createHashes(hashLimit+2*maxQueueDist, knownHash)
blocks := createBlocksFromHashes(hashes)
valid := tester.makeFetcher(blocks)
attack := createHashes(hashLimit+2*maxQueueDist, unknownHash)
attacker := tester.makeFetcher(nil)
// Feed the tester a huge hashset from the attacker, and a limited from the valid peer
for i := 0; i < len(attack); i++ {
if i < maxQueueDist {
tester.fetcher.Notify("valid", hashes[len(hashes)-2-i], time.Now(), valid)
}
tester.fetcher.Notify("attacker", attack[i], time.Now(), attacker)
}
if len(tester.fetcher.announced) != hashLimit+maxQueueDist {
t.Fatalf("queued announce count mismatch: have %d, want %d", len(tester.fetcher.announced), hashLimit+maxQueueDist)
}
// Wait for fetches to complete
verifyImportCount(t, imported, maxQueueDist)
// Feed the remaining valid hashes to ensure DOS protection state remains clean
for i := len(hashes) - maxQueueDist - 2; i >= 0; i-- {
tester.fetcher.Notify("valid", hashes[i], time.Now().Add(-arriveTimeout), valid)
verifyImportEvent(t, imported)
}
verifyImportDone(t, imported)
}
// Tests that blocks sent to the fetcher (either through propagation or via hash
// announces and retrievals) don't pile up indefinitely, exhausting available
// system memory.
func TestBlockMemoryExhaustionAttack(t *testing.T) {
// Create a tester with instrumented import hooks
tester := newTester()
imported := make(chan *types.Block)
tester.fetcher.importedHook = func(block *types.Block) { imported <- block }
// Create a valid chain and a batch of dangling (but in range) blocks
hashes := createHashes(blockLimit+2*maxQueueDist, knownHash)
blocks := createBlocksFromHashes(hashes)
attack := make(map[common.Hash]*types.Block)
for len(attack) < blockLimit+2*maxQueueDist {
hashes := createHashes(maxQueueDist-1, unknownHash)
blocks := createBlocksFromHashes(hashes)
for _, hash := range hashes[:maxQueueDist-2] {
attack[hash] = blocks[hash]
}
}
// Try to feed all the attacker blocks make sure only a limited batch is accepted
for _, block := range attack {
tester.fetcher.Enqueue("attacker", block)
}
time.Sleep(100 * time.Millisecond)
if queued := tester.fetcher.queue.Size(); queued != blockLimit {
t.Fatalf("queued block count mismatch: have %d, want %d", queued, blockLimit)
}
// Queue up a batch of valid blocks, and check that a new peer is allowed to do so
for i := 0; i < maxQueueDist-1; i++ {
tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-3-i]])
}
time.Sleep(100 * time.Millisecond)
if queued := tester.fetcher.queue.Size(); queued != blockLimit+maxQueueDist-1 {
t.Fatalf("queued block count mismatch: have %d, want %d", queued, blockLimit+maxQueueDist-1)
}
// Insert the missing piece (and sanity check the import)
tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-2]])
verifyImportCount(t, imported, maxQueueDist)
// Insert the remaining blocks in chunks to ensure clean DOS protection
for i := maxQueueDist; i < len(hashes)-1; i++ {
tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-2-i]])
verifyImportEvent(t, imported)
}
verifyImportDone(t, imported)
}