eth: kill off protocol eth/60 in preparation for eth/62

This commit is contained in:
Péter Szilágyi 2015-08-14 17:48:26 +03:00
parent 42f44dda54
commit ca88e18f59
6 changed files with 28 additions and 804 deletions

View File

@ -18,11 +18,9 @@
package downloader
import (
"bytes"
"errors"
"math"
"math/big"
"math/rand"
"sync"
"sync/atomic"
"time"
@ -37,8 +35,8 @@ import (
)
const (
eth60 = 60 // Constant to check for old protocol support
eth61 = 61 // Constant to check for new protocol support
eth61 = 61 // Constant to check for old protocol support
eth62 = 62 // Constant to check for new protocol support
)
var (
@ -324,16 +322,8 @@ func (d *Downloader) syncWithPeer(p *peer, hash common.Hash, td *big.Int) (err e
glog.V(logger.Debug).Infof("Synchronizing with the network using: %s, eth/%d", p.id, p.version)
switch p.version {
case eth60:
// Old eth/60 version, use reverse hash retrieval algorithm
if err = d.fetchHashes60(p, hash); err != nil {
return err
}
if err = d.fetchBlocks60(); err != nil {
return err
}
case eth61:
// New eth/61, use forward, concurrent hash and block retrieval algorithm
// Old eth/61, use forward, concurrent hash and block retrieval algorithm
number, err := d.findAncestor(p)
if err != nil {
return err
@ -355,8 +345,6 @@ func (d *Downloader) syncWithPeer(p *peer, hash common.Hash, td *big.Int) (err e
glog.V(logger.Error).Infof("Unsupported eth protocol: %d", p.version)
return errBadPeer
}
glog.V(logger.Debug).Infoln("Synchronization completed")
return nil
}
@ -385,299 +373,6 @@ func (d *Downloader) Terminate() {
d.cancel()
}
// fetchHashes60 starts retrieving hashes backwards from a specific peer and hash,
// up until it finds a common ancestor. If the source peer times out, alternative
// ones are tried for continuation.
func (d *Downloader) fetchHashes60(p *peer, h common.Hash) error {
var (
start = time.Now()
active = p // active peer will help determine the current active peer
head = common.Hash{} // common and last hash
timeout = time.NewTimer(0) // timer to dump a non-responsive active peer
attempted = make(map[string]bool) // attempted peers will help with retries
crossTicker = time.NewTicker(crossCheckCycle) // ticker to periodically check expired cross checks
)
defer crossTicker.Stop()
defer timeout.Stop()
glog.V(logger.Debug).Infof("Downloading hashes (%x) from %s", h[:4], p.id)
<-timeout.C // timeout channel should be initially empty.
getHashes := func(from common.Hash) {
go active.getRelHashes(from)
timeout.Reset(hashTTL)
}
// Add the hash to the queue, and start hash retrieval.
d.queue.Insert([]common.Hash{h}, false)
getHashes(h)
attempted[p.id] = true
for finished := false; !finished; {
select {
case <-d.cancelCh:
return errCancelHashFetch
case hashPack := <-d.hashCh:
// Make sure the active peer is giving us the hashes
if hashPack.peerId != active.id {
glog.V(logger.Debug).Infof("Received hashes from incorrect peer(%s)", hashPack.peerId)
break
}
timeout.Stop()
// Make sure the peer actually gave something valid
if len(hashPack.hashes) == 0 {
glog.V(logger.Debug).Infof("Peer (%s) responded with empty hash set", active.id)
return errEmptyHashSet
}
for index, hash := range hashPack.hashes {
if d.banned.Has(hash) {
glog.V(logger.Debug).Infof("Peer (%s) sent a known invalid chain", active.id)
d.queue.Insert(hashPack.hashes[:index+1], false)
if err := d.banBlocks(active.id, hash); err != nil {
glog.V(logger.Debug).Infof("Failed to ban batch of blocks: %v", err)
}
return errInvalidChain
}
}
// Determine if we're done fetching hashes (queue up all pending), and continue if not done
done, index := false, 0
for index, head = range hashPack.hashes {
if d.hasBlock(head) || d.queue.GetBlock(head) != nil {
glog.V(logger.Debug).Infof("Found common hash %x", head[:4])
hashPack.hashes = hashPack.hashes[:index]
done = true
break
}
}
// Insert all the new hashes, but only continue if got something useful
inserts := d.queue.Insert(hashPack.hashes, false)
if len(inserts) == 0 && !done {
glog.V(logger.Debug).Infof("Peer (%s) responded with stale hashes", active.id)
return errBadPeer
}
if !done {
// Check that the peer is not stalling the sync
if len(inserts) < MinHashFetch {
return errStallingPeer
}
// Try and fetch a random block to verify the hash batch
// Skip the last hash as the cross check races with the next hash fetch
cross := rand.Intn(len(inserts) - 1)
origin, parent := inserts[cross], inserts[cross+1]
glog.V(logger.Detail).Infof("Cross checking (%s) with %x/%x", active.id, origin, parent)
d.checks[origin] = &crossCheck{
expire: time.Now().Add(blockSoftTTL),
parent: parent,
}
go active.getBlocks([]common.Hash{origin})
// Also fetch a fresh batch of hashes
getHashes(head)
continue
}
// We're done, prepare the download cache and proceed pulling the blocks
offset := uint64(0)
if block := d.getBlock(head); block != nil {
offset = block.NumberU64() + 1
}
d.queue.Prepare(offset)
finished = true
case blockPack := <-d.blockCh:
// Cross check the block with the random verifications
if blockPack.peerId != active.id || len(blockPack.blocks) != 1 {
continue
}
block := blockPack.blocks[0]
if check, ok := d.checks[block.Hash()]; ok {
if block.ParentHash() != check.parent {
return errCrossCheckFailed
}
delete(d.checks, block.Hash())
}
case <-crossTicker.C:
// Iterate over all the cross checks and fail the hash chain if they're not verified
for hash, check := range d.checks {
if time.Now().After(check.expire) {
glog.V(logger.Debug).Infof("Cross check timeout for %x", hash)
return errCrossCheckFailed
}
}
case <-timeout.C:
glog.V(logger.Debug).Infof("Peer (%s) didn't respond in time for hash request", p.id)
var p *peer // p will be set if a peer can be found
// Attempt to find a new peer by checking inclusion of peers best hash in our
// already fetched hash list. This can't guarantee 100% correctness but does
// a fair job. This is always either correct or false incorrect.
for _, peer := range d.peers.AllPeers() {
if d.queue.Has(peer.head) && !attempted[peer.id] {
p = peer
break
}
}
// if all peers have been tried, abort the process entirely or if the hash is
// the zero hash.
if p == nil || (head == common.Hash{}) {
return errTimeout
}
// set p to the active peer. this will invalidate any hashes that may be returned
// by our previous (delayed) peer.
active = p
getHashes(head)
glog.V(logger.Debug).Infof("Hash fetching switched to new peer(%s)", p.id)
}
}
glog.V(logger.Debug).Infof("Downloaded hashes (%d) in %v", d.queue.Pending(), time.Since(start))
return nil
}
// fetchBlocks60 iteratively downloads the entire schedules block-chain, taking
// any available peers, reserving a chunk of blocks for each, wait for delivery
// and periodically checking for timeouts.
func (d *Downloader) fetchBlocks60() error {
glog.V(logger.Debug).Infoln("Downloading", d.queue.Pending(), "block(s)")
start := time.Now()
// Start a ticker to continue throttled downloads and check for bad peers
ticker := time.NewTicker(20 * time.Millisecond)
defer ticker.Stop()
out:
for {
select {
case <-d.cancelCh:
return errCancelBlockFetch
case <-d.hashCh:
// Out of bounds hashes received, ignore them
case blockPack := <-d.blockCh:
// Short circuit if it's a stale cross check
if len(blockPack.blocks) == 1 {
block := blockPack.blocks[0]
if _, ok := d.checks[block.Hash()]; ok {
delete(d.checks, block.Hash())
break
}
}
// If the peer was previously banned and failed to deliver it's pack
// in a reasonable time frame, ignore it's message.
if peer := d.peers.Peer(blockPack.peerId); peer != nil {
// Deliver the received chunk of blocks, and demote in case of errors
err := d.queue.Deliver(blockPack.peerId, blockPack.blocks)
switch err {
case nil:
// If no blocks were delivered, demote the peer (need the delivery above)
if len(blockPack.blocks) == 0 {
peer.Demote()
peer.SetIdle()
glog.V(logger.Detail).Infof("%s: no blocks delivered", peer)
break
}
// All was successful, promote the peer and potentially start processing
peer.Promote()
peer.SetIdle()
glog.V(logger.Detail).Infof("%s: delivered %d blocks", peer, len(blockPack.blocks))
go d.process()
case errInvalidChain:
// The hash chain is invalid (blocks are not ordered properly), abort
return err
case errNoFetchesPending:
// Peer probably timed out with its delivery but came through
// in the end, demote, but allow to to pull from this peer.
peer.Demote()
peer.SetIdle()
glog.V(logger.Detail).Infof("%s: out of bound delivery", peer)
case errStaleDelivery:
// Delivered something completely else than requested, usually
// caused by a timeout and delivery during a new sync cycle.
// Don't set it to idle as the original request should still be
// in flight.
peer.Demote()
glog.V(logger.Detail).Infof("%s: stale delivery", peer)
default:
// Peer did something semi-useful, demote but keep it around
peer.Demote()
peer.SetIdle()
glog.V(logger.Detail).Infof("%s: delivery partially failed: %v", peer, err)
go d.process()
}
}
case <-ticker.C:
// Short circuit if we lost all our peers
if d.peers.Len() == 0 {
return errNoPeers
}
// Check for block request timeouts and demote the responsible peers
badPeers := d.queue.Expire(blockHardTTL)
for _, pid := range badPeers {
if peer := d.peers.Peer(pid); peer != nil {
peer.Demote()
glog.V(logger.Detail).Infof("%s: block delivery timeout", peer)
}
}
// If there are unrequested hashes left start fetching from the available peers
if d.queue.Pending() > 0 {
// Throttle the download if block cache is full and waiting processing
if d.queue.Throttle() {
break
}
// Send a download request to all idle peers, until throttled
idlePeers := d.peers.IdlePeers()
for _, peer := range idlePeers {
// Short circuit if throttling activated since above
if d.queue.Throttle() {
break
}
// Get a possible chunk. If nil is returned no chunk
// could be returned due to no hashes available.
request := d.queue.Reserve(peer, peer.Capacity())
if request == nil {
continue
}
if glog.V(logger.Detail) {
glog.Infof("%s: requesting %d blocks", peer, len(request.Hashes))
}
// Fetch the chunk and check for error. If the peer was somehow
// already fetching a chunk due to a bug, it will be returned to
// the queue
if err := peer.Fetch(request); err != nil {
glog.V(logger.Error).Infof("Peer %s received double work", peer.id)
d.queue.Cancel(request)
}
}
// Make sure that we have peers available for fetching. If all peers have been tried
// and all failed throw an error
if d.queue.InFlight() == 0 {
return errPeersUnavailable
}
} else if d.queue.InFlight() == 0 {
// When there are no more queue and no more in flight, We can
// safely assume we're done. Another part of the process will check
// for parent errors and will re-request anything that's missing
break out
}
}
}
glog.V(logger.Detail).Infoln("Downloaded block(s) in", time.Since(start))
return nil
}
// findAncestor tries to locate the common ancestor block of the local chain and
// a remote peers blockchain. In the general case when our node was in sync and
// on the correct chain, checking the top N blocks should already get us a match.
@ -1023,92 +718,6 @@ func (d *Downloader) fetchBlocks(from uint64) error {
}
}
// banBlocks retrieves a batch of blocks from a peer feeding us invalid hashes,
// and bans the head of the retrieved batch.
//
// This method only fetches one single batch as the goal is not ban an entire
// (potentially long) invalid chain - wasting a lot of time in the meanwhile -,
// but rather to gradually build up a blacklist if the peer keeps reconnecting.
func (d *Downloader) banBlocks(peerId string, head common.Hash) error {
glog.V(logger.Debug).Infof("Banning a batch out of %d blocks from %s", d.queue.Pending(), peerId)
// Ask the peer being banned for a batch of blocks from the banning point
peer := d.peers.Peer(peerId)
if peer == nil {
return nil
}
request := d.queue.Reserve(peer, MaxBlockFetch)
if request == nil {
return nil
}
if err := peer.Fetch(request); err != nil {
return err
}
// Wait a bit for the reply to arrive, and ban if done so
timeout := time.After(blockHardTTL)
for {
select {
case <-d.cancelCh:
return errCancelBlockFetch
case <-timeout:
return errTimeout
case <-d.hashCh:
// Out of bounds hashes received, ignore them
case blockPack := <-d.blockCh:
blocks := blockPack.blocks
// Short circuit if it's a stale cross check
if len(blocks) == 1 {
block := blocks[0]
if _, ok := d.checks[block.Hash()]; ok {
delete(d.checks, block.Hash())
break
}
}
// Short circuit if it's not from the peer being banned
if blockPack.peerId != peerId {
break
}
// Short circuit if no blocks were returned
if len(blocks) == 0 {
return errors.New("no blocks returned to ban")
}
// Reconstruct the original chain order and ensure we're banning the correct blocks
types.BlockBy(types.Number).Sort(blocks)
if bytes.Compare(blocks[0].Hash().Bytes(), head.Bytes()) != 0 {
return errors.New("head block not the banned one")
}
index := 0
for _, block := range blocks[1:] {
if bytes.Compare(block.ParentHash().Bytes(), blocks[index].Hash().Bytes()) != 0 {
break
}
index++
}
// Ban the head hash and phase out any excess
d.banned.Add(blocks[index].Hash())
for d.banned.Size() > maxBannedHashes {
var evacuate common.Hash
d.banned.Each(func(item interface{}) bool {
// Skip any hard coded bans
if core.BadHashes[item.(common.Hash)] {
return true
}
evacuate = item.(common.Hash)
return false
})
d.banned.Remove(evacuate)
}
glog.V(logger.Debug).Infof("Banned %d blocks from: %s", index+1, peerId)
return nil
}
}
}
// process takes blocks from the queue and tries to import them into the chain.
//
// The algorithmic flow is as follows:

View File

@ -17,7 +17,6 @@
package downloader
import (
"crypto/rand"
"errors"
"fmt"
"math/big"
@ -215,11 +214,6 @@ func (dl *downloadTester) peerGetRelHashesFn(id string, delay time.Duration) fun
// a particular peer in the download tester. The returned function can be used to
// retrieve batches of hashes from the particularly requested peer.
func (dl *downloadTester) peerGetAbsHashesFn(id string, version int, delay time.Duration) func(uint64, int) error {
// If the simulated peer runs eth/60, this message is not supported
if version == eth60 {
return func(uint64, int) error { return nil }
}
// Otherwise create a method to request the blocks by number
return func(head uint64, count int) error {
time.Sleep(delay)
@ -261,24 +255,6 @@ func (dl *downloadTester) peerGetBlocksFn(id string, delay time.Duration) func([
}
}
// Tests that simple synchronization, without throttling from a good peer works.
func TestSynchronisation60(t *testing.T) {
// Create a small enough block chain to download and the tester
targetBlocks := blockCacheLimit - 15
hashes, blocks := makeChain(targetBlocks, 0, genesis)
tester := newTester()
tester.newPeer("peer", eth60, hashes, blocks)
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("peer", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
}
// Tests that simple synchronization against a canonical chain works correctly.
// In this test common ancestor lookup should be short circuited and not require
// binary searching.
@ -301,7 +277,6 @@ func TestCanonicalSynchronisation61(t *testing.T) {
// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
func TestThrottling60(t *testing.T) { testThrottling(t, eth60) }
func TestThrottling61(t *testing.T) { testThrottling(t, eth61) }
func testThrottling(t *testing.T, protocol int) {
@ -400,7 +375,6 @@ func TestInactiveDownloader(t *testing.T) {
}
// Tests that a canceled download wipes all previously accumulated state.
func TestCancel60(t *testing.T) { testCancel(t, eth60) }
func TestCancel61(t *testing.T) { testCancel(t, eth61) }
func testCancel(t *testing.T, protocol int) {
@ -432,7 +406,6 @@ func testCancel(t *testing.T, protocol int) {
}
// Tests that synchronisation from multiple peers works as intended (multi thread sanity test).
func TestMultiSynchronisation60(t *testing.T) { testMultiSynchronisation(t, eth60) }
func TestMultiSynchronisation61(t *testing.T) { testMultiSynchronisation(t, eth61) }
func testMultiSynchronisation(t *testing.T, protocol int) {
@ -463,355 +436,6 @@ func testMultiSynchronisation(t *testing.T, protocol int) {
}
}
// Tests that synchronising with a peer who's very slow at network IO does not
// stall the other peers in the system.
func TestSlowSynchronisation60(t *testing.T) {
tester := newTester()
// Create a batch of blocks, with a slow and a full speed peer
targetCycles := 2
targetBlocks := targetCycles*blockCacheLimit - 15
targetIODelay := time.Second
hashes, blocks := makeChain(targetBlocks, 0, genesis)
tester.newSlowPeer("fast", eth60, hashes, blocks, 0)
tester.newSlowPeer("slow", eth60, hashes, blocks, targetIODelay)
// Try to sync with the peers (pull hashes from fast)
start := time.Now()
if err := tester.sync("fast", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
if imported := len(tester.ownBlocks); imported != targetBlocks+1 {
t.Fatalf("synchronised block mismatch: have %v, want %v", imported, targetBlocks+1)
}
// Check that the slow peer got hit at most once per block-cache-size import
limit := time.Duration(targetCycles+1) * targetIODelay
if delay := time.Since(start); delay >= limit {
t.Fatalf("synchronisation exceeded delay limit: have %v, want %v", delay, limit)
}
}
// Tests that if a peer returns an invalid chain with a block pointing to a non-
// existing parent, it is correctly detected and handled.
func TestNonExistingParentAttack60(t *testing.T) {
tester := newTester()
// Forge a single-link chain with a forged header
hashes, blocks := makeChain(1, 0, genesis)
tester.newPeer("valid", eth60, hashes, blocks)
wrongblock := types.NewBlock(&types.Header{}, nil, nil, nil)
wrongblock.Td = blocks[hashes[0]].Td
hashes, blocks = makeChain(1, 0, wrongblock)
tester.newPeer("attack", eth60, hashes, blocks)
// Try and sync with the malicious node and check that it fails
if err := tester.sync("attack", nil); err == nil {
t.Fatalf("block synchronization succeeded")
}
if tester.hasBlock(hashes[0]) {
t.Fatalf("tester accepted unknown-parent block: %v", blocks[hashes[0]])
}
// Try to synchronize with the valid chain and make sure it succeeds
if err := tester.sync("valid", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
if !tester.hasBlock(tester.peerHashes["valid"][0]) {
t.Fatalf("tester didn't accept known-parent block: %v", tester.peerBlocks["valid"][hashes[0]])
}
}
// Tests that if a malicious peers keeps sending us repeating hashes, we don't
// loop indefinitely.
func TestRepeatingHashAttack60(t *testing.T) { // TODO: Is this thing valid??
tester := newTester()
// Create a valid chain, but drop the last link
hashes, blocks := makeChain(blockCacheLimit, 0, genesis)
tester.newPeer("valid", eth60, hashes, blocks)
tester.newPeer("attack", eth60, hashes[:len(hashes)-1], blocks)
// Try and sync with the malicious node
errc := make(chan error)
go func() {
errc <- tester.sync("attack", nil)
}()
// Make sure that syncing returns and does so with a failure
select {
case <-time.After(time.Second):
t.Fatalf("synchronisation blocked")
case err := <-errc:
if err == nil {
t.Fatalf("synchronisation succeeded")
}
}
// Ensure that a valid chain can still pass sync
if err := tester.sync("valid", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
}
// Tests that if a malicious peers returns a non-existent block hash, it should
// eventually time out and the sync reattempted.
func TestNonExistingBlockAttack60(t *testing.T) {
tester := newTester()
// Create a valid chain, but forge the last link
hashes, blocks := makeChain(blockCacheLimit, 0, genesis)
tester.newPeer("valid", eth60, hashes, blocks)
hashes[len(hashes)/2] = common.Hash{}
tester.newPeer("attack", eth60, hashes, blocks)
// Try and sync with the malicious node and check that it fails
if err := tester.sync("attack", nil); err != errPeersUnavailable {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errPeersUnavailable)
}
// Ensure that a valid chain can still pass sync
if err := tester.sync("valid", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
}
// Tests that if a malicious peer is returning hashes in a weird order, that the
// sync throttler doesn't choke on them waiting for the valid blocks.
func TestInvalidHashOrderAttack60(t *testing.T) {
tester := newTester()
// Create a valid long chain, but reverse some hashes within
hashes, blocks := makeChain(4*blockCacheLimit, 0, genesis)
tester.newPeer("valid", eth60, hashes, blocks)
chunk1 := make([]common.Hash, blockCacheLimit)
chunk2 := make([]common.Hash, blockCacheLimit)
copy(chunk1, hashes[blockCacheLimit:2*blockCacheLimit])
copy(chunk2, hashes[2*blockCacheLimit:3*blockCacheLimit])
copy(hashes[2*blockCacheLimit:], chunk1)
copy(hashes[blockCacheLimit:], chunk2)
tester.newPeer("attack", eth60, hashes, blocks)
// Try and sync with the malicious node and check that it fails
if err := tester.sync("attack", nil); err != errInvalidChain {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
}
// Ensure that a valid chain can still pass sync
if err := tester.sync("valid", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
}
// Tests that if a malicious peer makes up a random hash chain and tries to push
// indefinitely, it actually gets caught with it.
func TestMadeupHashChainAttack60(t *testing.T) {
tester := newTester()
blockSoftTTL = 100 * time.Millisecond
crossCheckCycle = 25 * time.Millisecond
// Create a long chain of hashes without backing blocks
hashes, blocks := makeChain(4*blockCacheLimit, 0, genesis)
randomHashes := make([]common.Hash, 1024*blockCacheLimit)
for i := range randomHashes {
rand.Read(randomHashes[i][:])
}
tester.newPeer("valid", eth60, hashes, blocks)
tester.newPeer("attack", eth60, randomHashes, nil)
// Try and sync with the malicious node and check that it fails
if err := tester.sync("attack", nil); err != errCrossCheckFailed {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
}
// Ensure that a valid chain can still pass sync
if err := tester.sync("valid", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
}
// Tests that if a malicious peer makes up a random hash chain, and tries to push
// indefinitely, one hash at a time, it actually gets caught with it. The reason
// this is separate from the classical made up chain attack is that sending hashes
// one by one prevents reliable block/parent verification.
func TestMadeupHashChainDrippingAttack60(t *testing.T) {
// Create a random chain of hashes to drip
randomHashes := make([]common.Hash, 16*blockCacheLimit)
for i := range randomHashes {
rand.Read(randomHashes[i][:])
}
randomHashes[len(randomHashes)-1] = genesis.Hash()
tester := newTester()
// Try and sync with the attacker, one hash at a time
tester.maxHashFetch = 1
tester.newPeer("attack", eth60, randomHashes, nil)
if err := tester.sync("attack", nil); err != errStallingPeer {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
}
}
// Tests that if a malicious peer makes up a random block chain, and tried to
// push indefinitely, it actually gets caught with it.
func TestMadeupBlockChainAttack60(t *testing.T) {
defaultBlockTTL := blockSoftTTL
defaultCrossCheckCycle := crossCheckCycle
blockSoftTTL = 100 * time.Millisecond
crossCheckCycle = 25 * time.Millisecond
// Create a long chain of blocks and simulate an invalid chain by dropping every second
hashes, blocks := makeChain(16*blockCacheLimit, 0, genesis)
gapped := make([]common.Hash, len(hashes)/2)
for i := 0; i < len(gapped); i++ {
gapped[i] = hashes[2*i]
}
// Try and sync with the malicious node and check that it fails
tester := newTester()
tester.newPeer("attack", eth60, gapped, blocks)
if err := tester.sync("attack", nil); err != errCrossCheckFailed {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errCrossCheckFailed)
}
// Ensure that a valid chain can still pass sync
blockSoftTTL = defaultBlockTTL
crossCheckCycle = defaultCrossCheckCycle
tester.newPeer("valid", eth60, hashes, blocks)
if err := tester.sync("valid", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
}
// Tests that if one/multiple malicious peers try to feed a banned blockchain to
// the downloader, it will not keep refetching the same chain indefinitely, but
// gradually block pieces of it, until its head is also blocked.
func TestBannedChainStarvationAttack60(t *testing.T) {
n := 8 * blockCacheLimit
fork := n/2 - 23
hashes, forkHashes, blocks, forkBlocks := makeChainFork(n, fork, genesis)
// Create the tester and ban the selected hash.
tester := newTester()
tester.downloader.banned.Add(forkHashes[fork-1])
tester.newPeer("valid", eth60, hashes, blocks)
tester.newPeer("attack", eth60, forkHashes, forkBlocks)
// Iteratively try to sync, and verify that the banned hash list grows until
// the head of the invalid chain is blocked too.
for banned := tester.downloader.banned.Size(); ; {
// Try to sync with the attacker, check hash chain failure
if err := tester.sync("attack", nil); err != errInvalidChain {
if tester.downloader.banned.Has(forkHashes[0]) && err == errBannedHead {
break
}
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
}
// Check that the ban list grew with at least 1 new item, or all banned
bans := tester.downloader.banned.Size()
if bans < banned+1 {
t.Fatalf("ban count mismatch: have %v, want %v+", bans, banned+1)
}
banned = bans
}
// Check that after banning an entire chain, bad peers get dropped
if err := tester.newPeer("new attacker", eth60, forkHashes, forkBlocks); err != errBannedHead {
t.Fatalf("peer registration mismatch: have %v, want %v", err, errBannedHead)
}
if peer := tester.downloader.peers.Peer("new attacker"); peer != nil {
t.Fatalf("banned attacker registered: %v", peer)
}
// Ensure that a valid chain can still pass sync
if err := tester.sync("valid", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
}
// Tests that if a peer sends excessively many/large invalid chains that are
// gradually banned, it will have an upper limit on the consumed memory and also
// the origin bad hashes will not be evacuated.
func TestBannedChainMemoryExhaustionAttack60(t *testing.T) {
// Construct a banned chain with more chunks than the ban limit
n := 8 * blockCacheLimit
fork := n/2 - 23
hashes, forkHashes, blocks, forkBlocks := makeChainFork(n, fork, genesis)
// Create the tester and ban the root hash of the fork.
tester := newTester()
tester.downloader.banned.Add(forkHashes[fork-1])
// Reduce the test size a bit
defaultMaxBlockFetch := MaxBlockFetch
defaultMaxBannedHashes := maxBannedHashes
MaxBlockFetch = 4
maxBannedHashes = 256
tester.newPeer("valid", eth60, hashes, blocks)
tester.newPeer("attack", eth60, forkHashes, forkBlocks)
// Iteratively try to sync, and verify that the banned hash list grows until
// the head of the invalid chain is blocked too.
for {
// Try to sync with the attacker, check hash chain failure
if err := tester.sync("attack", nil); err != errInvalidChain {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errInvalidChain)
}
// Short circuit if the entire chain was banned.
if tester.downloader.banned.Has(forkHashes[0]) {
break
}
// Otherwise ensure we never exceed the memory allowance and the hard coded bans are untouched
if bans := tester.downloader.banned.Size(); bans > maxBannedHashes {
t.Fatalf("ban cap exceeded: have %v, want max %v", bans, maxBannedHashes)
}
for hash := range core.BadHashes {
if !tester.downloader.banned.Has(hash) {
t.Fatalf("hard coded ban evacuated: %x", hash)
}
}
}
// Ensure that a valid chain can still pass sync
MaxBlockFetch = defaultMaxBlockFetch
maxBannedHashes = defaultMaxBannedHashes
if err := tester.sync("valid", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
}
// Tests a corner case (potential attack) where a peer delivers both good as well
// as unrequested blocks to a hash request. This may trigger a different code
// path than the fully correct or fully invalid delivery, potentially causing
// internal state problems
//
// No, don't delete this test, it actually did happen!
func TestOverlappingDeliveryAttack60(t *testing.T) {
// Create an arbitrary batch of blocks ( < cache-size not to block)
targetBlocks := blockCacheLimit - 23
hashes, blocks := makeChain(targetBlocks, 0, genesis)
// Register an attacker that always returns non-requested blocks too
tester := newTester()
tester.newPeer("attack", eth60, hashes, blocks)
rawGetBlocks := tester.downloader.peers.Peer("attack").getBlocks
tester.downloader.peers.Peer("attack").getBlocks = func(request []common.Hash) error {
// Add a non requested hash the screw the delivery (genesis should be fine)
return rawGetBlocks(append(request, hashes[0]))
}
// Test that synchronisation can complete, check for import success
if err := tester.sync("attack", nil); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
start := time.Now()
for len(tester.ownHashes) != len(hashes) && time.Since(start) < time.Second {
time.Sleep(50 * time.Millisecond)
}
if len(tester.ownHashes) != len(hashes) {
t.Fatalf("chain length mismatch: have %v, want %v", len(tester.ownHashes), len(hashes))
}
}
// Tests that a peer advertising an high TD doesn't get to stall the downloader
// afterwards by not sending any useful hashes.
func TestHighTDStarvationAttack61(t *testing.T) {
@ -850,7 +474,7 @@ func TestHashAttackerDropping(t *testing.T) {
for i, tt := range tests {
// Register a new peer and ensure it's presence
id := fmt.Sprintf("test %d", i)
if err := tester.newPeer(id, eth60, []common.Hash{genesis.Hash()}, nil); err != nil {
if err := tester.newPeer(id, eth61, []common.Hash{genesis.Hash()}, nil); err != nil {
t.Fatalf("test %d: failed to register new peer: %v", i, err)
}
if _, ok := tester.peerHashes[id]; !ok {
@ -882,7 +506,7 @@ func TestBlockAttackerDropping(t *testing.T) {
for i, tt := range tests {
// Register a new peer and ensure it's presence
id := fmt.Sprintf("test %d", i)
if err := tester.newPeer(id, eth60, []common.Hash{common.Hash{}}, nil); err != nil {
if err := tester.newPeer(id, eth61, []common.Hash{common.Hash{}}, nil); err != nil {
t.Fatalf("test %d: failed to register new peer: %v", i, err)
}
if _, ok := tester.peerHashes[id]; !ok {

View File

@ -19,7 +19,6 @@ import (
// Tests that hashes can be retrieved from a remote chain by hashes in reverse
// order.
func TestGetBlockHashes60(t *testing.T) { testGetBlockHashes(t, 60) }
func TestGetBlockHashes61(t *testing.T) { testGetBlockHashes(t, 61) }
func testGetBlockHashes(t *testing.T, protocol int) {
@ -63,7 +62,6 @@ func testGetBlockHashes(t *testing.T, protocol int) {
// Tests that hashes can be retrieved from a remote chain by numbers in forward
// order.
func TestGetBlockHashesFromNumber60(t *testing.T) { testGetBlockHashesFromNumber(t, 60) }
func TestGetBlockHashesFromNumber61(t *testing.T) { testGetBlockHashesFromNumber(t, 61) }
func testGetBlockHashesFromNumber(t *testing.T, protocol int) {
@ -104,7 +102,6 @@ func testGetBlockHashesFromNumber(t *testing.T, protocol int) {
}
// Tests that blocks can be retrieved from a remote chain based on their hashes.
func TestGetBlocks60(t *testing.T) { testGetBlocks(t, 60) }
func TestGetBlocks61(t *testing.T) { testGetBlocks(t, 61) }
func testGetBlocks(t *testing.T, protocol int) {

View File

@ -95,19 +95,19 @@ func (rw *meteredMsgReadWriter) ReadMsg() (p2p.Msg, error) {
// Account for the data traffic
packets, traffic := miscInPacketsMeter, miscInTrafficMeter
switch {
case (rw.version == eth60 || rw.version == eth61) && msg.Code == BlockHashesMsg:
case rw.version < eth62 && msg.Code == BlockHashesMsg:
packets, traffic = reqHashInPacketsMeter, reqHashInTrafficMeter
case (rw.version == eth60 || rw.version == eth61) && msg.Code == BlocksMsg:
case rw.version < eth62 && msg.Code == BlocksMsg:
packets, traffic = reqBlockInPacketsMeter, reqBlockInTrafficMeter
case rw.version == eth62 && msg.Code == BlockHeadersMsg:
case rw.version >= eth62 && msg.Code == BlockHeadersMsg:
packets, traffic = reqBlockInPacketsMeter, reqBlockInTrafficMeter
case rw.version == eth62 && msg.Code == BlockBodiesMsg:
case rw.version >= eth62 && msg.Code == BlockBodiesMsg:
packets, traffic = reqBodyInPacketsMeter, reqBodyInTrafficMeter
case rw.version == eth63 && msg.Code == NodeDataMsg:
case rw.version >= eth63 && msg.Code == NodeDataMsg:
packets, traffic = reqStateInPacketsMeter, reqStateInTrafficMeter
case rw.version == eth63 && msg.Code == ReceiptsMsg:
case rw.version >= eth63 && msg.Code == ReceiptsMsg:
packets, traffic = reqReceiptInPacketsMeter, reqReceiptInTrafficMeter
case msg.Code == NewBlockHashesMsg:
@ -127,19 +127,19 @@ func (rw *meteredMsgReadWriter) WriteMsg(msg p2p.Msg) error {
// Account for the data traffic
packets, traffic := miscOutPacketsMeter, miscOutTrafficMeter
switch {
case (rw.version == eth60 || rw.version == eth61) && msg.Code == BlockHashesMsg:
case rw.version < eth62 && msg.Code == BlockHashesMsg:
packets, traffic = reqHashOutPacketsMeter, reqHashOutTrafficMeter
case (rw.version == eth60 || rw.version == eth61) && msg.Code == BlocksMsg:
case rw.version < eth62 && msg.Code == BlocksMsg:
packets, traffic = reqBlockOutPacketsMeter, reqBlockOutTrafficMeter
case rw.version == eth62 && msg.Code == BlockHeadersMsg:
case rw.version >= eth62 && msg.Code == BlockHeadersMsg:
packets, traffic = reqHeaderOutPacketsMeter, reqHeaderOutTrafficMeter
case rw.version == eth62 && msg.Code == BlockBodiesMsg:
case rw.version >= eth62 && msg.Code == BlockBodiesMsg:
packets, traffic = reqBodyOutPacketsMeter, reqBodyOutTrafficMeter
case rw.version == eth63 && msg.Code == NodeDataMsg:
case rw.version >= eth63 && msg.Code == NodeDataMsg:
packets, traffic = reqStateOutPacketsMeter, reqStateOutTrafficMeter
case rw.version == eth63 && msg.Code == ReceiptsMsg:
case rw.version >= eth63 && msg.Code == ReceiptsMsg:
packets, traffic = reqReceiptOutPacketsMeter, reqReceiptOutTrafficMeter
case msg.Code == NewBlockHashesMsg:

View File

@ -28,7 +28,6 @@ import (
// Constants to match up protocol versions and messages
const (
eth60 = 60
eth61 = 61
eth62 = 62
eth63 = 63
@ -36,10 +35,10 @@ const (
)
// Supported versions of the eth protocol (first is primary).
var ProtocolVersions = []uint{eth64, eth63, eth62, eth61, eth60}
var ProtocolVersions = []uint{eth64, eth63, eth62, eth61}
// Number of implemented message corresponding to different protocol versions.
var ProtocolLengths = []uint64{15, 12, 8, 9, 8}
var ProtocolLengths = []uint64{15, 12, 8, 9}
const (
NetworkId = 1
@ -48,17 +47,15 @@ const (
// eth protocol message codes
const (
// Protocol messages belonging to eth/60
StatusMsg = 0x00
NewBlockHashesMsg = 0x01
TxMsg = 0x02
GetBlockHashesMsg = 0x03
BlockHashesMsg = 0x04
GetBlocksMsg = 0x05
BlocksMsg = 0x06
NewBlockMsg = 0x07
// Protocol messages belonging to eth/61 (extension of eth/60)
// Protocol messages belonging to eth/61
StatusMsg = 0x00
NewBlockHashesMsg = 0x01
TxMsg = 0x02
GetBlockHashesMsg = 0x03
BlockHashesMsg = 0x04
GetBlocksMsg = 0x05
BlocksMsg = 0x06
NewBlockMsg = 0x07
GetBlockHashesFromNumberMsg = 0x08
// Protocol messages belonging to eth/62 (new protocol from scratch)

View File

@ -38,7 +38,6 @@ func init() {
var testAccount = crypto.NewKey(rand.Reader)
// Tests that handshake failures are detected and reported correctly.
func TestStatusMsgErrors60(t *testing.T) { testStatusMsgErrors(t, 60) }
func TestStatusMsgErrors61(t *testing.T) { testStatusMsgErrors(t, 61) }
func TestStatusMsgErrors62(t *testing.T) { testStatusMsgErrors(t, 62) }
func TestStatusMsgErrors63(t *testing.T) { testStatusMsgErrors(t, 63) }
@ -93,7 +92,6 @@ func testStatusMsgErrors(t *testing.T, protocol int) {
}
// This test checks that received transactions are added to the local pool.
func TestRecvTransactions60(t *testing.T) { testRecvTransactions(t, 60) }
func TestRecvTransactions61(t *testing.T) { testRecvTransactions(t, 61) }
func TestRecvTransactions62(t *testing.T) { testRecvTransactions(t, 62) }
func TestRecvTransactions63(t *testing.T) { testRecvTransactions(t, 63) }
@ -123,7 +121,6 @@ func testRecvTransactions(t *testing.T, protocol int) {
}
// This test checks that pending transactions are sent.
func TestSendTransactions60(t *testing.T) { testSendTransactions(t, 60) }
func TestSendTransactions61(t *testing.T) { testSendTransactions(t, 61) }
func TestSendTransactions62(t *testing.T) { testSendTransactions(t, 62) }
func TestSendTransactions63(t *testing.T) { testSendTransactions(t, 63) }