plugeth/les/balance.go

390 lines
11 KiB
Go
Raw Normal View History

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
)
const (
balanceCallbackQueue = iota
balanceCallbackZero
balanceCallbackCount
)
// balanceTracker keeps track of the positive and negative balances of a connected
// client and calculates actual and projected future priority values required by
// prque.LazyQueue.
type balanceTracker struct {
lock sync.Mutex
clock mclock.Clock
stopped bool
capacity uint64
balance balance
timeFactor, requestFactor float64
negTimeFactor, negRequestFactor float64
sumReqCost uint64
lastUpdate, nextUpdate, initTime mclock.AbsTime
updateEvent mclock.Timer
// since only a limited and fixed number of callbacks are needed, they are
// stored in a fixed size array ordered by priority threshold.
callbacks [balanceCallbackCount]balanceCallback
// callbackIndex maps balanceCallback constants to callbacks array indexes (-1 if not active)
callbackIndex [balanceCallbackCount]int
callbackCount int // number of active callbacks
}
// balance represents a pair of positive and negative balances
type balance struct {
pos, neg uint64
}
// balanceCallback represents a single callback that is activated when client priority
// reaches the given threshold
type balanceCallback struct {
id int
threshold int64
callback func()
}
// init initializes balanceTracker
func (bt *balanceTracker) init(clock mclock.Clock, capacity uint64) {
bt.clock = clock
bt.initTime, bt.lastUpdate = clock.Now(), clock.Now() // Init timestamps
for i := range bt.callbackIndex {
bt.callbackIndex[i] = -1
}
bt.capacity = capacity
}
// stop shuts down the balance tracker
func (bt *balanceTracker) stop(now mclock.AbsTime) {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.stopped = true
bt.addBalance(now)
bt.negTimeFactor = 0
bt.negRequestFactor = 0
bt.timeFactor = 0
bt.requestFactor = 0
if bt.updateEvent != nil {
bt.updateEvent.Stop()
bt.updateEvent = nil
}
}
// balanceToPriority converts a balance to a priority value. Higher priority means
// first to disconnect. Positive balance translates to negative priority. If positive
// balance is zero then negative balance translates to a positive priority.
func (bt *balanceTracker) balanceToPriority(b balance) int64 {
if b.pos > 0 {
return ^int64(b.pos / bt.capacity)
}
return int64(b.neg)
}
// reducedBalance estimates the reduced balance at a given time in the fututre based
// on the current balance, the time factor and an estimated average request cost per time ratio
func (bt *balanceTracker) reducedBalance(at mclock.AbsTime, avgReqCost float64) balance {
dt := float64(at - bt.lastUpdate)
b := bt.balance
if b.pos != 0 {
factor := bt.timeFactor + bt.requestFactor*avgReqCost
diff := uint64(dt * factor)
if diff <= b.pos {
b.pos -= diff
dt = 0
} else {
dt -= float64(b.pos) / factor
b.pos = 0
}
}
if dt != 0 {
factor := bt.negTimeFactor + bt.negRequestFactor*avgReqCost
b.neg += uint64(dt * factor)
}
return b
}
// timeUntil calculates the remaining time needed to reach a given priority level
// assuming that no requests are processed until then. If the given level is never
// reached then (0, false) is returned.
// Note: the function assumes that the balance has been recently updated and
// calculates the time starting from the last update.
func (bt *balanceTracker) timeUntil(priority int64) (time.Duration, bool) {
var dt float64
if bt.balance.pos != 0 {
if bt.timeFactor < 1e-100 {
return 0, false
}
if priority < 0 {
newBalance := uint64(^priority) * bt.capacity
if newBalance > bt.balance.pos {
return 0, false
}
dt = float64(bt.balance.pos-newBalance) / bt.timeFactor
return time.Duration(dt), true
} else {
dt = float64(bt.balance.pos) / bt.timeFactor
}
} else {
if priority < 0 {
return 0, false
}
}
// if we have a positive balance then dt equals the time needed to get it to zero
if uint64(priority) > bt.balance.neg {
if bt.negTimeFactor < 1e-100 {
return 0, false
}
dt += float64(uint64(priority)-bt.balance.neg) / bt.negTimeFactor
}
return time.Duration(dt), true
}
// setCapacity updates the capacity value used for priority calculation
func (bt *balanceTracker) setCapacity(capacity uint64) {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.capacity = capacity
}
// getPriority returns the actual priority based on the current balance
func (bt *balanceTracker) getPriority(now mclock.AbsTime) int64 {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.addBalance(now)
return bt.balanceToPriority(bt.balance)
}
// estimatedPriority gives an upper estimate for the priority at a given time in the future.
// If addReqCost is true then an average request cost per time is assumed that is twice the
// average cost per time in the current session. If false, zero request cost is assumed.
func (bt *balanceTracker) estimatedPriority(at mclock.AbsTime, addReqCost bool) int64 {
bt.lock.Lock()
defer bt.lock.Unlock()
var avgReqCost float64
if addReqCost {
dt := time.Duration(bt.lastUpdate - bt.initTime)
if dt > time.Second {
avgReqCost = float64(bt.sumReqCost) * 2 / float64(dt)
}
}
return bt.balanceToPriority(bt.reducedBalance(at, avgReqCost))
}
// addBalance updates balance based on the time factor
func (bt *balanceTracker) addBalance(now mclock.AbsTime) {
if now > bt.lastUpdate {
bt.balance = bt.reducedBalance(now, 0)
bt.lastUpdate = now
}
}
// checkCallbacks checks whether the threshold of any of the active callbacks
// have been reached and calls them if necessary. It also sets up or updates
// a scheduled event to ensure that is will be called again just after the next
// threshold has been reached.
// Note: checkCallbacks assumes that the balance has been recently updated.
func (bt *balanceTracker) checkCallbacks(now mclock.AbsTime) {
if bt.callbackCount == 0 {
return
}
pri := bt.balanceToPriority(bt.balance)
for bt.callbackCount != 0 && bt.callbacks[bt.callbackCount-1].threshold <= pri {
bt.callbackCount--
bt.callbackIndex[bt.callbacks[bt.callbackCount].id] = -1
go bt.callbacks[bt.callbackCount].callback()
}
if bt.callbackCount != 0 {
d, ok := bt.timeUntil(bt.callbacks[bt.callbackCount-1].threshold)
if !ok {
bt.nextUpdate = 0
bt.updateAfter(0)
return
}
if bt.nextUpdate == 0 || bt.nextUpdate > now+mclock.AbsTime(d) {
if d > time.Second {
// Note: if the scheduled update is not in the very near future then we
// schedule the update a bit earlier. This way we do need to update a few
// extra times but don't need to reschedule every time a processed request
// brings the expected firing time a little bit closer.
d = ((d - time.Second) * 7 / 8) + time.Second
}
bt.nextUpdate = now + mclock.AbsTime(d)
bt.updateAfter(d)
}
} else {
bt.nextUpdate = 0
bt.updateAfter(0)
}
}
// updateAfter schedules a balance update and callback check in the future
func (bt *balanceTracker) updateAfter(dt time.Duration) {
if bt.updateEvent == nil || bt.updateEvent.Stop() {
if dt == 0 {
bt.updateEvent = nil
} else {
bt.updateEvent = bt.clock.AfterFunc(dt, func() {
bt.lock.Lock()
defer bt.lock.Unlock()
if bt.callbackCount != 0 {
now := bt.clock.Now()
bt.addBalance(now)
bt.checkCallbacks(now)
}
})
}
}
}
// requestCost should be called after serving a request for the given peer
func (bt *balanceTracker) requestCost(cost uint64) {
bt.lock.Lock()
defer bt.lock.Unlock()
if bt.stopped {
return
}
now := bt.clock.Now()
bt.addBalance(now)
fcost := float64(cost)
if bt.balance.pos != 0 {
if bt.requestFactor != 0 {
c := uint64(fcost * bt.requestFactor)
if bt.balance.pos >= c {
bt.balance.pos -= c
fcost = 0
} else {
fcost *= 1 - float64(bt.balance.pos)/float64(c)
bt.balance.pos = 0
}
bt.checkCallbacks(now)
} else {
fcost = 0
}
}
if fcost > 0 {
if bt.negRequestFactor != 0 {
bt.balance.neg += uint64(fcost * bt.negRequestFactor)
bt.checkCallbacks(now)
}
}
bt.sumReqCost += cost
}
// getBalance returns the current positive and negative balance
func (bt *balanceTracker) getBalance(now mclock.AbsTime) (uint64, uint64) {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.addBalance(now)
return bt.balance.pos, bt.balance.neg
}
// setBalance sets the positive and negative balance to the given values
func (bt *balanceTracker) setBalance(pos, neg uint64) error {
bt.lock.Lock()
defer bt.lock.Unlock()
now := bt.clock.Now()
bt.addBalance(now)
bt.balance.pos = pos
bt.balance.neg = neg
bt.checkCallbacks(now)
return nil
}
// setFactors sets the price factors. timeFactor is the price of a nanosecond of
// connection while requestFactor is the price of a "realCost" unit.
func (bt *balanceTracker) setFactors(neg bool, timeFactor, requestFactor float64) {
bt.lock.Lock()
defer bt.lock.Unlock()
if bt.stopped {
return
}
now := bt.clock.Now()
bt.addBalance(now)
if neg {
bt.negTimeFactor = timeFactor
bt.negRequestFactor = requestFactor
} else {
bt.timeFactor = timeFactor
bt.requestFactor = requestFactor
}
bt.checkCallbacks(now)
}
// setCallback sets up a one-time callback to be called when priority reaches
// the threshold. If it has already reached the threshold the callback is called
// immediately.
func (bt *balanceTracker) addCallback(id int, threshold int64, callback func()) {
bt.lock.Lock()
defer bt.lock.Unlock()
bt.removeCb(id)
idx := 0
for idx < bt.callbackCount && threshold < bt.callbacks[idx].threshold {
idx++
}
for i := bt.callbackCount - 1; i >= idx; i-- {
bt.callbackIndex[bt.callbacks[i].id]++
bt.callbacks[i+1] = bt.callbacks[i]
}
bt.callbackCount++
bt.callbackIndex[id] = idx
bt.callbacks[idx] = balanceCallback{id, threshold, callback}
now := bt.clock.Now()
bt.addBalance(now)
bt.checkCallbacks(now)
}
// removeCallback removes the given callback and returns true if it was active
func (bt *balanceTracker) removeCallback(id int) bool {
bt.lock.Lock()
defer bt.lock.Unlock()
return bt.removeCb(id)
}
// removeCb removes the given callback and returns true if it was active
// Note: should be called while bt.lock is held
func (bt *balanceTracker) removeCb(id int) bool {
idx := bt.callbackIndex[id]
if idx == -1 {
return false
}
bt.callbackIndex[id] = -1
for i := idx; i < bt.callbackCount-1; i++ {
bt.callbackIndex[bt.callbacks[i+1].id]--
bt.callbacks[i] = bt.callbacks[i+1]
}
bt.callbackCount--
return true
}