plugeth/core/rawdb/accessors_chain.go

968 lines
31 KiB
Go
Raw Normal View History

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rawdb
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/misc/eip4844"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/exp/slices"
)
// ReadCanonicalHash retrieves the hash assigned to a canonical block number.
func ReadCanonicalHash(db ethdb.Reader, number uint64) common.Hash {
var data []byte
db.ReadAncients(func(reader ethdb.AncientReaderOp) error {
data, _ = reader.Ancient(ChainFreezerHashTable, number)
if len(data) == 0 {
// Get it by hash from leveldb
data, _ = db.Get(headerHashKey(number))
}
return nil
})
return common.BytesToHash(data)
}
// WriteCanonicalHash stores the hash assigned to a canonical block number.
func WriteCanonicalHash(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Put(headerHashKey(number), hash.Bytes()); err != nil {
log.Crit("Failed to store number to hash mapping", "err", err)
}
}
// DeleteCanonicalHash removes the number to hash canonical mapping.
func DeleteCanonicalHash(db ethdb.KeyValueWriter, number uint64) {
if err := db.Delete(headerHashKey(number)); err != nil {
log.Crit("Failed to delete number to hash mapping", "err", err)
}
}
// ReadAllHashes retrieves all the hashes assigned to blocks at a certain heights,
// both canonical and reorged forks included.
func ReadAllHashes(db ethdb.Iteratee, number uint64) []common.Hash {
prefix := headerKeyPrefix(number)
hashes := make([]common.Hash, 0, 1)
it := db.NewIterator(prefix, nil)
defer it.Release()
for it.Next() {
if key := it.Key(); len(key) == len(prefix)+32 {
hashes = append(hashes, common.BytesToHash(key[len(key)-32:]))
}
}
return hashes
}
type NumberHash struct {
Number uint64
Hash common.Hash
}
// ReadAllHashesInRange retrieves all the hashes assigned to blocks at certain
// heights, both canonical and reorged forks included.
// This method considers both limits to be _inclusive_.
func ReadAllHashesInRange(db ethdb.Iteratee, first, last uint64) []*NumberHash {
var (
start = encodeBlockNumber(first)
keyLength = len(headerPrefix) + 8 + 32
hashes = make([]*NumberHash, 0, 1+last-first)
it = db.NewIterator(headerPrefix, start)
)
defer it.Release()
for it.Next() {
key := it.Key()
if len(key) != keyLength {
continue
}
num := binary.BigEndian.Uint64(key[len(headerPrefix) : len(headerPrefix)+8])
if num > last {
break
}
hash := common.BytesToHash(key[len(key)-32:])
hashes = append(hashes, &NumberHash{num, hash})
}
return hashes
}
// ReadAllCanonicalHashes retrieves all canonical number and hash mappings at the
// certain chain range. If the accumulated entries reaches the given threshold,
// abort the iteration and return the semi-finish result.
func ReadAllCanonicalHashes(db ethdb.Iteratee, from uint64, to uint64, limit int) ([]uint64, []common.Hash) {
// Short circuit if the limit is 0.
if limit == 0 {
return nil, nil
}
var (
numbers []uint64
hashes []common.Hash
)
// Construct the key prefix of start point.
start, end := headerHashKey(from), headerHashKey(to)
it := db.NewIterator(nil, start)
defer it.Release()
for it.Next() {
if bytes.Compare(it.Key(), end) >= 0 {
break
}
if key := it.Key(); len(key) == len(headerPrefix)+8+1 && bytes.Equal(key[len(key)-1:], headerHashSuffix) {
numbers = append(numbers, binary.BigEndian.Uint64(key[len(headerPrefix):len(headerPrefix)+8]))
hashes = append(hashes, common.BytesToHash(it.Value()))
// If the accumulated entries reaches the limit threshold, return.
if len(numbers) >= limit {
break
}
}
}
return numbers, hashes
}
// ReadHeaderNumber returns the header number assigned to a hash.
func ReadHeaderNumber(db ethdb.KeyValueReader, hash common.Hash) *uint64 {
data, _ := db.Get(headerNumberKey(hash))
if len(data) != 8 {
return nil
}
number := binary.BigEndian.Uint64(data)
return &number
}
// WriteHeaderNumber stores the hash->number mapping.
func WriteHeaderNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
key := headerNumberKey(hash)
enc := encodeBlockNumber(number)
if err := db.Put(key, enc); err != nil {
log.Crit("Failed to store hash to number mapping", "err", err)
}
}
// DeleteHeaderNumber removes hash->number mapping.
func DeleteHeaderNumber(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Delete(headerNumberKey(hash)); err != nil {
log.Crit("Failed to delete hash to number mapping", "err", err)
}
}
// ReadHeadHeaderHash retrieves the hash of the current canonical head header.
func ReadHeadHeaderHash(db ethdb.KeyValueReader) common.Hash {
data, _ := db.Get(headHeaderKey)
if len(data) == 0 {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteHeadHeaderHash stores the hash of the current canonical head header.
func WriteHeadHeaderHash(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Put(headHeaderKey, hash.Bytes()); err != nil {
log.Crit("Failed to store last header's hash", "err", err)
}
}
// ReadHeadBlockHash retrieves the hash of the current canonical head block.
func ReadHeadBlockHash(db ethdb.KeyValueReader) common.Hash {
data, _ := db.Get(headBlockKey)
if len(data) == 0 {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteHeadBlockHash stores the head block's hash.
func WriteHeadBlockHash(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Put(headBlockKey, hash.Bytes()); err != nil {
log.Crit("Failed to store last block's hash", "err", err)
}
}
// ReadHeadFastBlockHash retrieves the hash of the current fast-sync head block.
func ReadHeadFastBlockHash(db ethdb.KeyValueReader) common.Hash {
data, _ := db.Get(headFastBlockKey)
if len(data) == 0 {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteHeadFastBlockHash stores the hash of the current fast-sync head block.
func WriteHeadFastBlockHash(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Put(headFastBlockKey, hash.Bytes()); err != nil {
log.Crit("Failed to store last fast block's hash", "err", err)
}
}
// ReadFinalizedBlockHash retrieves the hash of the finalized block.
func ReadFinalizedBlockHash(db ethdb.KeyValueReader) common.Hash {
data, _ := db.Get(headFinalizedBlockKey)
if len(data) == 0 {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteFinalizedBlockHash stores the hash of the finalized block.
func WriteFinalizedBlockHash(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Put(headFinalizedBlockKey, hash.Bytes()); err != nil {
log.Crit("Failed to store last finalized block's hash", "err", err)
}
}
// ReadLastPivotNumber retrieves the number of the last pivot block. If the node
// full synced, the last pivot will always be nil.
func ReadLastPivotNumber(db ethdb.KeyValueReader) *uint64 {
data, _ := db.Get(lastPivotKey)
if len(data) == 0 {
return nil
}
var pivot uint64
if err := rlp.DecodeBytes(data, &pivot); err != nil {
log.Error("Invalid pivot block number in database", "err", err)
return nil
}
return &pivot
}
// WriteLastPivotNumber stores the number of the last pivot block.
func WriteLastPivotNumber(db ethdb.KeyValueWriter, pivot uint64) {
enc, err := rlp.EncodeToBytes(pivot)
if err != nil {
log.Crit("Failed to encode pivot block number", "err", err)
}
if err := db.Put(lastPivotKey, enc); err != nil {
log.Crit("Failed to store pivot block number", "err", err)
}
}
// ReadTxIndexTail retrieves the number of oldest indexed block
// whose transaction indices has been indexed.
func ReadTxIndexTail(db ethdb.KeyValueReader) *uint64 {
data, _ := db.Get(txIndexTailKey)
if len(data) != 8 {
return nil
}
number := binary.BigEndian.Uint64(data)
return &number
}
// WriteTxIndexTail stores the number of oldest indexed block
// into database.
func WriteTxIndexTail(db ethdb.KeyValueWriter, number uint64) {
if err := db.Put(txIndexTailKey, encodeBlockNumber(number)); err != nil {
log.Crit("Failed to store the transaction index tail", "err", err)
}
}
core, eth: improve delivery speed on header requests (#23105) This PR reduces the amount of work we do when answering header queries, e.g. when a peer is syncing from us. For some items, e.g block bodies, when we read the rlp-data from database, we plug it directly into the response package. We didn't do that for headers, but instead read headers-rlp, decode to types.Header, and re-encode to rlp. This PR changes that to keep it in RLP-form as much as possible. When a node is syncing from us, it typically requests 192 contiguous headers. On master it has the following effect: - For headers not in ancient: 2 db lookups. One for translating hash->number (even though the request is by number), and another for reading by hash (this latter one is sometimes cached). - For headers in ancient: 1 file lookup/syscall for translating hash->number (even though the request is by number), and another for reading the header itself. After this, it also performes a hashing of the header, to ensure that the hash is what it expected. In this PR, I instead move the logic for "give me a sequence of blocks" into the lower layers, where the database can determine how and what to read from leveldb and/or ancients. There are basically four types of requests; three of them are improved this way. The fourth, by hash going backwards, is more tricky to optimize. However, since we know that the gap is 0, we can look up by the parentHash, and stlil shave off all the number->hash lookups. The gapped collection can be optimized similarly, as a follow-up, at least in three out of four cases. Co-authored-by: Felix Lange <fjl@twurst.com>
2021-12-07 16:50:58 +00:00
// ReadHeaderRange returns the rlp-encoded headers, starting at 'number', and going
// backwards towards genesis. This method assumes that the caller already has
// placed a cap on count, to prevent DoS issues.
// Since this method operates in head-towards-genesis mode, it will return an empty
// slice in case the head ('number') is missing. Hence, the caller must ensure that
// the head ('number') argument is actually an existing header.
//
// N.B: Since the input is a number, as opposed to a hash, it's implicit that
// this method only operates on canon headers.
func ReadHeaderRange(db ethdb.Reader, number uint64, count uint64) []rlp.RawValue {
var rlpHeaders []rlp.RawValue
if count == 0 {
return rlpHeaders
}
i := number
if count-1 > number {
// It's ok to request block 0, 1 item
count = number + 1
}
limit, _ := db.Ancients()
// First read live blocks
if i >= limit {
// If we need to read live blocks, we need to figure out the hash first
hash := ReadCanonicalHash(db, number)
for ; i >= limit && count > 0; i-- {
if data, _ := db.Get(headerKey(i, hash)); len(data) > 0 {
rlpHeaders = append(rlpHeaders, data)
// Get the parent hash for next query
hash = types.HeaderParentHashFromRLP(data)
} else {
break // Maybe got moved to ancients
}
count--
}
}
if count == 0 {
return rlpHeaders
}
// read remaining from ancients
data, err := db.AncientRange(ChainFreezerHeaderTable, i+1-count, count, 0)
if err != nil {
log.Error("Failed to read headers from freezer", "err", err)
return rlpHeaders
}
if uint64(len(data)) != count {
log.Warn("Incomplete read of headers from freezer", "wanted", count, "read", len(data))
return rlpHeaders
}
// The data is on the order [h, h+1, .., n] -- reordering needed
for i := range data {
rlpHeaders = append(rlpHeaders, data[len(data)-1-i])
core, eth: improve delivery speed on header requests (#23105) This PR reduces the amount of work we do when answering header queries, e.g. when a peer is syncing from us. For some items, e.g block bodies, when we read the rlp-data from database, we plug it directly into the response package. We didn't do that for headers, but instead read headers-rlp, decode to types.Header, and re-encode to rlp. This PR changes that to keep it in RLP-form as much as possible. When a node is syncing from us, it typically requests 192 contiguous headers. On master it has the following effect: - For headers not in ancient: 2 db lookups. One for translating hash->number (even though the request is by number), and another for reading by hash (this latter one is sometimes cached). - For headers in ancient: 1 file lookup/syscall for translating hash->number (even though the request is by number), and another for reading the header itself. After this, it also performes a hashing of the header, to ensure that the hash is what it expected. In this PR, I instead move the logic for "give me a sequence of blocks" into the lower layers, where the database can determine how and what to read from leveldb and/or ancients. There are basically four types of requests; three of them are improved this way. The fourth, by hash going backwards, is more tricky to optimize. However, since we know that the gap is 0, we can look up by the parentHash, and stlil shave off all the number->hash lookups. The gapped collection can be optimized similarly, as a follow-up, at least in three out of four cases. Co-authored-by: Felix Lange <fjl@twurst.com>
2021-12-07 16:50:58 +00:00
}
return rlpHeaders
}
// ReadHeaderRLP retrieves a block header in its raw RLP database encoding.
func ReadHeaderRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue {
var data []byte
db.ReadAncients(func(reader ethdb.AncientReaderOp) error {
// First try to look up the data in ancient database. Extra hash
// comparison is necessary since ancient database only maintains
// the canonical data.
data, _ = reader.Ancient(ChainFreezerHeaderTable, number)
if len(data) > 0 && crypto.Keccak256Hash(data) == hash {
return nil
}
// If not, try reading from leveldb
data, _ = db.Get(headerKey(number, hash))
return nil
})
return data
}
// HasHeader verifies the existence of a block header corresponding to the hash.
func HasHeader(db ethdb.Reader, hash common.Hash, number uint64) bool {
if isCanon(db, number, hash) {
return true
}
if has, err := db.Has(headerKey(number, hash)); !has || err != nil {
return false
}
return true
}
// ReadHeader retrieves the block header corresponding to the hash.
func ReadHeader(db ethdb.Reader, hash common.Hash, number uint64) *types.Header {
data := ReadHeaderRLP(db, hash, number)
if len(data) == 0 {
return nil
}
header := new(types.Header)
if err := rlp.DecodeBytes(data, header); err != nil {
log.Error("Invalid block header RLP", "hash", hash, "err", err)
return nil
}
return header
}
// WriteHeader stores a block header into the database and also stores the hash-
// to-number mapping.
func WriteHeader(db ethdb.KeyValueWriter, header *types.Header) {
var (
hash = header.Hash()
number = header.Number.Uint64()
)
// Write the hash -> number mapping
WriteHeaderNumber(db, hash, number)
// Write the encoded header
data, err := rlp.EncodeToBytes(header)
if err != nil {
log.Crit("Failed to RLP encode header", "err", err)
}
key := headerKey(number, hash)
if err := db.Put(key, data); err != nil {
log.Crit("Failed to store header", "err", err)
}
}
// DeleteHeader removes all block header data associated with a hash.
func DeleteHeader(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
deleteHeaderWithoutNumber(db, hash, number)
if err := db.Delete(headerNumberKey(hash)); err != nil {
log.Crit("Failed to delete hash to number mapping", "err", err)
}
}
// deleteHeaderWithoutNumber removes only the block header but does not remove
// the hash to number mapping.
func deleteHeaderWithoutNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Delete(headerKey(number, hash)); err != nil {
log.Crit("Failed to delete header", "err", err)
}
}
// isCanon is an internal utility method, to check whether the given number/hash
// is part of the ancient (canon) set.
func isCanon(reader ethdb.AncientReaderOp, number uint64, hash common.Hash) bool {
h, err := reader.Ancient(ChainFreezerHashTable, number)
if err != nil {
return false
}
return bytes.Equal(h, hash[:])
}
// ReadBodyRLP retrieves the block body (transactions and uncles) in RLP encoding.
func ReadBodyRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue {
// First try to look up the data in ancient database. Extra hash
// comparison is necessary since ancient database only maintains
// the canonical data.
var data []byte
db.ReadAncients(func(reader ethdb.AncientReaderOp) error {
// Check if the data is in ancients
if isCanon(reader, number, hash) {
data, _ = reader.Ancient(ChainFreezerBodiesTable, number)
return nil
}
// If not, try reading from leveldb
data, _ = db.Get(blockBodyKey(number, hash))
return nil
})
return data
}
// ReadCanonicalBodyRLP retrieves the block body (transactions and uncles) for the canonical
// block at number, in RLP encoding.
func ReadCanonicalBodyRLP(db ethdb.Reader, number uint64) rlp.RawValue {
var data []byte
db.ReadAncients(func(reader ethdb.AncientReaderOp) error {
data, _ = reader.Ancient(ChainFreezerBodiesTable, number)
if len(data) > 0 {
return nil
}
// Block is not in ancients, read from leveldb by hash and number.
// Note: ReadCanonicalHash cannot be used here because it also
// calls ReadAncients internally.
hash, _ := db.Get(headerHashKey(number))
data, _ = db.Get(blockBodyKey(number, common.BytesToHash(hash)))
return nil
})
return data
}
// WriteBodyRLP stores an RLP encoded block body into the database.
func WriteBodyRLP(db ethdb.KeyValueWriter, hash common.Hash, number uint64, rlp rlp.RawValue) {
if err := db.Put(blockBodyKey(number, hash), rlp); err != nil {
log.Crit("Failed to store block body", "err", err)
}
}
// HasBody verifies the existence of a block body corresponding to the hash.
func HasBody(db ethdb.Reader, hash common.Hash, number uint64) bool {
if isCanon(db, number, hash) {
return true
}
if has, err := db.Has(blockBodyKey(number, hash)); !has || err != nil {
return false
}
return true
}
// ReadBody retrieves the block body corresponding to the hash.
func ReadBody(db ethdb.Reader, hash common.Hash, number uint64) *types.Body {
data := ReadBodyRLP(db, hash, number)
if len(data) == 0 {
return nil
}
body := new(types.Body)
if err := rlp.DecodeBytes(data, body); err != nil {
log.Error("Invalid block body RLP", "hash", hash, "err", err)
return nil
}
return body
}
// WriteBody stores a block body into the database.
func WriteBody(db ethdb.KeyValueWriter, hash common.Hash, number uint64, body *types.Body) {
data, err := rlp.EncodeToBytes(body)
if err != nil {
log.Crit("Failed to RLP encode body", "err", err)
}
WriteBodyRLP(db, hash, number, data)
}
// DeleteBody removes all block body data associated with a hash.
func DeleteBody(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Delete(blockBodyKey(number, hash)); err != nil {
log.Crit("Failed to delete block body", "err", err)
}
}
// ReadTdRLP retrieves a block's total difficulty corresponding to the hash in RLP encoding.
func ReadTdRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue {
var data []byte
db.ReadAncients(func(reader ethdb.AncientReaderOp) error {
// Check if the data is in ancients
if isCanon(reader, number, hash) {
data, _ = reader.Ancient(ChainFreezerDifficultyTable, number)
return nil
}
// If not, try reading from leveldb
data, _ = db.Get(headerTDKey(number, hash))
return nil
})
return data
}
// ReadTd retrieves a block's total difficulty corresponding to the hash.
func ReadTd(db ethdb.Reader, hash common.Hash, number uint64) *big.Int {
data := ReadTdRLP(db, hash, number)
if len(data) == 0 {
return nil
}
td := new(big.Int)
if err := rlp.DecodeBytes(data, td); err != nil {
log.Error("Invalid block total difficulty RLP", "hash", hash, "err", err)
return nil
}
return td
}
// WriteTd stores the total difficulty of a block into the database.
func WriteTd(db ethdb.KeyValueWriter, hash common.Hash, number uint64, td *big.Int) {
data, err := rlp.EncodeToBytes(td)
if err != nil {
log.Crit("Failed to RLP encode block total difficulty", "err", err)
}
if err := db.Put(headerTDKey(number, hash), data); err != nil {
log.Crit("Failed to store block total difficulty", "err", err)
}
}
// DeleteTd removes all block total difficulty data associated with a hash.
func DeleteTd(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Delete(headerTDKey(number, hash)); err != nil {
log.Crit("Failed to delete block total difficulty", "err", err)
}
}
// HasReceipts verifies the existence of all the transaction receipts belonging
// to a block.
func HasReceipts(db ethdb.Reader, hash common.Hash, number uint64) bool {
if isCanon(db, number, hash) {
return true
}
if has, err := db.Has(blockReceiptsKey(number, hash)); !has || err != nil {
return false
}
return true
}
// ReadReceiptsRLP retrieves all the transaction receipts belonging to a block in RLP encoding.
func ReadReceiptsRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue {
var data []byte
db.ReadAncients(func(reader ethdb.AncientReaderOp) error {
// Check if the data is in ancients
if isCanon(reader, number, hash) {
data, _ = reader.Ancient(ChainFreezerReceiptTable, number)
return nil
}
// If not, try reading from leveldb
data, _ = db.Get(blockReceiptsKey(number, hash))
return nil
})
return data
}
// ReadRawReceipts retrieves all the transaction receipts belonging to a block.
// The receipt metadata fields are not guaranteed to be populated, so they
// should not be used. Use ReadReceipts instead if the metadata is needed.
func ReadRawReceipts(db ethdb.Reader, hash common.Hash, number uint64) types.Receipts {
// Retrieve the flattened receipt slice
data := ReadReceiptsRLP(db, hash, number)
if len(data) == 0 {
return nil
}
2018-10-19 13:33:27 +00:00
// Convert the receipts from their storage form to their internal representation
storageReceipts := []*types.ReceiptForStorage{}
if err := rlp.DecodeBytes(data, &storageReceipts); err != nil {
log.Error("Invalid receipt array RLP", "hash", hash, "err", err)
return nil
}
receipts := make(types.Receipts, len(storageReceipts))
for i, storageReceipt := range storageReceipts {
receipts[i] = (*types.Receipt)(storageReceipt)
}
return receipts
}
// ReadReceipts retrieves all the transaction receipts belonging to a block, including
2022-04-25 07:28:03 +00:00
// its corresponding metadata fields. If it is unable to populate these metadata
// fields then nil is returned.
//
// The current implementation populates these metadata fields by reading the receipts'
// corresponding block body, so if the block body is not found it will return nil even
// if the receipt itself is stored.
func ReadReceipts(db ethdb.Reader, hash common.Hash, number uint64, time uint64, config *params.ChainConfig) types.Receipts {
// We're deriving many fields from the block body, retrieve beside the receipt
receipts := ReadRawReceipts(db, hash, number)
if receipts == nil {
return nil
}
body := ReadBody(db, hash, number)
if body == nil {
log.Error("Missing body but have receipt", "hash", hash, "number", number)
return nil
}
header := ReadHeader(db, hash, number)
var baseFee *big.Int
if header == nil {
baseFee = big.NewInt(0)
} else {
baseFee = header.BaseFee
}
// Compute effective blob gas price.
var blobGasPrice *big.Int
if header != nil && header.ExcessBlobGas != nil {
blobGasPrice = eip4844.CalcBlobFee(*header.ExcessBlobGas)
}
if err := receipts.DeriveFields(config, hash, number, time, baseFee, blobGasPrice, body.Transactions); err != nil {
log.Error("Failed to derive block receipts fields", "hash", hash, "number", number, "err", err)
return nil
}
return receipts
}
// WriteReceipts stores all the transaction receipts belonging to a block.
func WriteReceipts(db ethdb.KeyValueWriter, hash common.Hash, number uint64, receipts types.Receipts) {
// Convert the receipts into their storage form and serialize them
storageReceipts := make([]*types.ReceiptForStorage, len(receipts))
for i, receipt := range receipts {
storageReceipts[i] = (*types.ReceiptForStorage)(receipt)
}
bytes, err := rlp.EncodeToBytes(storageReceipts)
if err != nil {
log.Crit("Failed to encode block receipts", "err", err)
}
// Store the flattened receipt slice
if err := db.Put(blockReceiptsKey(number, hash), bytes); err != nil {
log.Crit("Failed to store block receipts", "err", err)
}
}
// DeleteReceipts removes all receipt data associated with a block hash.
func DeleteReceipts(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Delete(blockReceiptsKey(number, hash)); err != nil {
log.Crit("Failed to delete block receipts", "err", err)
}
}
// storedReceiptRLP is the storage encoding of a receipt.
// Re-definition in core/types/receipt.go.
// TODO: Re-use the existing definition.
type storedReceiptRLP struct {
PostStateOrStatus []byte
CumulativeGasUsed uint64
Logs []*types.Log
}
// ReceiptLogs is a barebone version of ReceiptForStorage which only keeps
// the list of logs. When decoding a stored receipt into this object we
// avoid creating the bloom filter.
type receiptLogs struct {
Logs []*types.Log
}
// DecodeRLP implements rlp.Decoder.
func (r *receiptLogs) DecodeRLP(s *rlp.Stream) error {
var stored storedReceiptRLP
if err := s.Decode(&stored); err != nil {
return err
}
r.Logs = stored.Logs
return nil
}
// DeriveLogFields fills the logs in receiptLogs with information such as block number, txhash, etc.
func deriveLogFields(receipts []*receiptLogs, hash common.Hash, number uint64, txs types.Transactions) error {
logIndex := uint(0)
if len(txs) != len(receipts) {
return errors.New("transaction and receipt count mismatch")
}
for i := 0; i < len(receipts); i++ {
txHash := txs[i].Hash()
// The derived log fields can simply be set from the block and transaction
for j := 0; j < len(receipts[i].Logs); j++ {
receipts[i].Logs[j].BlockNumber = number
receipts[i].Logs[j].BlockHash = hash
receipts[i].Logs[j].TxHash = txHash
receipts[i].Logs[j].TxIndex = uint(i)
receipts[i].Logs[j].Index = logIndex
logIndex++
}
}
return nil
}
// ReadLogs retrieves the logs for all transactions in a block. In case
// receipts is not found, a nil is returned.
// Note: ReadLogs does not derive unstored log fields.
func ReadLogs(db ethdb.Reader, hash common.Hash, number uint64) [][]*types.Log {
// Retrieve the flattened receipt slice
data := ReadReceiptsRLP(db, hash, number)
if len(data) == 0 {
return nil
}
receipts := []*receiptLogs{}
if err := rlp.DecodeBytes(data, &receipts); err != nil {
log.Error("Invalid receipt array RLP", "hash", hash, "err", err)
return nil
}
logs := make([][]*types.Log, len(receipts))
for i, receipt := range receipts {
logs[i] = receipt.Logs
}
return logs
}
// ReadBlock retrieves an entire block corresponding to the hash, assembling it
// back from the stored header and body. If either the header or body could not
// be retrieved nil is returned.
//
// Note, due to concurrent download of header and block body the header and thus
// canonical hash can be stored in the database but the body data not (yet).
func ReadBlock(db ethdb.Reader, hash common.Hash, number uint64) *types.Block {
header := ReadHeader(db, hash, number)
if header == nil {
return nil
}
body := ReadBody(db, hash, number)
if body == nil {
return nil
}
return types.NewBlockWithHeader(header).WithBody(body.Transactions, body.Uncles).WithWithdrawals(body.Withdrawals)
}
// WriteBlock serializes a block into the database, header and body separately.
func WriteBlock(db ethdb.KeyValueWriter, block *types.Block) {
WriteBody(db, block.Hash(), block.NumberU64(), block.Body())
WriteHeader(db, block.Header())
}
// WriteAncientBlocks writes entire block data into ancient store and returns the total written size.
func WriteAncientBlocks(db ethdb.AncientWriter, blocks []*types.Block, receipts []types.Receipts, td *big.Int) (int64, error) {
var (
tdSum = new(big.Int).Set(td)
stReceipts []*types.ReceiptForStorage
)
return db.ModifyAncients(func(op ethdb.AncientWriteOp) error {
for i, block := range blocks {
// Convert receipts to storage format and sum up total difficulty.
stReceipts = stReceipts[:0]
for _, receipt := range receipts[i] {
stReceipts = append(stReceipts, (*types.ReceiptForStorage)(receipt))
}
header := block.Header()
if i > 0 {
tdSum.Add(tdSum, header.Difficulty)
}
if err := writeAncientBlock(op, block, header, stReceipts, tdSum); err != nil {
return err
}
}
return nil
})
}
func writeAncientBlock(op ethdb.AncientWriteOp, block *types.Block, header *types.Header, receipts []*types.ReceiptForStorage, td *big.Int) error {
num := block.NumberU64()
if err := op.AppendRaw(ChainFreezerHashTable, num, block.Hash().Bytes()); err != nil {
return fmt.Errorf("can't add block %d hash: %v", num, err)
}
if err := op.Append(ChainFreezerHeaderTable, num, header); err != nil {
return fmt.Errorf("can't append block header %d: %v", num, err)
}
if err := op.Append(ChainFreezerBodiesTable, num, block.Body()); err != nil {
return fmt.Errorf("can't append block body %d: %v", num, err)
}
if err := op.Append(ChainFreezerReceiptTable, num, receipts); err != nil {
return fmt.Errorf("can't append block %d receipts: %v", num, err)
}
if err := op.Append(ChainFreezerDifficultyTable, num, td); err != nil {
return fmt.Errorf("can't append block %d total difficulty: %v", num, err)
}
return nil
}
// DeleteBlock removes all block data associated with a hash.
func DeleteBlock(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
DeleteReceipts(db, hash, number)
DeleteHeader(db, hash, number)
DeleteBody(db, hash, number)
DeleteTd(db, hash, number)
}
// DeleteBlockWithoutNumber removes all block data associated with a hash, except
// the hash to number mapping.
func DeleteBlockWithoutNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
DeleteReceipts(db, hash, number)
deleteHeaderWithoutNumber(db, hash, number)
DeleteBody(db, hash, number)
DeleteTd(db, hash, number)
}
const badBlockToKeep = 10
type badBlock struct {
Header *types.Header
Body *types.Body
}
// ReadBadBlock retrieves the bad block with the corresponding block hash.
func ReadBadBlock(db ethdb.Reader, hash common.Hash) *types.Block {
blob, err := db.Get(badBlockKey)
if err != nil {
return nil
}
var badBlocks []*badBlock
if err := rlp.DecodeBytes(blob, &badBlocks); err != nil {
return nil
}
for _, bad := range badBlocks {
if bad.Header.Hash() == hash {
return types.NewBlockWithHeader(bad.Header).WithBody(bad.Body.Transactions, bad.Body.Uncles).WithWithdrawals(bad.Body.Withdrawals)
}
}
return nil
}
// ReadAllBadBlocks retrieves all the bad blocks in the database.
// All returned blocks are sorted in reverse order by number.
func ReadAllBadBlocks(db ethdb.Reader) []*types.Block {
blob, err := db.Get(badBlockKey)
if err != nil {
return nil
}
var badBlocks []*badBlock
if err := rlp.DecodeBytes(blob, &badBlocks); err != nil {
return nil
}
var blocks []*types.Block
for _, bad := range badBlocks {
blocks = append(blocks, types.NewBlockWithHeader(bad.Header).WithBody(bad.Body.Transactions, bad.Body.Uncles).WithWithdrawals(bad.Body.Withdrawals))
}
return blocks
}
// WriteBadBlock serializes the bad block into the database. If the cumulated
// bad blocks exceeds the limitation, the oldest will be dropped.
func WriteBadBlock(db ethdb.KeyValueStore, block *types.Block) {
blob, err := db.Get(badBlockKey)
if err != nil {
log.Warn("Failed to load old bad blocks", "error", err)
}
var badBlocks []*badBlock
if len(blob) > 0 {
if err := rlp.DecodeBytes(blob, &badBlocks); err != nil {
log.Crit("Failed to decode old bad blocks", "error", err)
}
}
for _, b := range badBlocks {
if b.Header.Number.Uint64() == block.NumberU64() && b.Header.Hash() == block.Hash() {
log.Info("Skip duplicated bad block", "number", block.NumberU64(), "hash", block.Hash())
return
}
}
badBlocks = append(badBlocks, &badBlock{
Header: block.Header(),
Body: block.Body(),
})
slices.SortFunc(badBlocks, func(a, b *badBlock) int {
// Note: sorting in descending number order.
return -a.Header.Number.Cmp(b.Header.Number)
})
if len(badBlocks) > badBlockToKeep {
badBlocks = badBlocks[:badBlockToKeep]
}
data, err := rlp.EncodeToBytes(badBlocks)
if err != nil {
log.Crit("Failed to encode bad blocks", "err", err)
}
if err := db.Put(badBlockKey, data); err != nil {
log.Crit("Failed to write bad blocks", "err", err)
}
}
// DeleteBadBlocks deletes all the bad blocks from the database
func DeleteBadBlocks(db ethdb.KeyValueWriter) {
if err := db.Delete(badBlockKey); err != nil {
log.Crit("Failed to delete bad blocks", "err", err)
}
}
// FindCommonAncestor returns the last common ancestor of two block headers
func FindCommonAncestor(db ethdb.Reader, a, b *types.Header) *types.Header {
for bn := b.Number.Uint64(); a.Number.Uint64() > bn; {
a = ReadHeader(db, a.ParentHash, a.Number.Uint64()-1)
if a == nil {
return nil
}
}
for an := a.Number.Uint64(); an < b.Number.Uint64(); {
b = ReadHeader(db, b.ParentHash, b.Number.Uint64()-1)
if b == nil {
return nil
}
}
for a.Hash() != b.Hash() {
a = ReadHeader(db, a.ParentHash, a.Number.Uint64()-1)
if a == nil {
return nil
}
b = ReadHeader(db, b.ParentHash, b.Number.Uint64()-1)
if b == nil {
return nil
}
}
return a
}
// ReadHeadHeader returns the current canonical head header.
func ReadHeadHeader(db ethdb.Reader) *types.Header {
headHeaderHash := ReadHeadHeaderHash(db)
if headHeaderHash == (common.Hash{}) {
return nil
}
headHeaderNumber := ReadHeaderNumber(db, headHeaderHash)
if headHeaderNumber == nil {
return nil
}
return ReadHeader(db, headHeaderHash, *headHeaderNumber)
}
// ReadHeadBlock returns the current canonical head block.
func ReadHeadBlock(db ethdb.Reader) *types.Block {
headBlockHash := ReadHeadBlockHash(db)
if headBlockHash == (common.Hash{}) {
return nil
}
headBlockNumber := ReadHeaderNumber(db, headBlockHash)
if headBlockNumber == nil {
return nil
}
return ReadBlock(db, headBlockHash, *headBlockNumber)
}