plugeth/trie/committer.go

272 lines
7.8 KiB
Go
Raw Normal View History

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"golang.org/x/crypto/sha3"
)
// leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
2020-05-25 08:21:28 +00:00
// some parallelism but not incur too much memory overhead.
const leafChanSize = 200
// leaf represents a trie leaf value
type leaf struct {
size int // size of the rlp data (estimate)
hash common.Hash // hash of rlp data
node node // the node to commit
}
// committer is a type used for the trie Commit operation. A committer has some
// internal preallocated temp space, and also a callback that is invoked when
// leaves are committed. The leafs are passed through the `leafCh`, to allow
2020-05-25 08:21:28 +00:00
// some level of parallelism.
// By 'some level' of parallelism, it's still the case that all leaves will be
// processed sequentially - onleaf will never be called in parallel or out of order.
type committer struct {
tmp sliceBuffer
sha crypto.KeccakState
onleaf LeafCallback
leafCh chan *leaf
}
// committers live in a global sync.Pool
var committerPool = sync.Pool{
New: func() interface{} {
return &committer{
tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
sha: sha3.NewLegacyKeccak256().(crypto.KeccakState),
}
},
}
// newCommitter creates a new committer or picks one from the pool.
func newCommitter() *committer {
return committerPool.Get().(*committer)
}
func returnCommitterToPool(h *committer) {
h.onleaf = nil
h.leafCh = nil
committerPool.Put(h)
}
// commit collapses a node down into a hash node and inserts it into the database
func (c *committer) Commit(n node, db *Database) (hashNode, error) {
if db == nil {
return nil, errors.New("no db provided")
}
h, err := c.commit(n, db)
if err != nil {
return nil, err
}
return h.(hashNode), nil
}
// commit collapses a node down into a hash node and inserts it into the database
func (c *committer) commit(n node, db *Database) (node, error) {
// if this path is clean, use available cached data
hash, dirty := n.cache()
if hash != nil && !dirty {
return hash, nil
}
// Commit children, then parent, and remove remove the dirty flag.
switch cn := n.(type) {
case *shortNode:
// Commit child
collapsed := cn.copy()
// If the child is fullnode, recursively commit.
// Otherwise it can only be hashNode or valueNode.
if _, ok := cn.Val.(*fullNode); ok {
childV, err := c.commit(cn.Val, db)
if err != nil {
return nil, err
}
collapsed.Val = childV
}
// The key needs to be copied, since we're delivering it to database
collapsed.Key = hexToCompact(cn.Key)
hashedNode := c.store(collapsed, db)
if hn, ok := hashedNode.(hashNode); ok {
return hn, nil
}
return collapsed, nil
case *fullNode:
hashedKids, err := c.commitChildren(cn, db)
if err != nil {
return nil, err
}
collapsed := cn.copy()
collapsed.Children = hashedKids
hashedNode := c.store(collapsed, db)
if hn, ok := hashedNode.(hashNode); ok {
return hn, nil
}
return collapsed, nil
case hashNode:
return cn, nil
default:
// nil, valuenode shouldn't be committed
panic(fmt.Sprintf("%T: invalid node: %v", n, n))
}
}
// commitChildren commits the children of the given fullnode
func (c *committer) commitChildren(n *fullNode, db *Database) ([17]node, error) {
var children [17]node
for i := 0; i < 16; i++ {
child := n.Children[i]
if child == nil {
continue
}
// If it's the hashed child, save the hash value directly.
// Note: it's impossible that the child in range [0, 15]
// is a valuenode.
if hn, ok := child.(hashNode); ok {
children[i] = hn
continue
}
// Commit the child recursively and store the "hashed" value.
// Note the returned node can be some embedded nodes, so it's
// possible the type is not hashnode.
hashed, err := c.commit(child, db)
if err != nil {
return children, err
}
children[i] = hashed
}
// For the 17th child, it's possible the type is valuenode.
if n.Children[16] != nil {
children[16] = n.Children[16]
}
return children, nil
}
// store hashes the node n and if we have a storage layer specified, it writes
// the key/value pair to it and tracks any node->child references as well as any
// node->external trie references.
func (c *committer) store(n node, db *Database) node {
// Larger nodes are replaced by their hash and stored in the database.
var (
hash, _ = n.cache()
size int
)
if hash == nil {
// This was not generated - must be a small node stored in the parent.
// In theory we should apply the leafCall here if it's not nil(embedded
// node usually contains value). But small value(less than 32bytes) is
// not our target.
return n
} else {
// We have the hash already, estimate the RLP encoding-size of the node.
// The size is used for mem tracking, does not need to be exact
size = estimateSize(n)
}
// If we're using channel-based leaf-reporting, send to channel.
// The leaf channel will be active only when there an active leaf-callback
if c.leafCh != nil {
c.leafCh <- &leaf{
size: size,
hash: common.BytesToHash(hash),
node: n,
}
} else if db != nil {
// No leaf-callback used, but there's still a database. Do serial
// insertion
db.lock.Lock()
db.insert(common.BytesToHash(hash), size, n)
db.lock.Unlock()
}
return hash
}
// commitLoop does the actual insert + leaf callback for nodes.
func (c *committer) commitLoop(db *Database) {
for item := range c.leafCh {
var (
hash = item.hash
size = item.size
n = item.node
)
// We are pooling the trie nodes into an intermediate memory cache
db.lock.Lock()
db.insert(hash, size, n)
db.lock.Unlock()
if c.onleaf != nil {
switch n := n.(type) {
case *shortNode:
if child, ok := n.Val.(valueNode); ok {
c.onleaf(nil, child, hash)
}
case *fullNode:
// For children in range [0, 15], it's impossible
// to contain valuenode. Only check the 17th child.
if n.Children[16] != nil {
c.onleaf(nil, n.Children[16].(valueNode), hash)
}
}
}
}
}
func (c *committer) makeHashNode(data []byte) hashNode {
n := make(hashNode, c.sha.Size())
c.sha.Reset()
c.sha.Write(data)
c.sha.Read(n)
return n
}
// estimateSize estimates the size of an rlp-encoded node, without actually
// rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
// with 1000 leafs, the only errors above 1% are on small shortnodes, where this
// method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
func estimateSize(n node) int {
switch n := n.(type) {
case *shortNode:
// A short node contains a compacted key, and a value.
return 3 + len(n.Key) + estimateSize(n.Val)
case *fullNode:
// A full node contains up to 16 hashes (some nils), and a key
s := 3
for i := 0; i < 16; i++ {
if child := n.Children[i]; child != nil {
s += estimateSize(child)
} else {
s++
}
}
return s
case valueNode:
return 1 + len(n)
case hashNode:
return 1 + len(n)
default:
panic(fmt.Sprintf("node type %T", n))
}
}