trie: extend range proofs with non-existence (#21000)
* trie: implement range proof with non-existent edge proof * trie: fix cornercase * trie: consider empty range * trie: add singleSide test * trie: support all-elements range proof * trie: fix typo * trie: tiny typos and formulations Co-authored-by: Péter Szilágyi <peterke@gmail.com>
This commit is contained in:
parent
0a99efa61f
commit
65ce550b37
2
go.sum
2
go.sum
@ -202,6 +202,8 @@ golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5h
|
||||
golang.org/x/sys v0.0.0-20181107165924-66b7b1311ac8/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
golang.org/x/sys v0.0.0-20200302150141-5c8b2ff67527 h1:uYVVQ9WP/Ds2ROhcaGPeIdVq0RIXVLwsHlnvJ+cT1So=
|
||||
golang.org/x/sys v0.0.0-20200302150141-5c8b2ff67527/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd h1:xhmwyvizuTgC2qz7ZlMluP20uW+C3Rm0FD/WLDX8884=
|
||||
golang.org/x/sys v0.0.0-20200323222414-85ca7c5b95cd/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
|
215
trie/proof.go
215
trie/proof.go
@ -133,7 +133,7 @@ func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader)
|
||||
// The main purpose of this function is recovering a node
|
||||
// path from the merkle proof stream. All necessary nodes
|
||||
// will be resolved and leave the remaining as hashnode.
|
||||
func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader) (node, error) {
|
||||
func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, error) {
|
||||
// resolveNode retrieves and resolves trie node from merkle proof stream
|
||||
resolveNode := func(hash common.Hash) (node, error) {
|
||||
buf, _ := proofDb.Get(hash[:])
|
||||
@ -146,7 +146,8 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
|
||||
}
|
||||
return n, err
|
||||
}
|
||||
// If the root node is empty, resolve it first
|
||||
// If the root node is empty, resolve it first.
|
||||
// Root node must be included in the proof.
|
||||
if root == nil {
|
||||
n, err := resolveNode(rootHash)
|
||||
if err != nil {
|
||||
@ -165,7 +166,13 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
|
||||
keyrest, child = get(parent, key, false)
|
||||
switch cld := child.(type) {
|
||||
case nil:
|
||||
// The trie doesn't contain the key.
|
||||
// The trie doesn't contain the key. It's possible
|
||||
// the proof is a non-existing proof, but at least
|
||||
// we can prove all resolved nodes are correct, it's
|
||||
// enough for us to prove range.
|
||||
if allowNonExistent {
|
||||
return root, nil
|
||||
}
|
||||
return nil, errors.New("the node is not contained in trie")
|
||||
case *shortNode:
|
||||
key, parent = keyrest, child // Already resolved
|
||||
@ -205,7 +212,7 @@ func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyV
|
||||
// since the node content might be modified. Besides it can happen that some
|
||||
// fullnodes only have one child which is disallowed. But if the proof is valid,
|
||||
// the missing children will be filled, otherwise it will be thrown anyway.
|
||||
func unsetInternal(node node, left []byte, right []byte) error {
|
||||
func unsetInternal(n node, left []byte, right []byte) error {
|
||||
left, right = keybytesToHex(left), keybytesToHex(right)
|
||||
|
||||
// todo(rjl493456442) different length edge keys should be supported
|
||||
@ -214,25 +221,37 @@ func unsetInternal(node node, left []byte, right []byte) error {
|
||||
}
|
||||
// Step down to the fork point
|
||||
prefix, pos := prefixLen(left, right), 0
|
||||
var parent node
|
||||
for {
|
||||
if pos >= prefix {
|
||||
break
|
||||
}
|
||||
switch n := (node).(type) {
|
||||
switch rn := (n).(type) {
|
||||
case *shortNode:
|
||||
if len(left)-pos < len(n.Key) || !bytes.Equal(n.Key, left[pos:pos+len(n.Key)]) {
|
||||
if len(right)-pos < len(rn.Key) || !bytes.Equal(rn.Key, right[pos:pos+len(rn.Key)]) {
|
||||
return errors.New("invalid edge path")
|
||||
}
|
||||
n.flags = nodeFlag{dirty: true}
|
||||
node, pos = n.Val, pos+len(n.Key)
|
||||
// Special case, the non-existent proof points to the same path
|
||||
// as the existent proof, but the path of existent proof is longer.
|
||||
// In this case, truncate the extra path(it should be recovered
|
||||
// by node insertion).
|
||||
if len(left)-pos < len(rn.Key) || !bytes.Equal(rn.Key, left[pos:pos+len(rn.Key)]) {
|
||||
fn := parent.(*fullNode)
|
||||
fn.Children[left[pos-1]] = nil
|
||||
return nil
|
||||
}
|
||||
rn.flags = nodeFlag{dirty: true}
|
||||
parent = n
|
||||
n, pos = rn.Val, pos+len(rn.Key)
|
||||
case *fullNode:
|
||||
n.flags = nodeFlag{dirty: true}
|
||||
node, pos = n.Children[left[pos]], pos+1
|
||||
rn.flags = nodeFlag{dirty: true}
|
||||
parent = n
|
||||
n, pos = rn.Children[right[pos]], pos+1
|
||||
default:
|
||||
panic(fmt.Sprintf("%T: invalid node: %v", node, node))
|
||||
panic(fmt.Sprintf("%T: invalid node: %v", n, n))
|
||||
}
|
||||
}
|
||||
fn, ok := node.(*fullNode)
|
||||
fn, ok := n.(*fullNode)
|
||||
if !ok {
|
||||
return errors.New("the fork point must be a fullnode")
|
||||
}
|
||||
@ -241,50 +260,164 @@ func unsetInternal(node node, left []byte, right []byte) error {
|
||||
fn.Children[i] = nil
|
||||
}
|
||||
fn.flags = nodeFlag{dirty: true}
|
||||
unset(fn.Children[left[prefix]], left[prefix+1:], false)
|
||||
unset(fn.Children[right[prefix]], right[prefix+1:], true)
|
||||
if err := unset(fn, fn.Children[left[prefix]], left[prefix:], 1, false); err != nil {
|
||||
return err
|
||||
}
|
||||
if err := unset(fn, fn.Children[right[prefix]], right[prefix:], 1, true); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// unset removes all internal node references either the left most or right most.
|
||||
func unset(root node, rest []byte, removeLeft bool) {
|
||||
switch rn := root.(type) {
|
||||
// If we try to unset all right most references, it can meet these scenarios:
|
||||
//
|
||||
// - The given path is existent in the trie, unset the associated shortnode
|
||||
// - The given path is non-existent in the trie
|
||||
// - the fork point is a fullnode, the corresponding child pointed by path
|
||||
// is nil, return
|
||||
// - the fork point is a shortnode, the key of shortnode is less than path,
|
||||
// keep the entire branch and return.
|
||||
// - the fork point is a shortnode, the key of shortnode is greater than path,
|
||||
// unset the entire branch.
|
||||
//
|
||||
// If we try to unset all left most references, then the given path should
|
||||
// be existent.
|
||||
func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
|
||||
switch cld := child.(type) {
|
||||
case *fullNode:
|
||||
if removeLeft {
|
||||
for i := 0; i < int(rest[0]); i++ {
|
||||
rn.Children[i] = nil
|
||||
for i := 0; i < int(key[pos]); i++ {
|
||||
cld.Children[i] = nil
|
||||
}
|
||||
rn.flags = nodeFlag{dirty: true}
|
||||
cld.flags = nodeFlag{dirty: true}
|
||||
} else {
|
||||
for i := rest[0] + 1; i < 16; i++ {
|
||||
rn.Children[i] = nil
|
||||
for i := key[pos] + 1; i < 16; i++ {
|
||||
cld.Children[i] = nil
|
||||
}
|
||||
rn.flags = nodeFlag{dirty: true}
|
||||
cld.flags = nodeFlag{dirty: true}
|
||||
}
|
||||
unset(rn.Children[rest[0]], rest[1:], removeLeft)
|
||||
return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
|
||||
case *shortNode:
|
||||
rn.flags = nodeFlag{dirty: true}
|
||||
if _, ok := rn.Val.(valueNode); ok {
|
||||
rn.Val = nilValueNode
|
||||
return
|
||||
if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
|
||||
// Find the fork point, it's an non-existent branch.
|
||||
if removeLeft {
|
||||
return errors.New("invalid right edge proof")
|
||||
}
|
||||
if bytes.Compare(cld.Key, key[pos:]) > 0 {
|
||||
// The key of fork shortnode is greater than the
|
||||
// path(it belongs to the range), unset the entrie
|
||||
// branch. The parent must be a fullnode.
|
||||
fn := parent.(*fullNode)
|
||||
fn.Children[key[pos-1]] = nil
|
||||
} else {
|
||||
// The key of fork shortnode is less than the
|
||||
// path(it doesn't belong to the range), keep
|
||||
// it with the cached hash available.
|
||||
return nil
|
||||
}
|
||||
}
|
||||
unset(rn.Val, rest[len(rn.Key):], removeLeft)
|
||||
case hashNode, nil, valueNode:
|
||||
panic("it shouldn't happen")
|
||||
if _, ok := cld.Val.(valueNode); ok {
|
||||
fn := parent.(*fullNode)
|
||||
fn.Children[key[pos-1]] = nil
|
||||
return nil
|
||||
}
|
||||
cld.flags = nodeFlag{dirty: true}
|
||||
return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
|
||||
case nil:
|
||||
// If the node is nil, it's a child of the fork point
|
||||
// fullnode(it's an non-existent branch).
|
||||
if removeLeft {
|
||||
return errors.New("invalid right edge proof")
|
||||
}
|
||||
return nil
|
||||
default:
|
||||
panic("it shouldn't happen") // hashNode, valueNode
|
||||
}
|
||||
}
|
||||
|
||||
// VerifyRangeProof checks whether the given leave nodes and edge proofs
|
||||
// VerifyRangeProof checks whether the given leaf nodes and edge proofs
|
||||
// can prove the given trie leaves range is matched with given root hash
|
||||
// and the range is consecutive(no gap inside).
|
||||
func VerifyRangeProof(rootHash common.Hash, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) error {
|
||||
//
|
||||
// Note the given first edge proof can be non-existing proof. For example
|
||||
// the first proof is for an non-existent values 0x03. The given batch
|
||||
// leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove. But the
|
||||
// last edge proof should always be an existent proof.
|
||||
//
|
||||
// The firstKey is paired with firstProof, not necessarily the same as keys[0]
|
||||
// (unless firstProof is an existent proof).
|
||||
//
|
||||
// Expect the normal case, this function can also be used to verify the following
|
||||
// range proofs:
|
||||
//
|
||||
// - All elements proof. In this case the left and right proof can be nil, but the
|
||||
// range should be all the leaves in the trie.
|
||||
//
|
||||
// - Zero element proof(left edge proof should be a non-existent proof). In this
|
||||
// case if there are still some other leaves available on the right side, then
|
||||
// an error will be returned.
|
||||
//
|
||||
// - One element proof. In this case no matter the left edge proof is a non-existent
|
||||
// proof or not, we can always verify the correctness of the proof.
|
||||
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, keys [][]byte, values [][]byte, firstProof ethdb.KeyValueReader, lastProof ethdb.KeyValueReader) error {
|
||||
if len(keys) != len(values) {
|
||||
return fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
|
||||
}
|
||||
if len(keys) == 0 {
|
||||
return fmt.Errorf("nothing to verify")
|
||||
// Special case, there is no edge proof at all. The given range is expected
|
||||
// to be the whole leaf-set in the trie.
|
||||
if firstProof == nil && lastProof == nil {
|
||||
emptytrie, err := New(common.Hash{}, NewDatabase(memorydb.New()))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for index, key := range keys {
|
||||
emptytrie.TryUpdate(key, values[index])
|
||||
}
|
||||
if emptytrie.Hash() != rootHash {
|
||||
return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, emptytrie.Hash())
|
||||
}
|
||||
return nil
|
||||
}
|
||||
if len(keys) == 1 {
|
||||
// Special case, there is a provided non-existence proof and zero key/value
|
||||
// pairs, meaning there are no more accounts / slots in the trie.
|
||||
if len(keys) == 0 {
|
||||
// Recover the non-existent proof to a path, ensure there is nothing left
|
||||
root, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
node, pos, firstKey := root, 0, keybytesToHex(firstKey)
|
||||
for node != nil {
|
||||
switch rn := node.(type) {
|
||||
case *fullNode:
|
||||
for i := firstKey[pos] + 1; i < 16; i++ {
|
||||
if rn.Children[i] != nil {
|
||||
return errors.New("more leaves available")
|
||||
}
|
||||
}
|
||||
node, pos = rn.Children[firstKey[pos]], pos+1
|
||||
case *shortNode:
|
||||
if len(firstKey)-pos < len(rn.Key) || !bytes.Equal(rn.Key, firstKey[pos:pos+len(rn.Key)]) {
|
||||
if bytes.Compare(rn.Key, firstKey[pos:]) < 0 {
|
||||
node = nil
|
||||
continue
|
||||
} else {
|
||||
return errors.New("more leaves available")
|
||||
}
|
||||
}
|
||||
node, pos = rn.Val, pos+len(rn.Key)
|
||||
case valueNode, hashNode:
|
||||
return errors.New("more leaves available")
|
||||
}
|
||||
}
|
||||
// Yeah, although we receive nothing, but we can prove
|
||||
// there is no more leaf in the trie, return nil.
|
||||
return nil
|
||||
}
|
||||
// Special case, there is only one element and left edge
|
||||
// proof is an existent one.
|
||||
if len(keys) == 1 && bytes.Equal(keys[0], firstKey) {
|
||||
value, err := VerifyProof(rootHash, keys[0], firstProof)
|
||||
if err != nil {
|
||||
return err
|
||||
@ -296,19 +429,21 @@ func VerifyRangeProof(rootHash common.Hash, keys [][]byte, values [][]byte, firs
|
||||
}
|
||||
// Convert the edge proofs to edge trie paths. Then we can
|
||||
// have the same tree architecture with the original one.
|
||||
root, err := proofToPath(rootHash, nil, keys[0], firstProof)
|
||||
// For the first edge proof, non-existent proof is allowed.
|
||||
root, err := proofToPath(rootHash, nil, firstKey, firstProof, true)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
// Pass the root node here, the second path will be merged
|
||||
// with the first one.
|
||||
root, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof)
|
||||
// with the first one. For the last edge proof, non-existent
|
||||
// proof is not allowed.
|
||||
root, err = proofToPath(rootHash, root, keys[len(keys)-1], lastProof, false)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
// Remove all internal references. All the removed parts should
|
||||
// be re-filled(or re-constructed) by the given leaves range.
|
||||
if err := unsetInternal(root, keys[0], keys[len(keys)-1]); err != nil {
|
||||
if err := unsetInternal(root, firstKey, keys[len(keys)-1]); err != nil {
|
||||
return err
|
||||
}
|
||||
// Rebuild the trie with the leave stream, the shape of trie
|
||||
@ -318,7 +453,7 @@ func VerifyRangeProof(rootHash common.Hash, keys [][]byte, values [][]byte, firs
|
||||
newtrie.TryUpdate(key, values[index])
|
||||
}
|
||||
if newtrie.Hash() != rootHash {
|
||||
return fmt.Errorf("invalid proof, wanthash %x, got %x", rootHash, newtrie.Hash())
|
||||
return fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, newtrie.Hash())
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
@ -98,12 +98,65 @@ func TestOneElementProof(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestBadProof(t *testing.T) {
|
||||
trie, vals := randomTrie(800)
|
||||
root := trie.Hash()
|
||||
for i, prover := range makeProvers(trie) {
|
||||
for _, kv := range vals {
|
||||
proof := prover(kv.k)
|
||||
if proof == nil {
|
||||
t.Fatalf("prover %d: nil proof", i)
|
||||
}
|
||||
it := proof.NewIterator(nil, nil)
|
||||
for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
|
||||
it.Next()
|
||||
}
|
||||
key := it.Key()
|
||||
val, _ := proof.Get(key)
|
||||
proof.Delete(key)
|
||||
it.Release()
|
||||
|
||||
mutateByte(val)
|
||||
proof.Put(crypto.Keccak256(val), val)
|
||||
|
||||
if _, err := VerifyProof(root, kv.k, proof); err == nil {
|
||||
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Tests that missing keys can also be proven. The test explicitly uses a single
|
||||
// entry trie and checks for missing keys both before and after the single entry.
|
||||
func TestMissingKeyProof(t *testing.T) {
|
||||
trie := new(Trie)
|
||||
updateString(trie, "k", "v")
|
||||
|
||||
for i, key := range []string{"a", "j", "l", "z"} {
|
||||
proof := memorydb.New()
|
||||
trie.Prove([]byte(key), 0, proof)
|
||||
|
||||
if proof.Len() != 1 {
|
||||
t.Errorf("test %d: proof should have one element", i)
|
||||
}
|
||||
val, err := VerifyProof(trie.Hash(), []byte(key), proof)
|
||||
if err != nil {
|
||||
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
||||
}
|
||||
if val != nil {
|
||||
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type entrySlice []*kv
|
||||
|
||||
func (p entrySlice) Len() int { return len(p) }
|
||||
func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
|
||||
func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
||||
|
||||
// TestRangeProof tests normal range proof with both edge proofs
|
||||
// as the existent proof. The test cases are generated randomly.
|
||||
func TestRangeProof(t *testing.T) {
|
||||
trie, vals := randomTrie(4096)
|
||||
var entries entrySlice
|
||||
@ -130,13 +183,253 @@ func TestRangeProof(t *testing.T) {
|
||||
keys = append(keys, entries[i].k)
|
||||
vals = append(vals, entries[i].v)
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
|
||||
err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
|
||||
if err != nil {
|
||||
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestRangeProof tests normal range proof with the first edge proof
|
||||
// as the non-existent proof. The test cases are generated randomly.
|
||||
func TestRangeProofWithNonExistentProof(t *testing.T) {
|
||||
trie, vals := randomTrie(4096)
|
||||
var entries entrySlice
|
||||
for _, kv := range vals {
|
||||
entries = append(entries, kv)
|
||||
}
|
||||
sort.Sort(entries)
|
||||
for i := 0; i < 500; i++ {
|
||||
start := mrand.Intn(len(entries))
|
||||
end := mrand.Intn(len(entries)-start) + start
|
||||
if start == end {
|
||||
continue
|
||||
}
|
||||
firstProof, lastProof := memorydb.New(), memorydb.New()
|
||||
|
||||
first := decreseKey(common.CopyBytes(entries[start].k))
|
||||
if start != 0 && bytes.Equal(first, entries[start-1].k) {
|
||||
continue
|
||||
}
|
||||
if err := trie.Prove(first, 0, firstProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
|
||||
t.Fatalf("Failed to prove the last node %v", err)
|
||||
}
|
||||
var keys [][]byte
|
||||
var vals [][]byte
|
||||
for i := start; i < end; i++ {
|
||||
keys = append(keys, entries[i].k)
|
||||
vals = append(vals, entries[i].v)
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof)
|
||||
if err != nil {
|
||||
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestRangeProofWithInvalidNonExistentProof tests such scenarios:
|
||||
// - The last edge proof is an non-existent proof
|
||||
// - There exists a gap between the first element and the left edge proof
|
||||
func TestRangeProofWithInvalidNonExistentProof(t *testing.T) {
|
||||
trie, vals := randomTrie(4096)
|
||||
var entries entrySlice
|
||||
for _, kv := range vals {
|
||||
entries = append(entries, kv)
|
||||
}
|
||||
sort.Sort(entries)
|
||||
|
||||
// Case 1
|
||||
start, end := 100, 200
|
||||
first, last := decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[end].k))
|
||||
firstProof, lastProof := memorydb.New(), memorydb.New()
|
||||
if err := trie.Prove(first, 0, firstProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
if err := trie.Prove(last, 0, lastProof); err != nil {
|
||||
t.Fatalf("Failed to prove the last node %v", err)
|
||||
}
|
||||
var k [][]byte
|
||||
var v [][]byte
|
||||
for i := start; i < end; i++ {
|
||||
k = append(k, entries[i].k)
|
||||
v = append(v, entries[i].v)
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
|
||||
if err == nil {
|
||||
t.Fatalf("Expected to detect the error, got nil")
|
||||
}
|
||||
|
||||
// Case 2
|
||||
start, end = 100, 200
|
||||
first = decreseKey(common.CopyBytes(entries[start].k))
|
||||
|
||||
firstProof, lastProof = memorydb.New(), memorydb.New()
|
||||
if err := trie.Prove(first, 0, firstProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
|
||||
t.Fatalf("Failed to prove the last node %v", err)
|
||||
}
|
||||
start = 105 // Gap created
|
||||
k = make([][]byte, 0)
|
||||
v = make([][]byte, 0)
|
||||
for i := start; i < end; i++ {
|
||||
k = append(k, entries[i].k)
|
||||
v = append(v, entries[i].v)
|
||||
}
|
||||
err = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof)
|
||||
if err == nil {
|
||||
t.Fatalf("Expected to detect the error, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
// TestOneElementRangeProof tests the proof with only one
|
||||
// element. The first edge proof can be existent one or
|
||||
// non-existent one.
|
||||
func TestOneElementRangeProof(t *testing.T) {
|
||||
trie, vals := randomTrie(4096)
|
||||
var entries entrySlice
|
||||
for _, kv := range vals {
|
||||
entries = append(entries, kv)
|
||||
}
|
||||
sort.Sort(entries)
|
||||
|
||||
// One element with existent edge proof
|
||||
start := 1000
|
||||
firstProof, lastProof := memorydb.New(), memorydb.New()
|
||||
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
|
||||
t.Fatalf("Failed to prove the last node %v", err)
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
|
||||
if err != nil {
|
||||
t.Fatalf("Expected no error, got %v", err)
|
||||
}
|
||||
|
||||
// One element with non-existent edge proof
|
||||
start = 1000
|
||||
first := decreseKey(common.CopyBytes(entries[start].k))
|
||||
firstProof, lastProof = memorydb.New(), memorydb.New()
|
||||
if err := trie.Prove(first, 0, firstProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
if err := trie.Prove(entries[start].k, 0, lastProof); err != nil {
|
||||
t.Fatalf("Failed to prove the last node %v", err)
|
||||
}
|
||||
err = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof)
|
||||
if err != nil {
|
||||
t.Fatalf("Expected no error, got %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
// TestEmptyRangeProof tests the range proof with "no" element.
|
||||
// The first edge proof must be a non-existent proof.
|
||||
func TestEmptyRangeProof(t *testing.T) {
|
||||
trie, vals := randomTrie(4096)
|
||||
var entries entrySlice
|
||||
for _, kv := range vals {
|
||||
entries = append(entries, kv)
|
||||
}
|
||||
sort.Sort(entries)
|
||||
|
||||
var cases = []struct {
|
||||
pos int
|
||||
err bool
|
||||
}{
|
||||
{len(entries) - 1, false},
|
||||
{500, true},
|
||||
}
|
||||
for _, c := range cases {
|
||||
firstProof := memorydb.New()
|
||||
first := increseKey(common.CopyBytes(entries[c.pos].k))
|
||||
if err := trie.Prove(first, 0, firstProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), first, nil, nil, firstProof, nil)
|
||||
if c.err && err == nil {
|
||||
t.Fatalf("Expected error, got nil")
|
||||
}
|
||||
if !c.err && err != nil {
|
||||
t.Fatalf("Expected no error, got %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestAllElementsProof tests the range proof with all elements.
|
||||
// The edge proofs can be nil.
|
||||
func TestAllElementsProof(t *testing.T) {
|
||||
trie, vals := randomTrie(4096)
|
||||
var entries entrySlice
|
||||
for _, kv := range vals {
|
||||
entries = append(entries, kv)
|
||||
}
|
||||
sort.Sort(entries)
|
||||
|
||||
var k [][]byte
|
||||
var v [][]byte
|
||||
for i := 0; i < len(entries); i++ {
|
||||
k = append(k, entries[i].k)
|
||||
v = append(v, entries[i].v)
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil)
|
||||
if err != nil {
|
||||
t.Fatalf("Expected no error, got %v", err)
|
||||
}
|
||||
|
||||
// Even with edge proofs, it should still work.
|
||||
firstProof, lastProof := memorydb.New(), memorydb.New()
|
||||
if err := trie.Prove(entries[0].k, 0, firstProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil {
|
||||
t.Fatalf("Failed to prove the last node %v", err)
|
||||
}
|
||||
err = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof)
|
||||
if err != nil {
|
||||
t.Fatalf("Expected no error, got %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
// TestSingleSideRangeProof tests the range starts from zero.
|
||||
func TestSingleSideRangeProof(t *testing.T) {
|
||||
trie := new(Trie)
|
||||
var entries entrySlice
|
||||
for i := 0; i < 4096; i++ {
|
||||
value := &kv{randBytes(32), randBytes(20), false}
|
||||
trie.Update(value.k, value.v)
|
||||
entries = append(entries, value)
|
||||
}
|
||||
sort.Sort(entries)
|
||||
|
||||
var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1}
|
||||
for _, pos := range cases {
|
||||
firstProof, lastProof := memorydb.New(), memorydb.New()
|
||||
if err := trie.Prove(common.Hash{}.Bytes(), 0, firstProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
if err := trie.Prove(entries[pos].k, 0, lastProof); err != nil {
|
||||
t.Fatalf("Failed to prove the first node %v", err)
|
||||
}
|
||||
k := make([][]byte, 0)
|
||||
v := make([][]byte, 0)
|
||||
for i := 0; i <= pos; i++ {
|
||||
k = append(k, entries[i].k)
|
||||
v = append(v, entries[i].v)
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof)
|
||||
if err != nil {
|
||||
t.Fatalf("Expected no error, got %v", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestBadRangeProof tests a few cases which the proof is wrong.
|
||||
// The prover is expected to detect the error.
|
||||
func TestBadRangeProof(t *testing.T) {
|
||||
trie, vals := randomTrie(4096)
|
||||
var entries entrySlice
|
||||
@ -208,7 +501,7 @@ func TestBadRangeProof(t *testing.T) {
|
||||
index = mrand.Intn(end - start)
|
||||
vals[index] = nil
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
|
||||
err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
|
||||
if err == nil {
|
||||
t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
|
||||
}
|
||||
@ -242,63 +535,12 @@ func TestGappedRangeProof(t *testing.T) {
|
||||
keys = append(keys, entries[i].k)
|
||||
vals = append(vals, entries[i].v)
|
||||
}
|
||||
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
|
||||
err := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof)
|
||||
if err == nil {
|
||||
t.Fatal("expect error, got nil")
|
||||
}
|
||||
}
|
||||
|
||||
func TestBadProof(t *testing.T) {
|
||||
trie, vals := randomTrie(800)
|
||||
root := trie.Hash()
|
||||
for i, prover := range makeProvers(trie) {
|
||||
for _, kv := range vals {
|
||||
proof := prover(kv.k)
|
||||
if proof == nil {
|
||||
t.Fatalf("prover %d: nil proof", i)
|
||||
}
|
||||
it := proof.NewIterator(nil, nil)
|
||||
for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
|
||||
it.Next()
|
||||
}
|
||||
key := it.Key()
|
||||
val, _ := proof.Get(key)
|
||||
proof.Delete(key)
|
||||
it.Release()
|
||||
|
||||
mutateByte(val)
|
||||
proof.Put(crypto.Keccak256(val), val)
|
||||
|
||||
if _, err := VerifyProof(root, kv.k, proof); err == nil {
|
||||
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Tests that missing keys can also be proven. The test explicitly uses a single
|
||||
// entry trie and checks for missing keys both before and after the single entry.
|
||||
func TestMissingKeyProof(t *testing.T) {
|
||||
trie := new(Trie)
|
||||
updateString(trie, "k", "v")
|
||||
|
||||
for i, key := range []string{"a", "j", "l", "z"} {
|
||||
proof := memorydb.New()
|
||||
trie.Prove([]byte(key), 0, proof)
|
||||
|
||||
if proof.Len() != 1 {
|
||||
t.Errorf("test %d: proof should have one element", i)
|
||||
}
|
||||
val, err := VerifyProof(trie.Hash(), []byte(key), proof)
|
||||
if err != nil {
|
||||
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
||||
}
|
||||
if val != nil {
|
||||
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// mutateByte changes one byte in b.
|
||||
func mutateByte(b []byte) {
|
||||
for r := mrand.Intn(len(b)); ; {
|
||||
@ -310,6 +552,26 @@ func mutateByte(b []byte) {
|
||||
}
|
||||
}
|
||||
|
||||
func increseKey(key []byte) []byte {
|
||||
for i := len(key) - 1; i >= 0; i-- {
|
||||
key[i]++
|
||||
if key[i] != 0x0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
return key
|
||||
}
|
||||
|
||||
func decreseKey(key []byte) []byte {
|
||||
for i := len(key) - 1; i >= 0; i-- {
|
||||
key[i]--
|
||||
if key[i] != 0xff {
|
||||
break
|
||||
}
|
||||
}
|
||||
return key
|
||||
}
|
||||
|
||||
func BenchmarkProve(b *testing.B) {
|
||||
trie, vals := randomTrie(100)
|
||||
var keys []string
|
||||
@ -379,7 +641,7 @@ func benchmarkVerifyRangeProof(b *testing.B, size int) {
|
||||
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
err := VerifyRangeProof(trie.Hash(), keys, values, firstProof, lastProof)
|
||||
err := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof)
|
||||
if err != nil {
|
||||
b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user