plugeth/core/state/sync_test.go

324 lines
11 KiB
Go
Raw Normal View History

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package state
import (
"bytes"
"math/big"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/trie"
)
// testAccount is the data associated with an account used by the state tests.
type testAccount struct {
address common.Address
balance *big.Int
nonce uint64
code []byte
}
// makeTestState create a sample test state to test node-wise reconstruction.
func makeTestState() (ethdb.Database, common.Hash, []*testAccount) {
// Create an empty state
db, _ := ethdb.NewMemDatabase()
state, _ := New(common.Hash{}, db)
// Fill it with some arbitrary data
accounts := []*testAccount{}
for i := byte(0); i < 96; i++ {
obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
acc := &testAccount{address: common.BytesToAddress([]byte{i})}
obj.AddBalance(big.NewInt(int64(11 * i)))
acc.balance = big.NewInt(int64(11 * i))
obj.SetNonce(uint64(42 * i))
acc.nonce = uint64(42 * i)
if i%3 == 0 {
obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i})
acc.code = []byte{i, i, i, i, i}
}
state.updateStateObject(obj)
accounts = append(accounts, acc)
}
root, _ := state.Commit(false)
// Return the generated state
return db, root, accounts
}
// checkStateAccounts cross references a reconstructed state with an expected
// account array.
func checkStateAccounts(t *testing.T, db ethdb.Database, root common.Hash, accounts []*testAccount) {
// Check root availability and state contents
state, err := New(root, db)
if err != nil {
t.Fatalf("failed to create state trie at %x: %v", root, err)
}
if err := checkStateConsistency(db, root); err != nil {
t.Fatalf("inconsistent state trie at %x: %v", root, err)
}
for i, acc := range accounts {
if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 {
t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance)
}
if nonce := state.GetNonce(acc.address); nonce != acc.nonce {
t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce)
}
if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) {
t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code)
}
}
}
// checkStateConsistency checks that all nodes in a state trie are indeed present.
func checkStateConsistency(db ethdb.Database, root common.Hash) error {
// Create and iterate a state trie rooted in a sub-node
if _, err := db.Get(root.Bytes()); err != nil {
return nil // Consider a non existent state consistent
}
state, err := New(root, db)
if err != nil {
return err
}
it := NewNodeIterator(state)
for it.Next() {
}
return it.Error
}
// Tests that an empty state is not scheduled for syncing.
func TestEmptyStateSync(t *testing.T) {
empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
db, _ := ethdb.NewMemDatabase()
if req := NewStateSync(empty, db).Missing(1); len(req) != 0 {
t.Errorf("content requested for empty state: %v", req)
}
}
// Tests that given a root hash, a state can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go.
func TestIterativeStateSyncIndividual(t *testing.T) { testIterativeStateSync(t, 1) }
func TestIterativeStateSyncBatched(t *testing.T) { testIterativeStateSync(t, 100) }
func testIterativeStateSync(t *testing.T, batch int) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// Create a destination state and sync with the scheduler
dstDb, _ := ethdb.NewMemDatabase()
sched := NewStateSync(srcRoot, dstDb)
queue := append([]common.Hash{}, sched.Missing(batch)...)
for len(queue) > 0 {
results := make([]trie.SyncResult, len(queue))
for i, hash := range queue {
data, err := srcDb.Get(hash.Bytes())
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
}
2016-04-15 09:06:57 +00:00
results[i] = trie.SyncResult{Hash: hash, Data: data}
}
if _, index, err := sched.Process(results, dstDb); err != nil {
t.Fatalf("failed to process result #%d: %v", index, err)
}
queue = append(queue[:0], sched.Missing(batch)...)
}
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned, and the others sent only later.
func TestIterativeDelayedStateSync(t *testing.T) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// Create a destination state and sync with the scheduler
dstDb, _ := ethdb.NewMemDatabase()
sched := NewStateSync(srcRoot, dstDb)
queue := append([]common.Hash{}, sched.Missing(0)...)
for len(queue) > 0 {
// Sync only half of the scheduled nodes
results := make([]trie.SyncResult, len(queue)/2+1)
for i, hash := range queue[:len(results)] {
data, err := srcDb.Get(hash.Bytes())
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
}
2016-04-15 09:06:57 +00:00
results[i] = trie.SyncResult{Hash: hash, Data: data}
}
if _, index, err := sched.Process(results, dstDb); err != nil {
t.Fatalf("failed to process result #%d: %v", index, err)
}
queue = append(queue[len(results):], sched.Missing(0)...)
}
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}
// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go, however in a
// random order.
func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) }
func TestIterativeRandomStateSyncBatched(t *testing.T) { testIterativeRandomStateSync(t, 100) }
func testIterativeRandomStateSync(t *testing.T, batch int) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// Create a destination state and sync with the scheduler
dstDb, _ := ethdb.NewMemDatabase()
sched := NewStateSync(srcRoot, dstDb)
queue := make(map[common.Hash]struct{})
for _, hash := range sched.Missing(batch) {
queue[hash] = struct{}{}
}
for len(queue) > 0 {
// Fetch all the queued nodes in a random order
results := make([]trie.SyncResult, 0, len(queue))
2017-01-06 14:52:03 +00:00
for hash := range queue {
data, err := srcDb.Get(hash.Bytes())
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
}
2016-04-15 09:06:57 +00:00
results = append(results, trie.SyncResult{Hash: hash, Data: data})
}
// Feed the retrieved results back and queue new tasks
if _, index, err := sched.Process(results, dstDb); err != nil {
t.Fatalf("failed to process result #%d: %v", index, err)
}
queue = make(map[common.Hash]struct{})
for _, hash := range sched.Missing(batch) {
queue[hash] = struct{}{}
}
}
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned (Even those randomly), others sent only later.
func TestIterativeRandomDelayedStateSync(t *testing.T) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// Create a destination state and sync with the scheduler
dstDb, _ := ethdb.NewMemDatabase()
sched := NewStateSync(srcRoot, dstDb)
queue := make(map[common.Hash]struct{})
for _, hash := range sched.Missing(0) {
queue[hash] = struct{}{}
}
for len(queue) > 0 {
// Sync only half of the scheduled nodes, even those in random order
results := make([]trie.SyncResult, 0, len(queue)/2+1)
2017-01-06 14:52:03 +00:00
for hash := range queue {
delete(queue, hash)
data, err := srcDb.Get(hash.Bytes())
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
}
2016-04-15 09:06:57 +00:00
results = append(results, trie.SyncResult{Hash: hash, Data: data})
if len(results) >= cap(results) {
break
}
}
// Feed the retrieved results back and queue new tasks
if _, index, err := sched.Process(results, dstDb); err != nil {
t.Fatalf("failed to process result #%d: %v", index, err)
}
for _, hash := range sched.Missing(0) {
queue[hash] = struct{}{}
}
}
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}
// Tests that at any point in time during a sync, only complete sub-tries are in
// the database.
func TestIncompleteStateSync(t *testing.T) {
// Create a random state to copy
srcDb, srcRoot, srcAccounts := makeTestState()
// Create a destination state and sync with the scheduler
dstDb, _ := ethdb.NewMemDatabase()
sched := NewStateSync(srcRoot, dstDb)
added := []common.Hash{}
queue := append([]common.Hash{}, sched.Missing(1)...)
for len(queue) > 0 {
// Fetch a batch of state nodes
results := make([]trie.SyncResult, len(queue))
for i, hash := range queue {
data, err := srcDb.Get(hash.Bytes())
if err != nil {
t.Fatalf("failed to retrieve node data for %x: %v", hash, err)
}
2016-04-15 09:06:57 +00:00
results[i] = trie.SyncResult{Hash: hash, Data: data}
}
// Process each of the state nodes
if _, index, err := sched.Process(results, dstDb); err != nil {
t.Fatalf("failed to process result #%d: %v", index, err)
}
for _, result := range results {
added = append(added, result.Hash)
}
// Check that all known sub-tries in the synced state is complete
for _, root := range added {
// Skim through the accounts and make sure the root hash is not a code node
codeHash := false
for _, acc := range srcAccounts {
if root == crypto.Keccak256Hash(acc.code) {
codeHash = true
break
}
}
// If the root is a real trie node, check consistency
if !codeHash {
if err := checkStateConsistency(dstDb, root); err != nil {
t.Fatalf("state inconsistent: %v", err)
}
}
}
// Fetch the next batch to retrieve
queue = append(queue[:0], sched.Missing(1)...)
}
// Sanity check that removing any node from the database is detected
for _, node := range added[1:] {
key := node.Bytes()
value, _ := dstDb.Get(key)
dstDb.Delete(key)
if err := checkStateConsistency(dstDb, added[0]); err == nil {
t.Fatalf("trie inconsistency not caught, missing: %x", key)
}
dstDb.Put(key, value)
}
}